Transactions of Nonferrous Metals Society of China The Chinese Journal of Nonferrous Metals

您目前所在的位置:首页 - 期刊简介 - 详细页面

中国有色金属学报(英文版)

Transactions of Nonferrous Metals Society of China

Vol. 33    No. 4    April 2023

[PDF Download]        

    

Influence of laser power on microstructure and tensile property of a new nickel-based superalloy designed for additive manufacturing
Bin WU1,2, Jing-jing LIANG1,3, Yi-zhou ZHOU1, Yan-hong YANG1,3, Jin-guo LI1,3, Xiao-feng SUN1

1. Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China;
3. Key Laboratory of Space Manufacturing Technology, Chinese Academy of Sciences, Beijing 100094, China

Abstract:The microstructure and tensile properties of a new Ni-based superalloy specially designed for additive manufacture (AM) were investigated under different laser power (LP) conditions. The results measured by X-ray diffraction analysis and scanning electron microscopy show that no cracks are observed in as-deposited alloy, which has typical crystallography orientation and non-equilibrium solidification dendrite/cellular morphology. The elements such as Nb, Si and Ti are enriched in the interdendritic regions, while Al, Cr and Co segregate in the dendritic cores. When the LP is low, the cellular crystals of the alloy are arranged orderly, the primary dendrite arm space (PDAS) is small, the porosity is large, the strength is high and the elongation is low. With the increase of LP, the PDAS increases, the porosity decreases, the strength decreases and the elongation increases. When the LP is elevated further, Marangoni convection effect is enhanced and shows unique impacts, that is, the disordered arrangement of cellular crystals occurs. Then, the PDAS decreases, the porosity increases, the strength increases and the elongation decreases. The smaller PDAS favors the reduction for elements segregation, as well as microstructure refinement and strength improvement. The fitting formula between PDAS and yield strength (YS) was proposed, and the concentric ring patterns inside microstructure were rationalized.

 

Key words: Marangoni convection; molten pool; laser power (LP); primary dendrite arm space (PDAS); segregation

ISSN 1004-0609
CN 43-1238/TG
CODEN: ZYJXFK

ISSN 1003-6326
CN 43-1239/TG
CODEN: TNMCEW

主管:中国科学技术协会 主办:中国有色金属学会 承办:中南大学
湘ICP备09001153号 版权所有:《中国有色金属学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市岳麓山中南大学内 邮编:410083
电 话:0731-88876765,88877197,88830410   传真:0731-88877197   电子邮箱:f_ysxb@163.com