Transactions of Nonferrous Metals Society of China The Chinese Journal of Nonferrous Metals

您目前所在的位置:首页 - 期刊简介 - 详细页面

中国有色金属学报(英文版)

Transactions of Nonferrous Metals Society of China

Vol. 33    No. 1    January 2023

[PDF Download]        

    

Temperature dependence of compressive behavior and deformation microstructure of a Ni-based single crystal superalloy with low stacking fault energy
Wen-chao YANG1, Peng-fei QU1, Chen LIU1, Kai-li CAO1, Jia-run QIN1, Hai-jun SU1,2, Jun ZHANG1, Cui-dong REN3, Lin LIU1

1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China;
2. Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China;
3. Xi’an Aerospace Engine (Group) Co., Ltd., Xi’an 710021, China

Abstract:The effect of temperature on the compressive behavior and deformation mechanism of a Ni-based single crystal superalloy with low stacking fault energy was investigated in the temperature range from room temperature to 1000 °C. The results indicated that both the compressive behavior and deformation microstructure were temperature- dependent. There was a higher yield strength at room temperature and then the yield strength decreased at 600 °C. After that, the yield strength would increase continuously to the maximum at 800 °C and then decrease rapidly. Furthermore, the deformation mechanisms were revealed by transmission electron microscope observation. The dislocation tangle and dislocation pairs pile-up were the main reasons for the higher yield strength at room temperature. At 600 °C, the transition in the deformation mechanisms from anti-phase boundary shearing to stacking fault shearing accounted for the slight decrease of the yield strength. At 800 °C, the deformation mechanism was mainly controlled by stacking fault shearing and the reaction of stacking faults along different directions as well as Lomer-Cottrell locks was responsible for the maximum yield strength. Above 900 °C, the primary deformation mechanism was the by-passing of dislocations, although there were still some stacking faults. Finally, the temperature dependence of deformation mechanism and compressive behavior was discussed.

 

Key words: Ni-based single crystal superalloy; dislocation structure; stacking fault; compressive behavior

ISSN 1004-0609
CN 43-1238/TG
CODEN: ZYJXFK

ISSN 1003-6326
CN 43-1239/TG
CODEN: TNMCEW

主管:中国科学技术协会 主办:中国有色金属学会 承办:中南大学
湘ICP备09001153号 版权所有:《中国有色金属学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市岳麓山中南大学内 邮编:410083
电 话:0731-88876765,88877197,88830410   传真:0731-88877197   电子邮箱:f_ysxb@163.com