(1. 中南大学 冶金与环境学院,长沙 410083;
2. 武汉科技大学 国家环境保护矿冶资源利用与污染控制重点实验室,武汉 430081;
3. 安徽工业大学 冶金减排与资源综合利用教育部重点实验室,马鞍山 243002;
4. 长沙瑞熙环保设备制造有限公司,长沙 410201)
摘 要: 低温催化剂是CO选择性催化还原(CO-SCR)的关键。本文通过一步溶剂热法成功合成Cu1/6-MOF-5催化剂,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)、拉曼光谱(Raman)、X射线光电子能谱(XPS)对催化剂的结构进行表征。结果表明:掺杂的Cu元素具有Cu+、Cu2+两种价态,且部分取代了MOF-5中的Zn位形成双金属有机骨架Cu1/6-MOF-5。同时,Cu的掺杂增加了氧空位的浓度,从而使得催化剂拥有更高的催化活性,Cu1/6-MOF-5的脱硝率在160 ℃时达到89%,在200 ℃时达到95%,分别比相应温度下MOF-5的脱硝率高57%和25%;即使在含硫环境中,其在200 ℃时的脱硝率仍大于87%。
关键字: MOF-5;Cu掺杂;CO-SCR;脱硝机理
(1. School of Metallurgy and Environment, Central South University, Changsha 410083, China;
2. National Key Laboratory of Environmental Protection Mining and Metallurgy Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China;
3. Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, Anhui University of Technology, Ma’anshan 243002, China;
4. Changsha Ruixi Environmental Protection Equipment Manufacturing Co., Ltd., Changsha 410201, China)
Abstract:Low-temperature catalyst is the key to CO-selective catalytic reduction (CO-SCR). Cu1/6-MOF-5 catalyst was successfully synthesized by one-step solvothermal method. X-ray diffractometer (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (Raman) and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure of the catalysts. The results show that the doped Cu exists in +1 and +2 valence states and partially replaces the Zn site in MOF-5 to form the bimetallic organic framework Cu1/6-MOF-5. At the same time, the Cu doping increases the concentration of oxygen vacancies, so that the catalyst has higher catalytic activity. Specifically, the denitrification rate of Cu1/6-mof-5 catalyst increases from 32% to 89% at 160 ℃ and from 70% to 95 % at 200 ℃. Even in the sulfur-containing environment, the NO conversion rate can still reach 87% at 200 ℃.
Key words: MOF-5; Cu doping; CO-SCR; denitration mechanism


