Transactions of Nonferrous Metals Society of China The Chinese Journal of Nonferrous Metals

您目前所在的位置:首页 - 期刊简介 - 详细页面

中国有色金属学报(英文版)

Transactions of Nonferrous Metals Society of China

Vol. 32    No. 10    October 2022

[PDF Download]        

    

Formation mechanism of basin-like depression defect in electric upsetting process of Ni80A superalloy
Guo-zheng QUAN1,2,3, Xue SHENG1, Kun YANG1, Yan-ze YU1, Wei XIONG4

1. Chongqing Key Laboratory of Advanced Mold Intelligent Manufacturing, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;
2. State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
3. Nanjing Jiepin Intelligent Technology Co., Ltd., Nanjing 210000, China;
4. Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

Abstract:A kind of surface instability, basin-like depression defect companied by mixed grain structure at the bottom of large-scale valve during electric upsetting process, would significantly influence the microstructures and mechanical properties of components. In order to analyze the forming process of the basin-like depression defect, a finite element model for the electric upsetting process of Ni80A superalloy was developed using multi-field and multi-scale coupling analysis method. Subsequently, a series of parameters loading path schemes for force and current were designed by varying the initial value, peak value and value level, and their effects on basin-like depression and mixed grain structure were simulated and uncovered. It is concluded that the changes of heating speed and pressurization speed result in the different flow velocities between the inner and outer layers of billet, thus exerting the basin-like depression. Simulation results also indicate that these defects can be optimized through the parameter coordination between force and current. Finally, the validity and reliability of the finite element model were verified by physical experiments in electric upsetting process.

 

Key words: electric upsetting process; defect; Ni80A superalloy; microstructure evolution; mixed grain structure

ISSN 1004-0609
CN 43-1238/TG
CODEN: ZYJXFK

ISSN 1003-6326
CN 43-1239/TG
CODEN: TNMCEW

主管:中国科学技术协会 主办:中国有色金属学会 承办:中南大学
湘ICP备09001153号 版权所有:《中国有色金属学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市岳麓山中南大学内 邮编:410083
电 话:0731-88876765,88877197,88830410   传真:0731-88877197   电子邮箱:f_ysxb@163.com