Transactions of Nonferrous Metals Society of China The Chinese Journal of Nonferrous Metals

您目前所在的位置:首页 - 期刊简介 - 详细页面

中国有色金属学报

ZHONGGUO YOUSEJINSHU XUEBAO

第32卷    第3期    总第276期    2022年3月

[PDF全文下载]    [HTML全文阅读]    

    

文章编号:1004-0609(2022)-03-0713-08
双相LZ91镁锂合金超塑性变形行为及组织演变
刘金学1,解海涛1, 2,郭晓光1,肖阳1,赵红亮2,关绍康2,白明华3

(1. 郑州轻研合金科技有限公司,郑州 450041;
2. 郑州大学材料科学与工程学院,郑州 450001;
3. 隆基乐叶光伏科技有限公司,西安 710000
)

摘 要: 采用铸造、挤压、冷轧和退火的方法,获得了双相LZ91镁锂合金板材,并通过OM、SEM、TEM和拉伸实验,研究了双相LZ91镁锂合金板材在200~300 ℃、应变速率1.0×10-2~1.7×10-4 s-1条件下的超塑性变形行为、显微组织演变和空洞长大机制。结果表明:双相LZ91镁锂合金在285 ℃、1.7×10-4 s-1条件下的最大超塑性达到485%;拉伸过程中微观组织由初始的β-Li再结晶相和α-Mg条带状相向等轴的β-Li相、α-Mg再结晶相以及β-Li基体中的次生α-Mg纳米相进行演变;空洞主要形核于α/β两相晶界处,变形早期在应力作用下,空洞沿着晶界扩散长大,是扩散控制的长大机制;变形后期在周围材料的塑性变形作用下,空洞被拉伸长大,是塑性变形控制的长大机制。

 

关键字: 双相LZ91镁锂合金;超塑性;空洞;显微组织演化

Superplastic tensile properties and microstructure evolution of dual-phase LZ91 Mg-Li alloy
LUI Jin-xue1, XIE Hai-tao1, 2, GUO Xiao-guang1, XIAO Yang1, ZHAO Hong-liang2, GUAN Shao-kang2, BAI Ming-hua3

1. Zhengzhou Light Alloy Institute Co., Ltd., Zhengzhou 450041,
China;
2. School of Materials Science and Engineering,
Zhengzhou University, Zhengzhou 450001, China;
3. LONGi Solar Technology Co., Ltd., Xi’an 710000,
China

Abstract:The dual-phase LZ91 alloy plate was prepared by vacuum casting, extrusion, cold rolling and annealing. The superplastic behavior, microstructure evolution and cavity growth mechanism of LZ91 Mg-Li alloy were investigated using OM, SEM, TEM and tensile tests in the temperature range 200 ℃ to 300 ℃ and strain rate of 1.0×10-2 s-1 to1.7×10-4 s-1. The results show that the maximum superplasticity of dual-phase LZ91 Mg-Li alloy reaches 485% at 285 ℃, 1.7×10-4 s-1. During the superplastic deformation, the microstructure evolves from initial β-Li recrystallized phase and banded α-Mg phase to equiaxial β-Li phase, α-Mg recrystallized phase and nano α-Mg precipitates in β-Li matrix. The cavitation is mainly nucleated at the α/β interface. In the early stage of deformation, the cavity diffuses and grows along the grain boundary due to the promotion of stress, which is the diffusion-controlled growth mechanism. While, the cavity is stretched under the plastic deformation of the surrounding material in the later stage of deformation, then the growth mechanism is plastic deformation-controlled.

 

Key words:

ISSN 1004-0609
CN 43-1238/TG
CODEN: ZYJXFK

ISSN 1003-6326
CN 43-1239/TG
CODEN: TNMCEW

主管:中国科学技术协会 主办:中国有色金属学会 承办:中南大学
湘ICP备09001153号 版权所有:《中国有色金属学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市岳麓山中南大学内 邮编:410083
电 话:0731-88876765,88877197,88830410   传真:0731-88877197   电子邮箱:f_ysxb@163.com