Transactions of Nonferrous Metals Society of China The Chinese Journal of Nonferrous Metals

您目前所在的位置:首页 - 期刊简介 - 详细页面

中国有色金属学报(英文版)

Transactions of Nonferrous Metals Society of China

Vol. 31    No. 7    July 2021

[PDF Download]        

    

Spalling fracture mechanism of granite subjected to dynamic tensile loading
Lin-qi HUANG1, Jun WANG1, Aliakbar MOMENI2, Shao-feng WANG1

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China;
2. Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, 3619995161, Iran

Abstract:Rocks are likely to undergo spalling failure under dynamic loading. The fracture development and rock failure behaviours were investigated during dynamic tensile loading. Tests were conducted with a split-Hopkinson pressure bar (SHPB) in four different impact loading conditions. Thin sections near failure surfaces were also made to evaluate the growth patterns of fractures observed by polarizing microscope. Scanning electron microscopy (SEM) was used to observe mineral grains on failure surfaces and to evaluate their response to loading and failure. The results indicate that the number of spalling cracks increases with increase in peak impact loads and that quartz sustains abundant intergranular fracturing. Cleavage planes and their direction relative to loading play a vital role in rock strength and fracturing. Separation along cleavage planes perpendicular to loading without the movement of micaceous minerals parallel to loading appears to be unique to the rock spalling process.

 

Key words: microscopic observation; dynamic loading; spalling failure; mineral properties; intercrystalline fracture

ISSN 1004-0609
CN 43-1238/TG
CODEN: ZYJXFK

ISSN 1003-6326
CN 43-1239/TG
CODEN: TNMCEW

主管:中国科学技术协会 主办:中国有色金属学会 承办:中南大学
湘ICP备09001153号 版权所有:《中国有色金属学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市岳麓山中南大学内 邮编:410083
电 话:0731-88876765,88877197,88830410   传真:0731-88877197   电子邮箱:f_ysxb@163.com