Transactions of Nonferrous Metals Society of China The Chinese Journal of Nonferrous Metals

您目前所在的位置:首页 - 期刊简介 - 详细页面

中国有色金属学报(英文版)

Transactions of Nonferrous Metals Society of China

Vol. 31    No. 6    June 2021

[PDF Download]        

    

Refinement and strengthening mechanism of Mg-Zn-Cu-Zr-Ca alloy solidified under extremely high pressure
Xiao-ping LIN1,2,3, Yang KUO1, Lin WANG1, Jie YE1, Chong ZHANG1, Li WANG2, Kun-yu GUO2

1. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China;
2. School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
3. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China

Abstract:Mg-Zn-Cu-Zr-Ca samples were solidified under high pressures of 2–6 GPa. Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect on the solidification structure. The mechanical properties of the samples were investigated through compression tests. The results show that Ca is mostly dissolved in the matrix and the Mg2Ca phase is formed under high pressure, but it is mainly segregated among dendrites under atmospheric pressure. The Mg2Ca particles are effective heterogeneous nuclei of α-Mg crystals, which significantly increases the number of crystal nuclei and refines the solidification structure of the alloy, with the grain size reduced to 22 μm at 6 GPa. As no Ca segregating among the dendrites exists, more Zn is dissolved in the matrix. Consequently, the intergranular second phase changes from MgZn with a higher Zn/Mg ratio to Mg7Zn3 with a lower Zn/Mg ratio. The volume fraction of the intergranular second phase also increases to 22%. Owing to the combined strengthening of grain refinement, solid solution, and dispersion, the compression strength of the Mg–Zn–Cu–Zr–Ca alloy solidified under 6 GPa is up to 520 MPa.

 

Key words: high pressure solidification; Mg-Zn-Cu-Zr-Ca alloy; Mg2Ca particle; solution strengthening; grain refinement strengthening

ISSN 1004-0609
CN 43-1238/TG
CODEN: ZYJXFK

ISSN 1003-6326
CN 43-1239/TG
CODEN: TNMCEW

主管:中国科学技术协会 主办:中国有色金属学会 承办:中南大学
湘ICP备09001153号 版权所有:《中国有色金属学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市岳麓山中南大学内 邮编:410083
电 话:0731-88876765,88877197,88830410   传真:0731-88877197   电子邮箱:f_ysxb@163.com