Transactions of Nonferrous Metals Society of China The Chinese Journal of Nonferrous Metals

您目前所在的位置:首页 - 期刊简介 - 详细页面

中国有色金属学报(英文版)

Transactions of Nonferrous Metals Society of China

Vol. 31    No. 4    April 2021

[PDF Download]        

    

Thermal fatigue crack growth behavior of ZCuAl10Fe3Mn2 alloy strengthened by laser shock processing
Guang-lei LIU1,2, Yu-hao CAO1, Kun YANG1, Wei GUO1, Xiao-xuan SUN1, Ling ZHAO1, Nai-chao SI1, Jian-zhong ZHOU2

1. School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China;
2. School of Mechanical Engineering, Jiangsu University, Zhenjiang 2120013, China

Abstract:The effect of laser shock processing (LSP) on the hardness, surface morphology, residual stress, and thermal fatigue properties of a ZCuAl10Fe3Mn2 alloy was investigated to improve the thermal fatigue performance and decrease the surface crack of high-temperature components. The microstructure and crack morphology were analyzed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that laser shock could significantly improve the thermal fatigue performance of the alloy at a pulse energy of 4 J. Under the effect of thermal stress and alternating stress, microstructure around the specimen notch was oxidized and became porous, leading to the formation of multiple micro-cracks. The micro-cracks in the vertical direction became the main cracks, which mainly expanded with the conjoining of contiguous voids at the crack tip front. Micro-cracks in other directions grew along the grain boundaries and led to material shedding.

 

Key words: copper alloy; laser shock strengthening; surface morphology; thermal fatigue properties; crack initiation; crack propagation

ISSN 1004-0609
CN 43-1238/TG
CODEN: ZYJXFK

ISSN 1003-6326
CN 43-1239/TG
CODEN: TNMCEW

主管:中国科学技术协会 主办:中国有色金属学会 承办:中南大学
湘ICP备09001153号 版权所有:《中国有色金属学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市岳麓山中南大学内 邮编:410083
电 话:0731-88876765,88877197,88830410   传真:0731-88877197   电子邮箱:f_ysxb@163.com