Transactions of Nonferrous Metals Society of China The Chinese Journal of Nonferrous Metals

您目前所在的位置:首页 - 期刊简介 - 详细页面

中国有色金属学报

ZHONGGUO YOUSEJINSHU XUEBAO

第30卷    第5期    总第254期    2020年5月

[PDF全文下载]        

    

文章编号:1004-0609(2020)-05-1192-10
基于深度学习的黑钨矿图像识别选矿方法
王李管,陈斯佳,贾明滔,涂思羽

(中南大学 资源与安全工程学院,长沙 410083)

摘 要: 黑钨矿图像识别是代替黑钨选矿手选抛废的一条高效途径,但存在无法识别黑钨矿石与围岩废石的问题。本文利用深度学习中卷积神经网络进行迁移学习来解决,该方法具有收敛快速、所需数据集小和分类准确的优点。首先,对黑钨原矿彩色图像采用旋转、平移等方法进行数据增广降低样本不平衡性。其次,基于Keras框架使用本文优化的神经网络进行全新训练。结果表明:黑钨矿石与围岩两类识别中Wu-VGG19迁移网络矿石识别率最高,为97.51%。此外,本文加入石英脉石类别继续实验,得出修改的Wu-v3迁移网络矿石识别率最高,为99.6%。

 

关键字: 黑钨矿选矿;迁移学习;深度学习;图像识别;卷积神经网络

Beneficiation method of wolframite image recognition based on deep learning
WANG Li-guan, CHEN Si-jia, JIA Ming-tao, TU Si-yu

School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Abstract:Wolframite image recognition is an efficient way to replace concentrator for manual sorting, but the problem is that the wolframite and surrounding rock cannot be recognized. In this paper, convolutional neural network in deep learning was used to solve the problem. This method is fast convergence, small data set and accurate classification. Firstly, the RGB image of wolframite was augmented by rotation and translation to reduce sample imbalance. Secondly, the neural network optimized in this paper is used for new training based on Keras framework. Finally, the results show that Wu-VGG19 has the highest recognition rate of 97.51% in wolframite and surrounding rock recognition. In addition, quartz gangue category is added to continue the experiment, and the final result shows that the improved Inception Wu-v3 has the highest ore recognition rate, 99.6%.

 

Key words: wolframite beneficiation; transfer learning; deep learning; image recognition; convolutional neural network

ISSN 1004-0609
CN 43-1238/TG
CODEN: ZYJXFK

ISSN 1003-6326
CN 43-1239/TG
CODEN: TNMCEW

主管:中国科学技术协会 主办:中国有色金属学会 承办:中南大学
湘ICP备09001153号 版权所有:《中国有色金属学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市岳麓山中南大学内 邮编:410083
电 话:0731-88876765,88877197,88830410   传真:0731-88877197   电子邮箱:f_ysxb@163.com