Transactions of Nonferrous Metals Society of China The Chinese Journal of Nonferrous Metals

您目前所在的位置:首页 - 期刊简介 - 详细页面

中国有色金属学报

ZHONGGUO YOUSEJINSHU XUEBAO

第29卷    第1期    总第238期    2019年1月

[PDF全文下载]        

    

文章编号:1004-0609(2019)-01-0194-09
基于粒子群优化算法和ANFIS的矿体品位插值
任助理1, 2,王李管1, 2,贾明涛1, 2

(1. 中南大学 资源与安全工程学院,长沙 410083;
2. 中南大学 数字矿山研究中心,长沙 410083
)

摘 要: 地质模型在矿产勘探与开发中具有重要作用,但在矿山生产实践中,由于成本和技术等诸多因素影响,很难获得整个区块的地质数据,而且传统插值方法依靠经验确定参数有很大局限性。提出将粒子群优化算法(PSO)和自适应神经模糊推理系统(ANFIS)应用到矿体品位插值中,利用粒子群优化算法的快速搜索能力,神经网络的学习机制和模糊系统的语言推理能力等优势构建PSO-ANFIS品位插值模型,并借助MATLAB生成571组样本数据作为输入空间对模型进行训练,其中每一个训练样本由待估点三维坐标及真实值和其周围8个样品点组成,最后用训练后的PSO-ANFIS模型对待估点进行品位插值,并与距离幂次反比插值法进行对比,其均方根误差(RMSE)提高了近15%,验证了该模型的可行性和有效性。

 

关键字: 矿石品位;空间插值;粒子群优化算法;自适应模糊神经推理系统;优化

Grade interpolation of orebody based on particle swarm optimization algorithm and ANFIS
REN Zhu-li1, 2, WANG Li-guan1, 2, JIA Ming-tao1, 2

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China;
2. Center of Digital Mine Research, Central South University, Changsha 410083, China

Abstract:Geological model plays an important role in mineral exploration and development, but in the practice of mine production, because of the influence of cost and technology, it is difficult to obtain the geological data of the whole block, and the spatial interpolation is an important means to solve this problem. The particle swarm optimization (PSO) and adaptive neuro-fuzzy inference system (ANFIS) were applied to the grade interpolation of orebody, which overcomes the limitation of traditional interpolation method based on empirical determination of parameters, PSO-ANFIS grade interpolation model was constructed by using the fast searching ability of particle swarm optimization, the learning mechanism of neural network and the language reasoning ability of fuzzy system. Selecting 571 groups of sample points as training data to train the model with the cross verification method in MATALB, each of these training samples consists of three-dimensional coordinates and true values of the estimated points and eight surrounding sample points, finally, the PSO-ANFIS model was used to evaluate the evaluation point and the mean square root error (RMSE) was improved by comparing with the distance power-time inverse interpolation method, which is nearly 15%. The feasibility and effectiveness of the model were validated.

 

Key words: ore grade; spatial interpolation; particle swarm optimization algorithm; adaptive neuron-fuzzy inference system; optimization

ISSN 1004-0609
CN 43-1238/TG
CODEN: ZYJXFK

ISSN 1003-6326
CN 43-1239/TG
CODEN: TNMCEW

主管:中国科学技术协会 主办:中国有色金属学会 承办:中南大学
湘ICP备09001153号 版权所有:《中国有色金属学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市岳麓山中南大学内 邮编:410083
电 话:0731-88876765,88877197,88830410   传真:0731-88877197   电子邮箱:f_ysxb@163.com