Transactions of Nonferrous Metals Society of China The Chinese Journal of Nonferrous Metals

您目前所在的位置:首页 - 期刊简介 - 详细页面

中国有色金属学报(英文版)

Transactions of Nonferrous Metals Society of China

Vol. 27    No. 11    November 2017

[PDF Download]        

    

Hybrid multi-objective optimization of microstructural and mechanical properties of B4C/A356 composites fabricated by FSP using TOPSIS and modified NSGA-II
Mostafa AKBARI1, Mohammad Hasan SHOJAEEFARD2, Parviz ASADI3, Abolfazl KHALKHALI1

1. School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran; 2. School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran; 3. Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran

Abstract:A356 alloy was used as the base metal to produce boron carbide (B4C)/A356 composites using friction stir processing (FSP). The microstructural and mechanical properties of B4C/A356 composites were optimized using artificial neural network (ANN) and non-dominated sorting genetic algorithm-II (NSGA-II). Firstly, microstructural properties of the composites fabricated in different processing conditions were investigated. Results show that FSP parameters such as rotational speed, traverse speed and tool pin profile significantly affect the size of the primary silicon (Si) particles of the base metal, as well as the dispersion quality and volume fraction of reinforcing B4C particles in the composite layer. Higher rotational to traverse speeds ratio accompanied by threaded pin profile leads to better particles distribution, finer Si particles and smaller B4C agglomerations. Secondly, hardness and tensile tests were performed to study mechanical properties of the composites. FSP changes the fracture mechanism from brittle form in the as-received metal to very ductile form in the FSPed specimens. Then, a relation between the FSP parameters and microstructural and mechanical properties of the composites was established using ANN. A modified NSGA-II by incorporating diversity preserving mechanism called the ε elimination algorithm was employed to obtain the Pareto-optimal set of FSP parameters.

 

Key words: friction stir processing; B4C; composite; multi-objective optimization; TOPSIS method

ISSN 1004-0609
CN 43-1238/TG
CODEN: ZYJXFK

ISSN 1003-6326
CN 43-1239/TG
CODEN: TNMCEW

主管:中国科学技术协会 主办:中国有色金属学会 承办:中南大学
湘ICP备09001153号 版权所有:《中国有色金属学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市岳麓山中南大学内 邮编:410083
电 话:0731-88876765,88877197,88830410   传真:0731-88877197   电子邮箱:f_ysxb@163.com