(北京工业大学 材料科学与工程学院,北京 100124)
摘 要: 以Mg-Zn-Gd准晶中间合金为增强相,AZ31镁合金为基体合金,采用多次循环塑性变形技术制备准晶增强镁基复合材料,并在低载荷条件下对合金和复合材料进行耐磨性能研究。结果表明:当变形次数为250次时,准晶中间合金含量为10%(质量分数)的复合材料中第二相分布最为均匀;AZ31镁合金和复合材料的摩擦因数均随载荷的增加而略有降低;高热稳定性及高硬度准晶的加入有效提高复合材料的耐磨性能。
关键字: Mg-Zn-Gd准晶;复合材料;反复塑性变形;磨损
(College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China)
Abstract:The Mg-Zn-Gd icosahedral quasicrystal master alloy particles was added into the AZ31 alloy by the repeated plastic working (RPW) process in order to produce AZ31 based composite reinforced by the icosahedral phase. The wear-resistance of the alloys and compositions under a lower load were investigated. The results show that the distribution of reinforcement in the composite with 10% (mass fraction) quasi-crystal master alloy is significantly uniform. The wear coefficient of the AZ31 alloy and composites decreases as the load increases. On the whole, the addition of high-stable and high-hard icosahedral quasicrystal leads to obvious improvement of wear-resistance property.
Key words: Mg-Zn-Gd icosahedral quasicrystal; composite; repeated plastic working; wear