(1. 苏州科技大学机械工程学院,苏州 215009;
2. 中原工学院材料与化工学院,郑州 450007)
摘 要: 采用在镍基钎料中分别添加3%、5%和7%(质量分数)Cu-P-Sn组成新型复合钎料,并进行金刚石磨粒的钎焊实验,利用SEM、EDS和XRD对金刚石焊后的界面碳化物形貌及钎料组织进行测试分析。结果表明:添加5%Cu-P-Sn的复合钎料进行金刚石钎焊时,钎焊温度有所下降,金刚石表面碳化物较规整,并且数量有所下降,降低金刚石的热损伤。新型钎料中形成树枝晶α-Ni基固溶体和枝晶间Ni31Si12、Cr7C3等化合物的组织,不同含量Cu-P-Sn与Ni-Cr-B-Si合金可以较大程度互溶,可以实现钎料性能的调控,降低金刚石的热损伤。
关键字: 真空钎焊;金刚石;Ni-Cr-B-Si;Cu-P-Sn
(1. School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
2. School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China)
Abstract:A series of new composite brazing fillers metal were got by adding 3%, 5% or 7% (mass fraction) Cu-P-Sn in the primary brazing filler metal Ni-Cr-B-Si, respectively, then, they were used to braze diamond particles. The interface morphology of diamond carbide and the microstructure of brazing filler metal were tested by SEM, EDS and XRD. The results show that, when the composite brazing filler metal containing 5% Cu-P-Sn alloy, the carbide on the surface of the diamond is more regular and less with brazing temperature decreases, which decreases the thermal damage to the diamond. In the brazing filler alloy, the microstructures, such as dentrite included solid solution of Ni with some carbides like Ni31Si12 and Cr7C3, are formed. As the added component, Cu-P-Sn at different proportions can be dissolved into the primary brazing filler Ni-Cr-B-Si in large degree, which can adjust the properties of the filler and reduce the heat damage to the diamond.
Key words: vacuum brazing; diamond; Ni-Cr-B-Si; Cu-P-Sn