(1. 太原科技大学 材料科学与工程学院,太原 030024;
2. 太原科技大学 应用科学学院,太原 030024)
摘 要: 采用热力模拟实验和电子背散射衍射(EBSD)等测试方法,研究温度为350、420 ℃和应变速率为0.1 s-1条件下新型Al-Zn-Mg-Cu 超高强铝合金轴对称热压缩变形以及400 ℃、1 h 退火微观组织和织构的演变。结果表明:在350 ℃条件下进行80%的压缩变形过程中微观组织的演变机理是动态回复和大应变几何动态再结晶;主要织构是沿着α 取向线分布的黄铜织构{110}<112>和少量的Goss{110}<001>织构;退火过程中发生静态回复和程度较小的静态再结晶,出现旋转立方织构{100}<011>,黄铜织构Brass {110}<112>沿着α 取向线向Goss 织构{110}<001>转变;420 ℃进行80%压缩变形的微观晶粒组织较均匀,细小的再结晶晶粒分布在变形剧烈的晶界或三角晶界处,织构类型为旋转立方织构{100}<011>;退火过程中发生亚动态再结晶和晶粒长大,该过程中旋转立方织构{100}<011>减弱,并出现黄铜织构{110}<112>。
关键字: Al-Zn-Mg-Cu 超高强铝合金;轴对称热压缩;动态回复;动态再结晶;微观组织;织构
(1.School of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China;
2. School of Applied Science,Taiyuan University of Science and Technology,Taiyuan 030024,China)
Abstract:The microstructure and texture evolution of new Al-Zn-Mg-Cu ultra-strength aluminum alloy during axisymmetric hot compression at temperatures of 350,420 ℃ and strain rate 0.1 s-1 and annealing at 400 ℃ for 1 h processes were studied by thermo-mechanical modeling experiments and EBSD testing method. The results show that the microstructure evolution mechanism during hot compression up to 80% reduction at 350 ℃ is dynamic recovery and large strain geometric dynamic recrystallization. Brass {110}<112> along the α-fiber and a little Goss {110}<001> dominate mainly during the deformation process. During the annealing process,static recovery and static recrystallization with small recrystallized fraction occur. Rotated cube {100}<011> appears and Brass {110}<112> transforms to Goss {110}<001> along α-fiber. When the reduction is up to 80% at 420 ℃,the refined homogeneous recrystallized grains locate at severe deformed grain boundaries or the triangle grain boundaries. Rotated cube {100}<011> appears during the deformation process. During the annealing process,meta dynamic recrystallization and grain growth dominate. Rotated cube {100}<011> decreases and Brass {110}<112> appears.
Key words: Al-Zn-Mg-Cu ultra-strength aluminum alloy; axisymmetric hot compression; dynamic recovery; dynamic recrystallization; microstructure; texture