Transactions of Nonferrous Metals Society of China The Chinese Journal of Nonferrous Metals

您目前所在的位置:首页 - 期刊简介 - 详细页面

中国有色金属学报(英文版)

Transactions of Nonferrous Metals Society of China

Vol. 24    No. 1    January 2014

[PDF Download]        

    

Mechanism for thermite reactions of aluminum/iron-oxide nanocomposites based on residue analysis
Yi WANG1,2, Xiao-lan SONG3, Wei JIANG1, Guo-dong DENG1, Xiao-de GUO1, Hong-ying LIU1, Feng-sheng LI1

1. National Special Superfine Powder Engineering Research Center,
Nanjing University of Science and Technology, Nanjing 210094, China;
2. School of Materials Science and Engineering, North University of China, Taiyuan 030051, China;
3. School of Chemical Engineering and Environment, North University of China, Taiyuan 030051, China

Abstract:Sol-gel method was employed to combine Al and iron-oxide to form nanocomposites (nano-Al/xero-Fe2O3 and micro-Al/xero-Fe2O3). SEM, EDS and XRD analyses were used to characterize the nanocomposites and the results indicated that nano-Al and micro-Al were compactly wrapped by amorphous iron-oxide nanoparticles (about 20 nm), respectively. The iron-oxide showed the mass ratio of Fe to O as similar as that in Fe2O3. Thermal analyses were performed on two nanocomposites, and four simple mixtures (nano-Al+xero-Fe2O3, nano-Al+micro-Fe2O3, micro-Al+xero-Fe2O3, and micro-Al+micro-Fe2O3) were also analyzed. There were not apparent distinctions in the reactions of thermites fueled by nano-Al. For thermites fueled by micro-Al, the DSC peak temperatures of micro-Al/Xero-Fe2O3 were advanced by 68.1 °C and 76.8 °C compared with micro-Al+xero-Fe2O3 and micro-Al+micro-Fe2O3, respectively. Four thermites, namely, nano-Al/xero-Fe2O3, nano-Al+micro-Fe2O3, micro-Al/xero-Fe2O3, and micro-Al+micro-Fe2O3, were heated from ambient temperature to 1020 °C, during which the products at 660 °C and 1020 °C were collected and analyzed by XRD. Crystals of Fe, FeAl2O4, Fe3O4, α-Fe2O3, Al, γ-Fe2O3, Al2.667O4, FeO and α-Al2O3 were indexed in XRD patterns. For each thermite, according to the specific products, the possible equations were given. Based on the principle of the minimum free energy, the most reasonable equations were inferred from the possible reactions.

 

Key words: Al; nanocomposites; thermite reaction; reaction mechanism

ISSN 1004-0609
CN 43-1238/TG
CODEN: ZYJXFK

ISSN 1003-6326
CN 43-1239/TG
CODEN: TNMCEW

主管:中国科学技术协会 主办:中国有色金属学会 承办:中南大学
湘ICP备09001153号 版权所有:《中国有色金属学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市岳麓山中南大学内 邮编:410083
电 话:0731-88876765,88877197,88830410   传真:0731-88877197   电子邮箱:f_ysxb@163.com