Transactions of Nonferrous Metals Society of China The Chinese Journal of Nonferrous Metals

您目前所在的位置:首页 - 期刊简介 - 详细页面

中国有色金属学报

ZHONGGUO YOUSEJINSHU XUEBAO

第16卷    第3期    总第84期    2006年3月

[PDF全文下载]        

    

文章编号:  1004-0609(2006)03-0442-05
钽的加工硬化速率及其显微组织
张行健, 姜国圣, 王志法

(中南大学 材料科学与工程学院, 长沙 410083)

摘 要:  借助力学性能实验、 金相显微镜和透射电镜等手段研究了纯钽的加工硬化速率。 研究结果表明: 纯钽的宏观加工硬化速率比较低。 通过TEM观察, 发现变形95%后, 纯钽的位错密度都不是很高, 存在有位错胞亚结构。 其原因可能是因为钽的层错能高, 位错容易交滑移, 使位错密度降低。 根据林位错硬化理论, 也可以认为, 钽在室温下塑性变形时, 滑移系主要为{110}〈111〉, 次滑移系的激活比较少, 因此穿过主滑移系的林位错密度比较低, 位错之间相互作用少, 导致钽的加工硬化速率低。

 

关键字:  钽; 加工硬化; 位错密度

Work hardening rate and
 microstructure of tantalum
ZHANG Xing-jian, JIANG Guo-sheng, WANG Zhi-fa

School of Materials Science and Engineering, Central South University,
 Changsha 410083, China

Abstract: The work hardening rate of pure tantalum was studied by tension test, optical microscope and TEM. The results show that the work hardening rate of pure tantalum is low. TEM analysis indicates that the dislocation density of pure tantalum is not high and dislocation cells occur after 95% cold rolling reduction. Because the stacking fault energy (SFC) of tantalum is high, the dislocation cross slips easily which can lower the dislocation density. On the other hand, according to the tree dislocation theory, it is assumed that when pure tantalum is deformed at room temperature, the slip system is mainly{110}〈111〉, while the secondary slip systems are seldom activated. So the density of tree dislocation penetrating the main slip plane is low and the interaction between dislocations is weak, which leads to low work hardening rate of pure tantalum.

 

Key words: tantalum; work hardening; dislocation density

ISSN 1004-0609
CN 43-1238/TG
CODEN: ZYJXFK

ISSN 1003-6326
CN 43-1239/TG
CODEN: TNMCEW

主管:中国科学技术协会 主办:中国有色金属学会 承办:中南大学
湘ICP备09001153号 版权所有:《中国有色金属学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市岳麓山中南大学内 邮编:410083
电 话:0731-88876765,88877197,88830410   传真:0731-88877197   电子邮箱:f_ysxb@163.com