Transactions of Nonferrous Metals Society of China The Chinese Journal of Nonferrous Metals

您目前所在的位置:首页 - 期刊简介 - 详细页面

中国有色金属学报(英文版)

Transactions of Nonferrous Metals Society of China

Vol. 17    No. 4    August 2007

[PDF Download]        

    

Quantitative calculation of local shear deformation in adiabatic shear band for Ti-6Al-4V
WANG Xue-bin(王学滨)

Department of Mechanics and Engineering Science, Liaoning Technical University,
Fuxin 123000, China

Abstract: JOHNSON-COOK(J-C) model was used to calculate flow shear stress—shear strain curve for Ti-6Al-4V in dynamic torsion test. The predicted curve was compared with experimental result. Gradient-dependent plasticity(GDP) was introduced into J-C model and GDP was involved in the measured flow shear stress—shear strain curve, respectively, to calculate the distribution of local total shear deformation(LTSD) in adiabatic shear band(ASB). The predicted LTSDs at different flow shear stresses were compared with experimental measurements. J-C model can well predict the flow shear stress—shear strain curve in strain-hardening stage and in strain-softening stage where flow shear stress slowly decreases. Beyond the occurrence of ASB, with a decrease of flow shear stress, the increase of local plastic shear deformation in ASB is faster than the decrease of elastic shear deformation, leading to more and more apparent shear localization. According to the measured flow shear stress—shear strain curve and GDP, the calculated LTSDs in ASB are lower than experimental results. At earlier stage of ASB, though J-C model overestimates the flow shear stress at the same shear strain, the model can reasonably assess the LTSDs in ASB. According to the measured flow shear stress—shear strain curve and GDP, the calculated local plastic shear strains in ASB agree with experimental results except for the vicinity of shear fracture surface. In the strain-softening stage where flow shear stress sharply decreases, J-C model cannot be used. When flow shear stress decreases to a certain value, shear fracture takes place so that GDP cannot be used.

 

Key words: adiabatic shear band; Ti-6Al-4V; shear localization; JOHNSON-COOK model; shear stress; shear strain; gradient- dependent plasticity

ISSN 1004-0609
CN 43-1238/TG
CODEN: ZYJXFK

ISSN 1003-6326
CN 43-1239/TG
CODEN: TNMCEW

主管:中国科学技术协会 主办:中国有色金属学会 承办:中南大学
湘ICP备09001153号 版权所有:《中国有色金属学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市岳麓山中南大学内 邮编:410083
电 话:0731-88876765,88877197,88830410   传真:0731-88877197   电子邮箱:f_ysxb@163.com