Transactions of Nonferrous Metals Society of China The Chinese Journal of Nonferrous Metals

您目前所在的位置:首页 - 期刊简介 - 详细页面

中国有色金属学报(英文版)

Transactions of Nonferrous Metals Society of China

Vol. 23    No. 3    March 2013

[PDF Download]        

    

Theory analysis and vestigial information of surface relaxation of natural chalcopyrite mineral crystal
Shu-ming WEN, Jiu-shuai DENG, Yong-jun XIAN, Liu DAN

Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China

Abstract:X-ray diffraction was used to measure the unit cell parameters of chalcopyrite crystal. The results showed that the chalcopyrite crystal is perfect, and the arrangement of its atoms is regular. A qualitative analysis of molecular mechanics showed that surface relaxation causes the chalcopyrite surface to be sulfur enriched. Atomic force microscope (AFM) was used to obtain both a microscopic three-dimensional topological map of chalcopyrite surface and a two-dimensional topological map of its electron cloud. The AFM results revealed that the horizontal and longitudinal arrangements of atoms on the chalcopyrite surface change dramatically compared with those in the interior of the crystal. Longitudinal shifts occur among the copper, iron and sulfur atoms relative to their original positions, namely, surface relaxation occurs, causing sulfur atoms to appear on the outermost surface. Horizontally, AFM spectrum showed that the interatomic distance is irregular and that a reconstruction occurs on the surface. One result of this reconstruction is that two or more atoms can be positioned sufficiently close so as to form atomic aggregates. The lattice properties of these models were calculated based on DFT theory and compared with the experimental results and those of previous theoretical works. On analyzing the results, the atomic arrangement on the (001) surface of chalcopyrite is observed to become irregular, S atoms move outward along the Z-axis, and the lengths of Cu—S and Fe—S bonds are enlarged after geometry optimization because of the surface relaxation and reconstruction. The sulfur-rich surface and irregular atomic aggregates caused by the surface relaxation and reconstruction greatly influence the bulk flotation properties of chalcopyrite.

 

Key words: chalcopyrite; surface relaxation; reconstruction; sulfur-rich surface

ISSN 1004-0609
CN 43-1238/TG
CODEN: ZYJXFK

ISSN 1003-6326
CN 43-1239/TG
CODEN: TNMCEW

主管:中国科学技术协会 主办:中国有色金属学会 承办:中南大学
湘ICP备09001153号 版权所有:《中国有色金属学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市岳麓山中南大学内 邮编:410083
电 话:0731-88876765,88877197,88830410   传真:0731-88877197   电子邮箱:f_ysxb@163.com