Effects of isothermal process parameters on semisolid microstructure of Mg–8%Al–1%Si alloy

CAO Li-jie1, MA Guo-rui2,3, TANG Chun-chong3

1. College of Mechanical Engineering, Shanghai University of Engineering Science, Shanghai 201600, China;
2. National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
3. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

Received 9 July 2012; accepted 6 August 2012

Abstract: A Mg–8%Al–1%Si alloy with semisolid microstructure was fabricated by isothermal heat treatment process. The effects of isothermal process parameters such as holding temperature and holding time on the microstructure of Mg–8%Al–1%Si alloy were investigated. The results show that a non-dendritic microstructure could be obtained by isothermal heat treatment. With increasing holding temperature from 560 to 575 °C or holding time from 5 to 30 min, the liquid volume fraction increases, the average size of α-Mg grains grows larger and globular tendency becomes more obvious. In addition, the Mg2Si phase transforms from Chinese script shape to granule shape. The morphology modification mechanism of Mg2Si phase in Mg–8%Al–1%Si alloy during the semisolid isothermal heat treatment was also studied.

Key words: Mg–Al–Si alloy; semi-solid; microstructure; isothermal heat treatment; Mg2Si phase

1 Introduction

Magnesium alloys are attractive candidates for automotive and aerospace applications because of their excellent properties [1,2]. For example, parts of the Mg–Al–Si series alloys, such as AS21 and AS41 alloys, have been successfully used in the drive system of automobile engines [3,4]. The Mg–Al–Si based alloy containing intermetallic compound Mg2Si has high melting point, high hardness, high elastic modulus and low coefficient of thermal expansion (CET) [5–8]. Therefore, Mg2Si can act as the very effective strengthening phase in magnesium alloys both at low and elevated temperatures.

However, Mg2Si phase in the Mg–Al–Si based alloys is prone to forming undesirable coarse Chinese script shape, which can deteriorate the mechanical properties of the magnesium alloys [9,10]. In order to modify the Chinese script shaped Mg2Si phases, many methods such as hot extrusion [11–13], rapid solidification [14], mechanical alloying [15] and micro-alloying (Ca, P, Sb and Sr) [16–20] have been studied. But these methods are too expensive and complex to be accepted by engineering community for general application [17,19,21].

Semisolid isothermal heat treatment is a novel method. Recent research found that the Chinese script shaped Mg2Si phase in AS91 alloy could be modified to granule and/or polygon shapes by semisolid isothermal heat treatment [22,23]. Therefore, the semisolid isothermal heat treatment can be thought as a potential method for the modification of Chinese script shaped Mg2Si phase in the Mg–Al–Si based magnesium alloys.

In the present work, the effects of isothermal process parameters on the microstructure of Mg–8%Al–1%Si alloys during isothermal heat treatment were investigated. The purpose was to develop a simplified method for the modification of Chinese script shaped Mg2Si phase. It was expected that the preliminary results can be significant in promoting the fabrication of high quality Mg–Al–Si alloys.
2 Experimental

The Mg−8%Al−1%Si alloy was prepared by adding the following materials: commercial pure Mg (purity > 99.9%), Al (purity >99.8%) and Si (purity >99.4%). The experimental alloy was melted in a resistance furnace and then poured into a permanent mould to produce the ingots. The actual chemical composition of the experimental alloy was determined by the ARL4460 Metals Analyzer and the result is listed in Table 1.

Table 1 Chemical composition of Mg−8%Al−1%Si alloy (mass fraction, %)

<table>
<thead>
<tr>
<th></th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>Zn</th>
<th>Sn</th>
<th>Bal.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>7.837</td>
<td>0.896</td>
<td>0.00641</td>
<td>0.00152</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 shows the DSC curve of Mg−8%Al−1%Si alloy. According to Fig. 1, the semisolid isothermal temperatures of 560, 565, 570 and 575 °C were selected. Samples were cut from the initial as-cast alloy with dimensions of 12 mm×12 mm×14 mm, and put into resistance furnace at selected temperatures and held for 5, 10, 20 and 30 min, respectively, and then they were taken out for water quenching quickly.

3 Results and discussion

Figure 2 shows the XRD pattern and microstructure of the as-cast Mg−8%Al−1%Si alloy. The XRD result reveals that the main phases in the as-cast alloy are α-Mg, Mg17Al12 and Mg2Si. It can be seen from Fig. 2(b) that the microstructure of the as-cast alloy is composed of α-Mg phase, Mg17Al12 phase and Chinese script shaped Mg2Si phase. In general, the Mg2Si phases in Mg−Al−Si based alloys are prone to forming coarse Chinese script shape at low solidification rate [9]. Therefore, under the permanent mould casting in this investigation, the Mg2Si phase in Mg−8%Al−1%Si alloy exhibits coarse Chinese script morphology.

The samples (as-cast and semi-solid) were etched by 4% HNO3 in alcohol. The microstructure and intermetallic phase analyses were investigated by OLYMPUS optical microscopy (OM). X-ray diffraction (XRD) (D/Max 2500PC Rigaku, Japan) was utilized for phase identification. The temperature of the eutectic reaction was measured using a differential scanning calorimeter (DSC) (PerkinElmer, USA) at a heating rate of 5 °C/min. The characteristics of microstructural evolution, such as liquid volume fraction and average grain size, were evaluated by image analysis system (Image-Pro plus).

Figures 3 and 4 show the semisolid microstructures of Mg−8%Al−1%Si alloy after being treated at different holding temperatures for 30 min and treated at 570 °C for different holding time. As seen in Fig.3, when the holding temperature is 560 °C, the liquid phases in Mg−8%Al−1%Si alloy distribute discontinuously, and the “liquid islands” are also found inside the α-Mg grains. With holding temperature increasing from 565 to 575 °C, the amount of liquid islands inside the α-Mg grains decreases, the amount of liquid phases distributed along α-Mg grain boundaries increases. Finally, the
initial as-cast alloy ultimately evolves into non-dendritic microstructure.

By combining Figs. 3 and 4, it is found that with the increase of holding temperature or time, the liquid volume fraction increases, the average size of α-Mg grains grows larger and the spheroidization of α-Mg grains becomes more and more obvious. The relation of holding temperature and time on the liquid volume fraction and the average size of α-Mg grains are shown in Fig. 5, which is done using the image analysis system. It is found from Fig. 5 that with the increase of holding temperature from 560 to 575 °C or holding time from 5 to 30 min, the liquid volume fraction increases and the average size of α-Mg grains increases, respectively. Then

![Fig. 3 OM images showing semisolid microstructures of Mg–8%Al–1%Si alloy held for 30 min at 560 °C (a), 565 °C (b), 570 °C (c) and 575 °C (d)](image)

![Fig. 4 OM images showing semisolid microstructures of Mg–8%Al–1%Si alloy held at 570 °C for 5 min (a), 10 min (b), 20 min (c) and 30 min (d)](image)
it is inferred that Mg–8%Al–1%Si alloy with non-dendritic microstructure can be fabricated by suitable semisolid isothermal heat treatment.

Figure 6 shows the morphology of Mg$_2$Si in Mg–8%Al–1%Si alloy after isothermal heat treatment. It is observed that the Mg$_2$Si phase in semisolid Mg–8%Al–1%Si alloy exhibits granule shapes, indicating that the semisolid isothermal heat treatment can modify the Chinese script shaped Mg$_2$Si phase in the as-cast Mg–8%Al–1%Si alloy.

\[c_\alpha(r) = c_\alpha(\infty) \exp \left(\frac{2\sigma V_B}{k_B T r} \right) \]

where $c_\alpha(r)$ is the Si concentration at the position with a curvature radius r; $c_\alpha(\infty)$ is the Si concentration at flat interface; V_B is the volume of Si atom; σ is the surface tension; k_B is the coefficient related to the shape and T is the temperature. Since the curvature radius of different positions for a Chinese script shaped Mg$_2$Si particle might be different, a concentration gradient of Si could be created between these positions. Therefore, during the semisolid isothermal heat treatment, the Si atoms would diffuse from the position where the curvature and Si concentration are respectively large and high to the flat interface where the Si concentration is lower, and then the balance of local Si concentration between these positions could be broken. Furthermore, in order to keep the balance of Si concentration, these positions with larger curvature could be dissolved. Oppositely, due to the supersaturation of Si concentration, the Mg$_2$Si phases could form in the α-Mg matrix corresponding to the flat interface. As a result, these positions with larger curvature could break, and then the granule shaped Mg$_2$Si phase would form, where different positions have close curvature radius. In spite of the above, the modification mechanism of Chinese script shaped Mg$_2$Si phases during semisolid isothermal heat treatment is not completely clear, and further investigation needs to be carried out.
4 Conclusions

1) It is possible to produce Mg–8%Al–1%Si alloy with non-dendritic microstructure by semisolid isothermal heat treatment.

2) With increasing holding temperature from 570 to 575 °C or holding time from 5 to 30 min, the liquid volume fraction increases, the average size of α-Mg grains grows and the globular tendency becomes more obvious.

3) The morphology of Mg2Si phase transform from Chinese script shape to granule shape in Mg–8%Al–1%Si alloy during the semisolid isothermal heat treatment.

References

等温热处理工艺参数对Mg–8%Al–1%Si合金半固态显微组织的影响

曹丽杰1, 马国睿2,3 唐春冲3

1. 上海工程技术大学 机械工程学院, 上海 201600;
2. 上海交通大学 材料科学与工程学院, 轻合金精密成型国家工程研究中心, 上海 200240;
3. 哈尔滨工程大学 材料科学与化学工程学院, 哈尔滨 150001

摘 要: 采用等温热处理工艺制备具有半固态显微组织的Mg–8%Al–1%Si合金，研究等温热处理工艺参数(等温温度和等温时间)对Mg–8%Al–1%Si合金显微组织的影响。结果表明：通过等温热处理工艺可以得到具有非枝晶组织的Mg–8%Al–1%Si合金。随着等温温度从560 °C升高至575 °C或等温时间从5 min延长至30 min, 半固态组织中的液相体积分数增加, α-Mg晶粒尺寸变大并且其球化趋势明显。此外, 在半固态组织中的共晶Mg2Si相从汉字状转变成为颗粒状。研究等温热处理Mg–8%Al–1%Si合金中的共晶Mg2Si相的形貌转变机制。

关键词: Mg–Al–Si 合金; 半固态; 显微组织; 等温热处理; Mg2Si相

(Edited by FANG Jing-hua)