Synthesis and upconversion luminescence of Lu$_2$O$_3$:Yb$^{3+}$,Tm$^{3+}$ nanocrystals

LI Li1, 2, CAO Xue-qin2, ZHANG You1, GUO Chang-xin2

1. College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2. Department of Physics, University of Science and Technology of China, Hefei 230026, China

Received 21 January 2011; accepted 22 September 2011

Abstract: Lutetium oxide nanocrystals codoped with Tm$^{3+}$ and Yb$^{3+}$ were synthesized by the reverse-like co-precipitation method, using ammonium hydrogen carbonate as precipitant. Effects of the Tm$^{3+}$, Yb$^{3+}$ molar fractions and calcination temperature on the structural and upconversion luminescent properties of the Lu$_2$O$_3$ nanocrystals were investigated. The XRD results show that all the prepared nanocrystals can be readily indexed to pure cubic phase of Lu$_2$O$_3$ and indicate good crystallinity. The experimental results show that concentration quenching occurs when the mole fraction of Tm$^{3+}$ is above 0.2%. The optimal Tm$^{3+}$ and Yb$^{3+}$ doped molar fractions are 0.2% and 2%, respectively. The strong blue (490 nm) and the weak red (653 nm) emissions from the prepared nanocrystals were observed under 980 nm laser excitation, and attributed to the $^1G_4 \rightarrow ^3H_6$ and $^1G_4 \rightarrow ^3F_4$ transitions of Tm$^{3+}$, respectively. Power-dependent study reveals that the 1G_4 levels of Tm$^{3+}$ can be populated by three-step energy transfer process. The upconversion emission intensities of 490 nm and 653 nm increase gradually with the increase of calcination temperature. The enhancement of the upconversion luminescence is suggested to be the consequence of reducing number of OH$^-$ groups and the enlarged nanocrystal size.

Key words: Lu$_2$O$_3$:Yb$^{3+}$,Tm$^{3+}$ nanocrystal; co-precipitation method; upconversion luminescence

1 Introduction

In recent years, upconversion luminescence of lanthanide-doped nanocrystals have attracted much attention due to their unique optical properties and potential applications in such fields as infrared to visible upconversion lasers, fibre amplifiers, color displays, optical communications and biological fluorescence labels [1–3]. Many trivalent rare earth ions, such as Er$^{3+}$ [4], Tm$^{3+}$ [5] and Pr$^{3+}$ [6], are doped as emission and absorption centres in these materials. Among the rare earth ions, Yb$^{3+}$ becomes the most suitable sensitizer ion because of its special energy levels and long excited level lifetime. Tm$^{3+}$ is a promising optical activator that opens the possibility for simultaneous blue and ultraviolet emission of laser action and various applications [7]. When a rare earth-doped optical device is developed, the host material is a very important factor to be considered. The host material with low phonon energy can result in a reduction of the multiphonon relaxation and help efficient upconversion occur. Therefore, choosing an appropriate host is very important for obtaining highly efficient upconversion luminescence. Rare earth oxides, as promising hosts for upconversion, possess relatively low phonon energy, high chemical durability and favorable physical properties [8]. During the past few years, extensive studies have been concentrated on the upconversion luminescence of Y$_2$O$_3$ host [9, 10]. The sesquioxide Lu$_2$O$_3$ is isoostructural to Y$_2$O$_3$ and crystallizes in a cubic bixbyite structure. Lutetium could be a more favorable cation for RE$^{3+}$ ions dopant emission [11]. Additionally, Yb$^{3+}$ (86 pm) and Tm$^{3+}$ (87 pm) have ionic radii similar to Lu$^{3+}$ (85 pm), in favor of the dopant substitution. Therefore, Lu$_2$O$_3$ is an ideal host for the upconversion luminescent materials.

Co-precipitation method is one of the most promising techniques because of its advantages, such as the relatively simple synthetic route, low cost and ease of mass production. Although there are only some reports on the upconversion of rare earth ions-doped Lu$_2$O$_3$...
nanocrystals [12–14], there is no systematic study on the
effect of Tm$^{3+}$ content and calcination temperature on the
structural and upconversion luminescent properties of
Lu$_2$O$_3$:Yb$^{3+}$,Tm$^{3+}$ nanocrystals. In this work, lutetium
oxide nanocrystals codoped with Tm$^{3+}$ and Yb$^{3+}$ were
synthesized by a reverse-strike co-precipitation method.
The effects of Tm$^{3+}$, Yb$^{3+}$ molar fractions and calcination
temperature on the structure and the upconversion
emission intensity of the Lu$_2$O$_3$:Yb$^{3+}$,Tm$^{3+}$ nanocrystals
were investigated. The upconversion mechanisms were
also discussed.

2 Experimental

Lu$_2$O$_3$ nanocrystals codoped with 2% Yb$^{3+}$ (molar
fraction, the same below) and 0.04%, 0.2%, 0.5%, 1%,
and 2% Tm$^{3+}$ were prepared by the reverse-like
coprecipitation method, respectively. High pure Lu$_2$O$_3$
(99.99%), Yb$_2$O$_3$ (99.99%) and Tm$_2$O$_3$ (99.99%) were
used as starting materials and ammonium hydrogen
carbonate (NH$_4$HCO$_3$, A. R., 1 mol/L solution) was
precipitant. Aqueous nitrate solutions were prepared by
dissolving Lu$_2$O$_3$, Yb$_2$O$_3$ and Tm$_2$O$_3$ in HNO$_3$ (A. R.)
and distilled water under stirring and heating. The respective
nitrate solutions were mixed with an appropriate
proportion. The mixed salt solution was then added drop
by drop to the excess NH$_4$HCO$_3$ solution at a speed of 2
mL/min under vigorous stirring at room temperature.
After the process of titration, the precipitate was aged for
2 h with agitation by an electric stirrer to make the
reaction proceed sufficiently. After filtering and washing
with distilled water and anhydrous ethanol several times,
the precipitates were dried at 80 °C for 12 h in an oven.
The precipitates were further calcined in air at 900 °C for
2 h to obtain nanocrystals. Moreover, Lu$_2$O$_3$ nanocrystals
codoped with 0.2% Tm$^{3+}$ and 1%, 2%, 4%, 6%, 10%, and
15% Yb$^{3+}$ were synthesized by the same procedure,
respectively.

To investigate the effect of calcination temperature
on the upconversion luminescence of Lu$_2$O$_3$:2% Yb$^{3+}$,
0.2% Tm nanocrystals, the nanocrystals were obtained
by calcining the precipitates at 800, 900, 1000 and 1100
°C for 2 h, respectively, using the same procedure.

The crystal structures were analyzed by a MXPAHF
rotating anode X-ray diffractometer with Cu K$_\alpha$ radiation
($\lambda=0.154056$ nm). The morphology of nanocrystals was
examined on a FEI-Sirion 200 field-emission scanning
electron microscope. The FT-IR transmittance spectra
were recorded in the range of 400–4000 cm$^{-1}$ on a
Magna-IR 750 Fourier transformation infrared
spectrometer. The upconversion luminescence spectrum
was detected by R955 (Hamamatsu) from 400 to 700 nm,
using an 980 nm diode laser Module (K98D08m–30W,
China) as the excitation source. The excitation power
was 455 mW. All spectra were collected at room

temperature.

3 Results and discussion

3.1 Influence of Tm$^{3+}$ molar fraction on structural
and upconversion luminescent properties for
Lu$_2$O$_3$:2%Yb$^{3+}$,xTm$^{3+}$ nanocrystals

Figure 1 shows the XRD patterns of Lu$_2$O$_3$
nanocrystals doped with 2% Yb$^{3+}$ and x Tm$^{3+}$ (x=0.04%,
0.2%, 0.5%, 1%, 2%) and calcined at 900 °C and the data
of JCPDS card No. 43–1021 for Lu$_2$O$_3$ were used as a
reference. The patterns indicate that the nanocrystals
were crystallized as cubic Lu$_2$O$_3$ with spatial group
Ia3(206). No additional peaks of other phases have been
found, indicating that the RE$^{3+}$ ions are effectively doped
into the host lattice. The high intensity of the diffraction
peaks indicates good crystallinity of the nanocrystals.
The average crystalline sizes can be estimated by using
Scherrer equation [15]:

$$D = \frac{0.89 \lambda}{\beta \cos \theta}$$

where λ stands for the wavelength of Cu K$_\alpha$ radiation; β
is the corrected full width at half maximum (FWHM) of
the diffraction peak; θ denotes the diffraction angle; 0.89
is the characteristic of spherical particle. Using the
Scherrer equation, the estimated crystalline size of Lu$_2$O$_3$:
Yb$^{3+}$, Tm$^{3+}$ nanocrystals is 40–60 nm.

Fig. 1 XRD patterns of Lu$_2$O$_3$ nanocrystals doped with 2%
Yb$^{3+}$ and 0.04%, 0.2%, 0.5%, 1%, 2% Tm$^{3+}$ and calcined at
900 °C and compared with standard pattern of JCPDS 43–1021

Figure 2 presents the typical FE-SEM image of
Lu$_2$O$_3$:2% Yb$^{3+}$, 0.2% Tm$^{3+}$ nanocrystals calcined at
900 °C and compared with standard pattern of JCPDS 43–1021.

The similar results were also observed for other Lu$_2$O$_3$:Yb$^{3+}$, Tm$^{3+}$
nanocrystals.
nanocrystals with various contents of Tm$^{3+}$ (not shown here).

The typical upconversion spectrum of the Lu$_2$O$_3$:2% Yb$^{3+}$, 0.2% Tm$^{3+}$ nanocrystals calcined at 900 °C and excited by 980 nm diode laser excitation at room temperature is shown in Fig. 3. The strong blue emission around 490 nm easily seen by naked eye is assigned to the 1G_4\rightarrow3H_6 transition of Tm$^{3+}$. Weak red emission around 653 nm is attributed to the 1G_4\rightarrow3F_4 transition. The experimental results show that the upconversion emission intensity ratio of the blue to red is approximately equal to 12 for the Lu$_2$O$_3$:2% Yb$^{3+}$, 0.2% Tm$^{3+}$ nanocrystals.

Concentration quenching occurs above 0.2% dopant content. When Tm$^{3+}$ content is high, the self-quenching or cross-relaxation mechanisms between Tm$^{3+}$ ions becomes active [16–18]. The energy transfer processes can be described as follows:

\[
\text{Tm}^{3+}(^1G_4) + \text{Tm}^{3+}(^3H_6) \rightarrow \text{Tm}^{3+}(^3F_2) + \text{Tm}^{3+}(^3F_4)
\]
\[
\text{Tm}^{3+}(^1G_4) + \text{Tm}^{3+}(^3H_6) \rightarrow \text{Tm}^{3+}(^3H_4) + \text{Tm}^{3+}(^3H_5)
\]
\[
\text{Tm}^{3+}(^3H_4) + \text{Tm}^{3+}(^3H_5) \rightarrow \text{Tm}^{3+}(^3F_2) + \text{Tm}^{3+}(^3F_4)
\]

which can depopulate the 3G levels but populate the 3H levels, leading to an increase in the extent of non-radiative transitions. Moreover, host may transfer the energy to lattice defects discussed later, which may trap energy, resulting in concentration quenching.

![Fig. 2 FE-SEM image of Lu$_2$O$_3$:2% Yb$^{3+}$, 0.2% Tm$^{3+}$ nanocrystals](image)

3.2 Influence of Yb$^{3+}$ molar fraction on structural and upconversion luminescent properties for Lu$_2$O$_3$:xYb$^{3+}$, 0.2%Tm$^{3+}$ nanocrystals

Figure 5 shows the XRD patterns of Lu$_2$O$_3$ nanocrystals doped with 0.2% Tm$^{3+}$ and x Yb$^{3+}$ (x=1%, 2%, 4%, 6%, 10%, 15%) and calcined at 900 °C. The XRD results show that the diffracting peak positions of all the Lu$_2$O$_3$:xYb$^{3+}$,0.2% Tm$^{3+}$ nanocrystals are consistent with the standard powder diffraction pattern of Lu$_2$O$_3$ (JCPDS 43−1021). The crystalline size of Lu$_2$O$_3$: xYb$^{3+}$, 0.2% Tm$^{3+}$ nanocrystals is 40−60 nm using the Scherrer equation.

Figure 6 shows the upconversion emission intensity of Lu$_2$O$_3$ nanocrystals doped with 0.2% Tm$^{3+}$ and x Yb$^{3+}$ and calcined at 900 °C as a function of Yb$^{3+}$ content. It is noticed that the emission intensities of 490 nm and 653 nm first increase and approach a maximum at a doping content of 2% and then decrease with the increase of Yb$^{3+}$ content. It is obvious that with the increase
Fig. 5 XRD patterns of Lu₂O₃ nanocrystals doped with 0.2% Tm³⁺ and 1%, 2%, 4%, 6%, 10%, 15% Yb³⁺ and calcined at 900 °C and compared with standard pattern of JCPDS 43–1021.

Fig. 6 Upconversion emission intensity of Lu₂O₃ nanocrystals doped with 0.2% Tm³⁺ and xYb³⁺ as function of Yb³⁺ mole fraction (The red emission intensity of 653 nm is magnified by a factor of 5)

of Yb³⁺ content, more energy is transferred from Yb³⁺ to Tm³⁺. However, when Yb³⁺ ions are heavily doped, many factors such as increased amount of impurities, concentration-quenching of Yb³⁺, energy back transfer from Tm³⁺ to Yb³⁺ can be described as Tm³⁺(GH₄) + Yb³⁺(F₂/₁) = Tm³⁺(GH₄)+Yb³⁺(F₂/₁), which effectively reduces upconversion emission intensity.

3.3 Influence of calcination temperature on structural and upconversion luminescent properties for Lu₂O₃:2%Yb³⁺, 0.2% Tm³⁺ nanocrystals

Figure 7 shows the XRD patterns of Lu₂O₃:2%Yb³⁺, 0.2%Tm³⁺ nanocrystals calcined at various temperatures. The results reveal that all the prepared Lu₂O₃ nanocrystals are of cubic structure, and the diffracting peak positions are well consistent with the standard powder diffraction pattern of Lu₂O₃ (JCPDS 43–1021). The average crystalline size can be estimated by using Scherrer equation. In cubic crystal lattice [19], the lattice constant can be calculated from Eq. (2).

\[
\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}
\]

where \(d\), \(a\), and \((h\ k\ l)\) are the interplanar distance, lattice constant and crystal indices (Miller indices), respectively. The strongest peaks (222) at 2θ=29.775, 29.812, 29.807, 29.806° and \(d=3.0010, 2.9962, 2.9967, 2.9961\) Å were used to calculate the average crystallite size \(D\) and lattice constants \((a)\) of the Lu₂O₃: 2% Yb³⁺, 0.2% Tm³⁺ nanocrystals, respectively. Table 1 presents the calculated crystallite sizes and lattice constants of Lu₂O₃:2%Yb³⁺, 0.2% Tm³⁺ nanocrystals at different calcination temperatures. The lower the calcination temperature is, the smaller the crystallite sizes are. The crystallite size increases from 32 to 70 nm with the increase of calcination temperatures from 800 to 1100 °C. The lattice constants are compatible with the literature values (10.390 Å) from the standard card (JCPDS 43–1021).

Table 1 Calculated crystallite sizes and lattice constants of Lu₂O₃:2%Yb³⁺,0.2%Tm³⁺ nanocrystals calcined at various temperatures

<table>
<thead>
<tr>
<th>Calcination temperature/°C</th>
<th>Crystallite size/nm</th>
<th>Lattice constant/Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>32</td>
<td>10.395</td>
</tr>
<tr>
<td>900</td>
<td>48</td>
<td>10.379</td>
</tr>
<tr>
<td>1000</td>
<td>63</td>
<td>10.381</td>
</tr>
<tr>
<td>1100</td>
<td>70</td>
<td>10.378</td>
</tr>
</tbody>
</table>

Figure 8 shows the FT-IR spectra of Lu₂O₃:2%Yb³⁺, 0.2% Tm³⁺ nanocrystals calcined at various temperatures. The data show that the bands around 490 and 580 cm⁻¹ are assigned to the Lu—O vibration of cubic Lu₂O₃.[20],
The absorption bands of OH (around 3400 cm⁻¹) become weaker with the increase of calcination temperature. OH groups with high vibration frequency will increase the nonradiative relaxation rate and hence decrease upconversion efficiency [21]. This indicates that the enhanced upconversion intensity may come from the reducing of OH⁻ groups, which are located on the surface of nanocrystals. From Table 1, it is known that the crystallite size of Lu₂O₃:2% Yb³⁺, 0.2% Tm³⁺ nanocrystals increases with increasing the calcination temperature. The decrease of surface-to-volume ratio can reduce the OH⁻ groups on the surface of nanocrystals. Therefore, the reducing of OH⁻ groups is suggested to be relevant to the enhancement of the upconversion emission.

Figure 8 shows the influence of calcination temperature on the upconversion emission intensity of 490 nm and 653 nm under 980 nm laser excitation. It can be seen that the emission intensities of 490 nm and 653 nm become stronger gradually with the increase of calcination temperature. The increased nanocrystal size can also contribute to the upconversion emission enhancement, since the larger nanocrystal size has less defects [22]. Larger Lu₂O₃:2% Yb³⁺, 0.2% Tm³⁺ nanocrystals have lower surface-to-volume ratio which leads to lower surface scattering of the excitation light by the surface of the radiated Lu₂O₃ nanocrystals. As a result, the Lu₂O₃:2% Yb³⁺, 0.2% Tm³⁺ nanocrystals with larger diameter can absorb more efficiently the excitation light than Lu₂O₃:2% Yb³⁺, 0.2% Tm³⁺ nanocrystals with smaller diameter. It can be seen from Fig. 9 that the enhanced upconversion intensity may be due to the reduction of OH⁻ groups [23]. Therefore, the enhancement of the upconversion luminescence is suggested to be the consequence of reducing number of OH⁻ groups and the enlarged nanocrystal size.

3.4 Upconversion mechanisms

The energy level diagram of Tm³⁺ and Yb³⁺ shown in Fig.10 can be used to explain the upconversion mechanism. The pump photons of 980 nm laser only excite Yb³⁺ ion, because Tm³⁺ ion has no matched excited level above its ground state. The upconversion emission intensity depends on the population of ⁴G₄ levels for Tm³⁺, which can be populated by three-step process [24]. Under 980 nm laser excitation, the ⁴G₄ excited state can be populated by a three-step energy transfer (ET) process. Firstly, the ⁴F₇/₂→⁴F₅/₂ transition of Yb³⁺ occurs due to absorption of 980 nm photons. Then, Yb³⁺ in the ⁴F₅/₂ level transfers its energy to Tm³⁺, which is excited to the ⁴H₆ level and relaxes nonradiatively to
the \(^3F_2\) level. \text{Tm}^{3+}\text{ in the} \(^3F_2\) level can be excited to the \(^3F_4\) level by energy transfer process after which nonradiative relaxation to \(^1H_6\) occurs. Subsequently, \text{Yb}^{3+}\text{ in the} \(^3F_2\) level transfers its energy to \text{Tm}^{3+}\text{ and excites} \text{Tm}^{3+}\text{ at} \(^3H_4\) level to \(^1G_4\) level. Therefore, the \text{Tm}^{3+}\text{ decays radiatively to the} \(^1H_6\) ground state and the \(^3F_4\) metastable state generating strong blue and weak red emissions around 490 nm and 653 nm from the \(^1G_4\) levels, respectively.

The upconversion efficiency is principally governed by nonradiative processes in materials, which are dependent on the energy gap separating the upper and lower levels as well as the highest phonon energy in the materials. The multiphoton nonradiative decay rate can be expressed as [25]

\[
W_n(T) = W_0(0) \left(\frac{\exp(hv/kT)}{\exp(hv/kT) - 1} \right)^n
\]

where \(T\) is the absolute temperature; \(W_n(T)\) is the rate at temperature \(T\); \(W_0(0)\) is the rate at 0 K; \(k\) is the Boltzmann constant; \(n = \Delta E/(hv)\), \(n\) accounts for the number of phonons involved in the sensitizer excitation; \(hv\) is the maximum phonon energy of the host matrix; \(\Delta E\) is the energy gap involved. According to the energy gap law, multiphoton relaxation is dominant when \(n < 5\) [26]. The energy gap of \(\text{Tm}^{3+}\) between the levels \(^1G_4\) and the \(^3F_2\) is approximately equal to 5840 cm\(^{-1}\), which corresponds to 9 phonons of the highest phonon energy (the maximum phonon energy of 600 cm\(^{-1}\) in our experiments), so the probability of non-radiative transition from the level \(^1G_4\) to the level \(^3F_2\) can be negligible. This indicates that high population at the level \(^1G_4\) can be achieved.

To further understand the upconversion mechanisms, pump power \((P_{\text{pump}})\) dependences on the upconversion emission intensities \((I_{up})\) of \(\text{Lu}_2\text{O}_3:2\% \text{Yb}^{3+}, 0.2\% \text{Tm}^{3+}\) nanocrystals calcinated at 900 °C are shown in Fig. 11. According to the relationship between \(I_{up}\) and \(P_{\text{pump}}\):

\[\ln(I) = \ln(I_0) + n \ln(P_{\text{pump}})\]

where \(n\) is the number of photons involved in the pump process [27], the typical upconversion luminescent intensity \(I_{up}\) depends on the incident pump power \(P_{\text{pump}}\). The upconversion emission intensities of \(\text{Lu}_2\text{O}_3:2\% \text{Yb}^{3+}, 0.2\% \text{Tm}^{3+}\) nanocrystals were integrated at 490 and 653 nm for various pump powers. A plot of \(\ln I\) versus \(\ln P\) yields a straight line with slope \(n\). On the basis of the experimental data in Fig. 11, the obtained \(n\) values are 2.597 and 2.712. The two slopes are close to 3, which indicates that the blue and weak red upconversion luminescence is indeed a three-photon upconversion process.

4 Conclusions

1) The \(\text{Lu}_2\text{O}_3\) nanocrystals codoped with 2% \text{Yb}^{3+} and 0.04%, 0.2%, 0.5%, 1%, 2% \text{Tm}^{3+} were successfully synthesized by the reverse-like co-precipitation method. The further investigation reveals that the upconversion emission intensity depends on the \text{Tm}^{3+} and \text{Yb}^{3+} contents and calcination temperature.

2) The experimental results show that all the prepared \(\text{Lu}_2\text{O}_3:2\% \text{Yb}^{3+}, 0.2\% \text{Tm}^{3+}\) nanocrystals can be readily indexed to pure cubic phase of \(\text{Lu}_2\text{O}_3\). The strong blue and weak red emissions from the prepared nanocrystals were observed, and attributed to the \(^1G_4\rightarrow^3H_6\) and \(^1G_4\rightarrow^3F_4\) transitions of \text{Tm}^{3+} ion, respectively. Concentration quenching occurs when the content of \text{Tm}^{3+} is above 0.2%. Power-dependent study reveals that the \(^1G_4\) level can be populated by three-step energy transfer process.

3) The upconversion emission intensities of 490 nm and 653 nm increase gradually with the increase of calcination temperature. The enhancement of the upconversion luminescence is suggested to be the consequence of reducing number of \text{OH}^- groups and the enlarged nanocrystal size.

4) The data presented in this study might provide useful information for further development of upconversion ceramic laser associated with the\(^1G_4\rightarrow^3H_6\) transitions of \text{Tm}^{3+} ions.

References

Lu$_2$O$_3$:Yb$^{3+}$,Tm$^{3+}$ 纳米晶的制备和上转换发光性能

李丽1, 曹雪琴2, 张友1, 郭常新2

1. 重庆邮电大学 数理学院, 重庆 400065; 2. 中国科学技术大学 物理系, 合肥 230026

摘要: 采用碳酸氢铵(NH$_4$HCO$_3$)作为沉淀剂, 用共沉淀法制备 Yb$^{3+}$ 和 Tm$^{3+}$ 共掺杂的 Lu$_2$O$_3$:Yb$^{3+}$,Tm$^{3+}$ 纳米晶。研究了 Tm$^{3+}$ 摩尔分数、Yb$^{3+}$ 摩尔分数和煅烧温度对 Lu$_2$O$_3$:Yb$^{3+}$,Tm$^{3+}$ 纳米晶的结构和上转换发光性能的影响。结果表明, 所制备的纳米晶具有纯的 Lu$_2$O$_3$ 相, 晶体结构较好。当 Tm$^{3+}$ 浓度超过 0.2%时, 发光强度增强。Tm$^{3+}$ 和 Yb$^{3+}$的最佳掺杂比分别为 0.2%和 2% (摩尔分数)。在 980 nm 半导体激光器的激发下, 样品发射出蓝光 (490 nm) 和红光 (653 nm), 分别对应 Tm$^{3+}$ 的 3I$_{11/2} \rightarrow ^1I_{5/2}$ 和 $^3I_{11/2} \rightarrow ^1I_{7/2}$ 跃迁, 发射强度与激发功率的关系表明, Tm$^{3+}$ 的 $^3F_{4}$ 能级是三光子能量传递过程。随着煅烧温度的升高, 上转换发光强度增强, 这主要是因为随着温度的升高纳米晶表面的 OH-减少和纳米晶尺寸增大。

关键词: Lu$_2$O$_3$:Yb$^{3+}$,Tm$^{3+}$纳米晶; 共沉淀法; 上转换发光

(Edited by Li Xiang-qun)