Preparation of bismuth oxide/titania composite particles and their photocatalytic activity to degradation of 4-chlorophenol

XU Jing-jing1,2, CHEN Min-dong3, FU De-gang3

1. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, College of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
3. State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China

Received 22 October 2009; accepted 27 May 2010

Abstract: Bismuth oxide/titania, one interfacial composite semiconductor with high photocatalytic activity under solar light, was prepared at low temperature. The structure was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) and diffuse reflection spectra (DRS). The results indicate that deposited titania nanoparticles on bismuth oxide surface have micro-nano structure, and this composite material exhibits porosity and increased surface hydroxyl groups. Furthermore, the as-prepared photocatalyst shows higher photocatalytic activity to the degradation of 4-chlorophenol than pure titania or P25 under sunlight.

Key words: bismuth oxide; titania; photocatalysis; 4-chlorophenol

1 Introduction

As for ZnO-TiO2[8], the electrons transfer from the CB of ZnO to that of TiO2 under illumination, and conversely, the holes transfer from the VB of TiO2 to that of ZnO. Thus, the lifetime of photo-induced pairs increased since their recombination rate decreased. In order to extend the range of excitation energies of TiO2 into visible region, materials of narrow band gap were coupled with TiO2. SHINGGUU et al[9] reported that incorporated WO3 with TiO2 layers could modify the grain size and surface, and more important, it showed enhanced photocatalytic activity under visible light irradiation.

Bismuth oxide (Bi2O3) is used in a variety of areas, such as sensor technology, optical coatings and electrochromic materials[10−12], due to its high refractive index, dielectric permittivity, marked photoconductivity and photoluminescence[10]. These special features explain the great effort devoted to the investigation of Bi2O3 polymorphs over the past few years. Bi2O3 has five main polymorphic forms, denoted by α-, β-, γ-, δ- and ω-Bi2O3.[13−14] Among them, the band gaps of the low-temperature α-phase and high-
temperature metastable β-phase are 2.85 eV and 2.58 eV, respectively[15]. Thus, Bi/TiO₂ may exhibit excellent photocatalytic activity. KANG et al[16] found that without H₂O addition, Bi/TiO₂ exhibited higher photocatalytic activity than TiO₂ in decomposing CH₃CHO. However, HONG et al[17] reported that whether adding H₂O or not, the activity of photocatalytic degradation of benzene by Bi/TiO₂ was lower than that of pure TiO₂ under UV irradiation. Among those investigations, the activity of Bi₂O₃/TiO₂ compound particles under solar light has not been concerned.

In this work, Bi₂O₃/TiO₂ composite particles were synthesized by sol-gel method under mild condition. The characterization of the as-prepared sample was measured by XRD, SEM, XPS, BET and DRS. The photocatalytic activity was evaluated under solar light irradiation for degradation of 4-chlorophenol.

2 Experimental

2.1 Catalyst preparation

Bi₂O₃ powders were purchased from Sinopham Chemical Reagent Co., Ltd, with a size range of 0.5−2 μm and mainly in monoclinic phase. Titanium (IV)-n-butoxide (Ti(OBu)₄) was used as Ti precursor. Bi₂O₃ was firstly added into abundant water, the pH value of which was adjusted to 2.0 by HNO₃. Then the mixture of Ti(OBu)₄ and isopropyl alcohol was added dropwise into the solution. After complete hydrolysis of Ti(OBu)₄, the solution was refluxed at 70 °C for 20 h and a sol solution formed. Finally, the as-prepared sol was vacuum dried at 60 °C for 2 h to obtain Bi₂O₃/TiO₂ composite powders. For comparison, pure TiO₂ powders were also synthesized using the method mentioned above without adding Bi₂O₃.

2.2 Characterization

The as-prepared samples were identified by X-ray diffractometer (XRD, XD−3A, Shimadzu Corporation, Japan) using graphite monochromatic copper radiation (Cu Kα) at 40 kV, 30 mA over the 2θ range of 20°−80°. The morphologies were characterized with a scanning electron microscope (SEM, Sirion, FEI). BET surface area measurements were carried out by N₂ adsorption at 77 K using an ASAP2020 instrument. The total pore volume was calculated from the amount of nitrogen adsorbed at relative pressure of 0.975. The binding energy was identified by X-ray photoelectron spectrocope (XPS) with Mg Kα radiation (ESCALB−250). A UV-vis spectrophotometer (Shimadzu UV−4100) was used to record the diffuse reflectance spectra of samples.

2.3 Photocatalytic degradation experiments

The photocatalytic activity of Bi₂O₃/TiO₂ particles was investigated by degradation of 4-chlorophenol in the aqueous solution. The bench-scale photoreactor system was composed of a cylindrical silica reactor, and a light filter cutting light with wavelength shorter than 400 nm providing artificial solar light from vertical irradiation. A set of photocatalytic degradation experiments were performed with the following procedure: 200 mg TiO₂ powder was added into 200 mL 4-chlorophenol solution of 50 mg/L. The suspension was stirred in dark for 30 min to obtain adsorption equilibrium of 4-chlorophenol before illumination. At a defined time interval, 5 mL suspension was removed and the concentration of 4-chlorophenol was analyzed using the UV-vis spectrophotometer at 280 nm.

3 Results and discussion

3.1 XRD analysis

The X-ray diffraction (XRD) patterns of Bi₂O₃/TiO₂, pure TiO₂ and Bi₂O₃ powders are shown in Fig.1. It can be seen that two crystalline phases are identified from the XRD patterns of TiO₂, namely the major phase is anatase, and the minor phase is brookite. Bi₂O₃ is mainly in monoclinic phase. As for Bi₂O₃/TiO₂, the peak at 25.4° is broadened, indicating that there exist more than one peak, which may contain anatase and α-bismuth oxide peaks compared with those of Bi₂O₃ and pure TiO₂. No new phase is detected, which indicates that the TiO₂ particles were only adsorbed on the surface of Bi₂O₃.

3.2 Microstructure

In order to probe the interaction among the components in the composite photocatalysts, these photocatalysts were investigated. The SEM image of Bi₂O₃/TiO₂ sample is shown in Fig.2. A big particle with regular monoclinic structure in micrometer size is α-Bi₂O₃, and the clusters deposited on the surface of Bi₂O₃ are TiO₂ nanoparticles. It can be seen that the composite sample is composed of micro-scale Bi₂O₃ particles and sub-micro-scale clusters containing titania nano-particles. This micro-nano structure with
Hierarchical structure containing micro, sub-micro and nano-scale particles may be beneficial for the achievement of various photo-electric properties[18]. On the other hand, the dispersity of titania is enhanced. Therefore, this structure can offer more active adsorption sites and photocatalytic reaction centers.

3.3 BET

Fig. 3 shows nitrogen adsorption-desorption isotherms of TiO$_2$ and Bi$_2$O$_3$/TiO$_2$. Both samples show the isotherm of type IV (BDDT classification)[19]. At high relative pressure from 0.4 to 0.8, the isotherms of TiO$_2$ and Bi$_2$O$_3$/TiO$_2$ exhibit hysteresis loops of type H2 and H3, respectively, this indicates that the powders contained mesopores (2–50 nm).

Fig. 4 shows the pore diameter distribution of Bi$_2$O$_3$/TiO$_2$. It can be seen that the diameter range of pore mainly distributes from 2.0 to 9.0 nm, and the average pore diameter is 5.0 nm, which is larger than the value of 3.2 nm for TiO$_2$. The formation of mesoporous structure in TiO$_2$ and Bi$_2$O$_3$/TiO$_2$ is attributed to the aggregation of TiO$_2$ particles[20–21]. As seen from Table 1, the BET surface area of the composite Bi$_2$O$_3$/TiO$_2$ is smaller than that of pure titania due to the bigger nonporous particles of Bi$_2$O$_3$. When the pore volume becomes larger, bigger crystallites aggregate to bigger pores[21].

3.4 XPS

In order to analyze the chemical composition and purity of the prepared samples, the XPS spectrum of Bi$_2$O$_3$/TiO$_2$ was measured. The high-resolution XPS spectra of Bi 4f, Ti 2p and O 1s regions on the surface of samples are shown in Fig. 5. The peaks of Bi 4f 7/2 and Bi 4f 5/2 are centered at 164.2 and 158.9 eV, respectively, which are consistent with those of Bi$^{3+}$, as reported in Ref.[17]. This XPS spectrum demonstrates that the main valence of Bi in the prepared sample is +3 in Bi$_2$O$_3$. Ti 2p 1/2 and Ti 2p 3/2 spin-orbital splitting photoelectrons were located at the binding energies of about 464.3 and 458.2 eV, respectively. In general, large binding energy means more oxidized metal[22]. However, no evidence indicated that the band shifted to higher binding energy when Bi$_2$O$_3$ was incorporated with TiO$_2$, which was also confirmed by KANG et al[16]. As shown in Fig. 5(c), the O 1s spectra of both TiO$_2$ and Bi$_2$O$_3$/TiO$_2$ samples are fitted to two peaks, respectively. The lower binding energy of 529.8 eV is attributed to Ti—O in TiO$_2$ crystal.
Fig. 5 XPS patterns of Bi$_2$O$_3$/TiO$_2$ composite samples: (a) Bi 4f, (b) Ti 2p; (c) O 1s core level

lattice, and the higher binding energy of 531.4 eV is related to O—H resulting from chemisorbed water[23]. The amount ratio of O—H/Ti—O for Bi$_2$O$_3$/TiO$_2$ increases compared with pure TiO$_2$. The ratios are 0.41 and 0.21, respectively. It illuminates that the number of surface hydroxyl groups of TiO$_2$ is increased when incorporated with Bi$_2$O$_3$, and subsequently free hydroxyl radicals which was proved to be beneficial for photocatalytic reactions[24] can be also increased.

3.5 DRS

The UV-vis diffuse reflectance spectra of TiO$_2$ and Bi$_2$O$_3$/TiO$_2$ are shown in Fig.6. It can be seen that there is a significant shift in the onset absorption towards the higher wavelength of Bi$_2$O$_3$/TiO$_2$. As known from XRD pattern, no new phase appears in Bi$_2$O$_3$/TiO$_2$, indicating that it is not Bi$_2$TiO$_5$ with band gap of 2.4 eV[25] or other phase leads to red shift, but the band gap of α-Bi$_2$O$_3$ of 2.85 eV responds to visible irradiation.

Fig. 6 UV-vis diffuse reflectance spectra of TiO$_2$ and Bi$_2$O$_3$/TiO$_2$

3.6 Photocatalytic activity

The photocatalytic activity of TiO$_2$ and Bi$_2$O$_3$/TiO$_2$ particles were studied by decomposition of 4-chlorophenol aqueous solution under solar light illumination. It can be seen from Fig. 7 that Bi$_2$O$_3$/TiO$_2$ exhibits much higher photocatalytic activity than TiO$_2$ or P25. The degradation rates of Bi$_2$O$_3$/TiO$_2$, TiO$_2$ and P25 are 78.6%, 20.8% and 6.1%, respectively, which is in good agreement with analyses forenamed. It is well known that the photocatalytic oxidation of organic pollutants in aqueous suspension follows Langmuir-Hinshelwood model:

$$-\frac{dc}{dt} = k_r c + K_a c$$

where (-dc/dt) is the degradation rate of 4-chlorophenol; c is the 4-chlorophenol concentration in the solution; t is reaction time; k_r is the reaction rate constant; and K_a is the adsorption coefficient of the reactant. $K_a c$ is negligible when the value of c is very small. As a result, Eq.(1) can be described as a first-order kinetics. Set Eq.(1) under the initial conditions of the photocatalytic procedure, when $t=0$, $c=c_0$, it can be described as

$$\ln(c_0 / c) = k_{app} t$$

where k_{app} is the apparent rate constant, used as the basic kinetic parameter for different photocatalysts, and it can determine the photocatalytic activity independent of the previous adsorption period in the dark and the concentration of 4-chlorophenol remaining in the
The variations in \(\ln(c_0/c) \) as a function of irradiation time are given in Fig. 8, and the corresponding \(k_{\text{app}} \) and \(R \) (regression relative coefficient) are given in Table 2, which confirms that \(k_{\text{app}} \) is enhanced by incorporating TiO\(_2\) with Bi\(_2\)O\(_3\), under solar illumination compared with pure one. Owing to the narrow band gap of \(\alpha\)-Bi\(_2\)O\(_3\), Bi\(_2\)O\(_3\)/TiO\(_2\) shows red shift compared with pure TiO\(_2\). The photocatalytic activity of Bi\(_2\)O\(_3\)/TiO\(_2\) has been enhanced a lot compared with P25 and pure TiO\(_2\) under sunlight.

References

氧化铋/二氧化钛复合颗粒的制备及其光催化降解4-氯苯酚的性能

徐晶晶 1,2, 陈敏东 1, 付德刚 3

1. 南京信息工程大学 环境科学与工程学院 江苏省大气环境监测与污染控制高新技术研究重点实验室，南京 210044；
2. 河海大学 水文水资源与水利工程科学国家重点实验室，南京 210098；
3. 东南大学 生物电子学国家重点实验室，南京 210096

摘 要：在低温条件下制备在太阳光照射下具有高光催化活性的氧化铋/二氧化钛复合颗粒，并利用 XRD、SEM、
BET、XPS 和 DRS 对其进行表征。结果表明：将二氧化钛纳米颗粒沉积在氧化铋表面可形成微−纳米结构，
使该复合材料表现出多孔性，并提高表面羟基的含量。因此，在太阳光的激发下，氧化铋/二氧化钛复合颗粒对
4-氯苯酚的催化降解能力高于纯二氧化钛和P25。

关键词： 氧化铋；二氧化钛；光催化；4-氯苯酚

(Edited by FANG Jing-hua)