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Abstract: On the base of nonlinear liquidus and solidus, an extended model for dendrite growth in bulk undercooled melts was 
developed under local non-equilibrium conditions both at the interface and in the bulk liquid. In terms of thermodynamic calculations 
of the phase diagram, the model predictions are relatively realistic physically, since few fitting parameters are used in the model 
predictions. Adopting three characteristic velocities, i.e. the critical velocity of absolute solute stability (VC

*), the velocity of maximal 
tip radius (VR

m), and the velocity of bulk liquid diffusion (VD), a quantitative agreement is obtained between the model predictions 
and the experimental results in undercooled Ni-0.7%B and Ni-1%Zr (molar fraction) alloys, and the overall solidification process can 
be categorized. 
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1 Introduction 
 

The growth of unconstrained dendrites in 
undercooled melts has been a major subject in the 
theoretical arena of solidification research. Model 
developed by BOETTINGER et al[1], referred to as BCT 
model, was well accepted for dendrite growth in rapid 
solidification process. Applying the thermodynamic 
driving force[2] and the model of interfacial 
solute-trapping presented by AZIZ[3−4], BCT model 
allows deviations of interface composition from the local 
equilibrium value with the advancement of S/L interface. 
On this basis, the linear kinetic model proposed by 
TURNBULL[5] was adopted to relate the interfacial 
driving force to the tip velocity, V, while the marginal 
stability criterion of TRIVEDI and KURZ[6] was used to 
predict the tip radius. 

So far, a lot of experiments[7−11] have shown that, 
above a critical undercooling ΔT*, dendrite growth 
deviates from power law to linear growth. Unfortunately, 
a physically realistic interpretation for these phenomena 
cannot be obtained by BCT model. This infers that the 
BCT model should be revised or modified. Introducing a 
relaxation effect, i.e. non-equilibrium liquid diffusion, 
GALENKO and DANILOV[12−13] developed a model, 

where the bulk liquid diffusion speed, VD, has a finite 
value and the solute transport is described by a partial 
differential equation of hyperbolic type[14−16]. 
Applying this model, a better prediction for the transition 
from power law to linear growth was achieved. 

However, all the above models were developed 
assuming linear liquidus and solidus, which is generally 
valid for small ΔT[17]. Subjected to large ΔT, analysis of 
dendrite growth should refer to non-linear liquidus and 
solidus. In the present work, the non-equilibrium 
interface kinetics and the non-equilibrium liquid 
diffusion have been combined with non-linear liquidus 
and solidus, and then a steady-state dendrite growth 
model, as an extension of GALENKO an DANILOV’s 
model[12−13], is proposed, including a marginal 
stability criterion in highlight of the kinetic effect. The 
present model is applied to rapid solidification of 
undercooled Ni-0.7%B and Ni-1%Zr (molar fraction) 
alloys. 
 
2 Model formulation 
 
2.1 Interfacial driving force and interface response 

function 
For dendrite growth to occur, a net decrease of the 

free energy, ΔG, is needed as the driving force for the  
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S/L interface migration. Combined with the relaxation 
effect, the expression of ΔG for a dilute alloy is given 
as[18] 
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where Δμ is the chemical potential difference between 
solid and liquid; CL

* and CS
* are the non-equilibrium 

concentrations in liquid and solid, respectively, at the 
interface, corresponding to Ti, for a curved interface; and 
CL

eq and CS
eq, the equilibrium concentrations in liquid 

and solid, respectively, at the interface, subjected to the 
curvature correction, are respectively replaced by CL

eq′ 
and CS

eq′[17]: 
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where ΔTR is the curvature undercooling. The interface 
response function can be deduced by combining Eqs.(1) 
and (2) with the linear kinetic law in Refs.[5, 19]. A 
detailed derivation is available in Ref.[20]: 
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where V0 is the upper limit of the interface advancement, 
k=CS

*/CL
* and ke

′=CS
eq′/CL

eq′ are the non-equilibrium and 
equilibrium partition coefficients subjected to the 
curvature correction, respectively. Eq.(3) is the interface 
response function related to the interfacial temperature Ti 
and the liquid composition CL

* for a curved interface. In 
contrast with BCT model[1] and GALENKO and 
DANILOV’s model[12−13], in which the slope of 
liquidus mL and the equilibrium partition coefficient ke 

are assumed to be constant, the current model adopts 
composition- dependent mL and ke, which are directly 
obtained from thermodynamic calculations of the phase 
diagram (i.e. with non-linear liquidus and solidus). 
 
2.2 Marginal stability criterion 

The model of TRIVEDI and KURZ[6], as an 
extension of the marginal stability theory[21] to cases of 
high Péclet number, is valid for rapid solidification of an 
undercooled melt where the thermal length is much 
smaller, but the role of the kinetic effect is neglected. 
Departed from non-equilibrium liquid diffusion, a 

modification of T-K model was made by GALENKO and 
DANILOV[22], where the kinetic factor affecting the 
equilibrium phase diagram, i.e. the slope of the liquidus 
in the kinetic phase diagram, was considered, but the 
corresponding effect of perturbation was neglected. 
Based on the kinetic interface response function 
assuming non-linear liquidus and solidus, an 
approximately marginal stability criterion for a curved 
interface was obtained [20], and the expression of the 
dendrite tip radius R is  
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where Г is the Gibbs-Thompson coefficient; ∆Hf is the 
latent heat of fusion; σ*=1/4π2, the stability constant; 
PeC=VR/(2D), the solute Péclet number; PeT=VR/2αL, the 
thermal Péclet number; ψ=1−V2/VD

2; D the liquid 
diffusion coefficient; αL the thermal diffusivity in liquid; 
and mL and mS the slope of liquidus and solidus, 
respectively. As an extension to the corresponding 
relations assuming linear solidus and liquidus[1, 12−13, 
22], Eq.(5) implies that both dendrite tip radius R and 
dendrite tip velocity V are dependent on the dendrite tip 
temperature Ti. M(V, Ti), the slope of liquidus in the 
kinetic phase diagram assuming non-linear solidus and 
liquidus, is also dependent on both the interface 
temperature Ti and the interface velocity V. Based on the 
kinetic interface response function (Eq.(3)), the kinetic 
effect plays an important role in the current marginal 
stability analysis. 
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2.3 Bath undercooling component and solute trapping 
model 
Analogously, the bath undercooling consists of four 

components, i.e. curvature, constitutional, kinetic and 
thermal undercoolings: 
 

TKCR TTTTT Δ+Δ+Δ+Δ=Δ                   (7) 
 
where 
 

R
ΓT 2

R =Δ                                  (8a) 
 

( ) ( )*
LL0LC CTCTT −=Δ                        (8b) 

 
( ) ( )qe

LL
*
LLK

′−=Δ CTCTT                       (8c) 
 

∞−=Δ TTT iT                                (8d) 
 

By taking into account of local non-equilibrium 
effects, the solute trapping model of AZIZ[3−4] is 
corrected by SOBOLEV[16]. In the present work, the 
equilibrium partition coefficient, ke, is replaced by the 
curvature-corrected one, ke′, and the non-equilibrium 
partition coefficient reads 
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Until now, the dendrite growth model is established. 

Integrating Eqs.(3)−(9), for a given undercooling, the 
dendrite tip radius R and the dendrite growth velocity V 
can be uniquely solved. 
 
3 Results and discussion 
 
3.1 Comparison of model prediction with 

experimental results 
The present model is used to describe rapid 

solidification of undercooled Ni-0.7%B and Ni-1%Zr 
(molar fraction) alloy melts. Since nonlinear solidus and 
liquidus are held for large ΔT, thermodynamic 
calculations of the phase diagram become very decisive. 
As shown in Fig.1, the equilibrium Ni-B and Ni-Zr phase 
diagrams for the nickel rich part are precisely calculated 
using Thermo-Calc. 

As shown in Fig.2, the present model is adopted to 
predict V as a function of ΔT. The used parameters for 
the Ni-0.7%B alloy is given in Ref.[20]: for Ni-1%Zr, 
ΔHf=1.623×104 J/mol[11], cp=41 J/(mol·K)[11], αL= 
4.2×10−5 m2/s[11], D=5×10−9 m2/s, Γ=8.5×10−8 K·m, 
VD=21.5 m/s, VDI=19 m/s and V0=550 m/s. The 
experimental data are from Refs.[7−8, 11]. The present 
model gives a satisfactory agreement with the 
experimental data in the transition from the power law to 
l inear law growth process for both undercooled 

 

 
Fig.1 Equilibrium phase diagram of Ni-B (a) and Ni-Zr (b) in 
nickel rich part obtained from Thermo-Calc 
 

 
Fig.2 Dendrite tip velocity as function of bath undercooling for 
Ni-0.7%B (a) and Ni-1%Zr (b) alloys 
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Ni-0.7%B and Ni-1%Zr alloy melts. Moreover, less 
adjust parameters is needed for the present model, which 
makes the prediction more physically realistic. 
 
3.2 Characteristic velocities and mechanism 

controlling solidification 
Further, a plateau is found at the intermediate 

undercooling range for both undercooled Ni-0.7%B and 
Ni-1%Zr alloy melts in the model predictions. To explain 
the plateau, a definition of absolute solute stability 
velocity, VC, is introduced for dendritic growth. The 
absolute solute stability velocity indicates that the growth 
is purely solute-controlled without thermal effect, and 
the interface will always keep stable if V＞VC. Following 
the T-K method for high Pe value[6], e.g. Pe＞＞ 1, VC can 
be expressed as[20]  
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Clearly, VC is also dependent on the interface 
temperature Ti. This is different from the models 
assuming linear liquidus and solidus, such as M-S[21], 
T-K[6] and GALENKO and DANILOV’s model[22], 
where a constant value, or a value dependent solely on 
the dendrite tip velocity, V, is obtained. Fig.2 shows the 
prediction of the evolution of VC with ΔT. One can see 
that the initiating point of the plateau coincides with the 
dendrite tip velocity at V=VC

*, which is defined as the 
critical velocity of the absolute solute stability. 

Fig.3 exhibits four cases of evolutions of tip radius 
with ΔT, i.e. solute- and thermal-controlled case, 
solute-controlled case with solute trapping, solute- 
controlled case without solute trapping, and pure thermal 
case. From Figs.3(a) and (b), the solid line and the dotted 
line coincide if V≤VC

*, indicating that VC
* stands up for 

the ending point of the mainly solute-controlled case. 
Another characteristic velocity, VR

m, is defined as 
the velocity where the maximal dendrite tip radius is 
achieved. From Fig.3, the dash-dotted line and the solid 
line almost (i.e. not exactly) coincide if V≥VR

m. This 
implies that the mainly thermal-controlled (i.e. instead of 
pure thermal-controlled) growth initiates once the tip 
radius R reaches the maximal value, i.e. V=VR

m. But if V
≥VD, the solid line and the dash-dotted line exactly 
coincide from Figs.3(a) and (b). This indicates an 
occurrence of complete solute trapping, i.e. the initiation 
of a purely thermal-controlled case if V=VD. Note that the 
phase diagram for the Ni-Zr alloy changes greatly, at 
high undercooling, which makes the prediction for the 
purely thermal-controlled growth, i.e. when V≥VD, 

deviate a little from linear growth, as shown in Fig.3(b). 
In other words, the linear growth process is not 
completely linear assuming non-linear liquidus and 
solidus in the present dendrite growth model. 

Regarding the three characteristic velocities, the 
overall solidification process can be categorized as 
follows: 1) mainly solute-controlled growth, i.e. ∆T＜
∆T(VC

*); 2) transition from mainly solute-controlled to 
mainly thermal-controlled growth, i.e. ∆T(VC

*)≤∆T＜
∆T(VR

m); 3) mainly thermal-controlled growth, i.e. 
∆T(VR

m)≤∆T<∆T(VD); and 4) purely thermal-controlled 
growth, i.e. ∆T≥∆T(VD). 
 

 
Fig.3 Evolution of dendrite tip radius as function of bath 
undercooling for Ni-0.7%B (a) and Ni-1%Zr (b) alloys 
 
4 Conclusions 
 

1) On the basis of nonlinear liquidus and solidus, an 
extended model for dendrite growth in bulk undercooled 
melts is developed under local non-equilibrium 
conditions both at the interface and in the bulk liquid. 

2) In the extended steady-state dendrite growth 
model, the kinetic effect plays an important role in the 
current marginal stability criterion. Accordingly, the 
liquidus slope in the kinetic phase diagram assuming 
non-linear solidus and liquidus, i.e. M(V, Ti), is dependent 
on both the interface temperature Ti and the interface 

≥  
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velocity V. 
3) Adopting three characteristic velocities, i.e. the 

critical velocity of absolute solute stability, VC
*, the 

velocity of maximal tip radius, VR
m, and the velocity of 

bulk liquid diffusion, VD, application of the present 
model to rapid solidification of the undercooled 
Ni-0.7%B and Ni-1%Zr (molar fraction) alloys shows a 
quantitative agreement between the model predictions 
and the experimental results. 
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