Industrial preparation and performance testing of property-modified prebaked carbon anodes for aluminum electrolysis

XIAO Jin(肖劲), LI Jie(李杰), ZOU Zhong(邹忠), HU Guorong(胡国荣),
LI AI Yaqing(李亚清), LIU Yexiang(刘业翔)
(School of Metallurgical Science and Engineering, Central South University, Changsha 410083, China)

Abstract: On the base of filtering composite additives in laboratory, the industrial property-modified prebaked carbon anodes containing composite additives were prepared in factory. The performance tests show that this kind of anodes not only have the same excellent physical performance as common (contrasting) ones used in aluminum electrolysis production at the present time, but also have better chemical and electrochemical performance than that of the common ones. Furthermore, the industrial preparation of the property-modified prebaked anode lays the foundation of electrolysis test. It can be forecasted that property-modified anodes will have good behavior in aluminum electrolysis production.

Key words: aluminum electrolysis; property-modified prebaked carbon anode; industrial preparation; performance

CLC number: TF 821

Document code: A

1 INTRODUCTION

It is well known that aluminum electrolysis is a “large family” of electroenergy consumption. In the meantime, carbon anodes are used up continuously in the process of electrolysis, so the aluminum electrolysis is also called “large family” of carbon consumption. For a long time, it has been a focus, to which aluminum metallurgical researchers and relative specialists give much attention. As for energy consumption, many ways were adopted to save electric energy, such as enlarging volume capacity of single cell, popularizing and developing large-scale prebaked anode electrolysis cell [1-3], optimizing technical condition of electrolysis process, enhancing arcteconomy level of electrolysis production in order to reduce marrmade influence [4-6], improving cathode structure and performance of electrolysis cell in order to prolonging using life of cathode [7, 8] and so on. Furthermore, Much laboratory research by adopting anode doping technology has been done to reduce anodic overvoltage in process of electrolysis [9-14]. For recent ten years, the anode additive technology used in Soderberg cell had brought considerable economic and social benefit, and had been recognized by many aluminum factories. By using the experience obtained in Soderberg cell, people began to aim at prebaked anode cell, and obtained some study results in laboratory. As for carbon consumption, a lot of research results were obtained on how to reduce unit carbon consumption of anode. One of the economical and valid methods, which benefits the factories where the technical conditions are difficult to be changed and the quality of raw materials used for production is not steady, is modifying anodic property. It is also one of the aluminum electrolysis research fields. The authors of this article acquired some results through several years’ laboratory research, and pushed it to industrial test. The final goal is to extend it in large scope on the base of successful industrial test.

2 INDUSTRIAL PREPARATION

2.1 Pretreatment of additives

The additives must be pretreated before being added into anodes. It’s a simple mechanical mixing of raw material (the compounds of Al, Mg, F and O), but it influences the property-modified effect of anodes. The three-dimensional mixing machine was adopted to mix additives (30-50 kg raw material) for 4.5 h in industrial test.

2.2 Industrial preparation

The preparation procedure of prebaked anodes includes crushing, calcining, grading, preheating, malaxating, shaping, baking and installing. The technological process is shown in Fig. 1. Thereinto, molten pitch was added into a malaxating machine from the entrance. Green crushing storage was chosen for feeding additives. The additives flowed into screw malaxating machine through electrobalance, and were mixed with raw materials of α
The mass of an industrial anode is >700 kg with a large surface area (the size of a anode is 1450 mm \times 660 mm \times 540 mm). In order to enhance the reliability and comparability of testing results, the samples were got from the place of central line on the top of anode. The testing items include physical, chemical and electrochemical performance. The size of the sample is $d50$ mm \times 150 mm.

3.2 Physical performance

The physical performance of property-modified anodes and common ones were tested in factory (as listed in Table 2). The physical performance examining standard of anodes used in carbon factory is also listed in Table 2.

From Table 2, we can see that, the ash content of property-modified anodes is higher than that of the common ones. The reason is that the additives are powder materials. Of course, these “ash” will not affect other physical performances such as resistivity, bulk density and so on. Furthermore, they will not “pollute” electrolysis products. In addition, the compression strength of property-modified anodes reduces slightly comparing with the common anodes, but they are still satisfy the standard. So do the resistivity and real density. In conclusion, the physical performances of property-modified anodes accord with the production demand.

4 CHEMICAL PERFORMANCE

The chemical performance includes the reaction rate of anodes with air and CO$_2$. The testing condition was as follows. The reaction time was 7 h; the reaction temperature was 970 °C (reacting with CO$_2$) and 500 °C (reacting with air), respectively; the size of samples was $d50$ mm \times 50 mm.

Table 3 lists the results of the reaction rate (R) of industrial property-modified anodes and the common ones with air and CO$_2$. Table 3 also lists the boiling rate of air and CO$_2$ in industrial property-modified anodes and the common ones.

Table 1 Comparison between property-modified anodes and common ones

<table>
<thead>
<tr>
<th>Anode type</th>
<th>Passing rate/%</th>
<th>Average mass/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property-modified</td>
<td>98.78</td>
<td>737.2</td>
</tr>
<tr>
<td>Common</td>
<td>98.54</td>
<td>744.8</td>
</tr>
</tbody>
</table>

Table 2 Physical performance of property-modified anodes and common anodes

<table>
<thead>
<tr>
<th>Sample</th>
<th>$w(\text{ash})$/%</th>
<th>Real density/$\left(\text{g/cm}^3\right)$</th>
<th>Bulk density/$\left(\text{g/cm}^3\right)$</th>
<th>Compression strength/MPa</th>
<th>Resistivity/$\left(\Omega \cdot \text{cm}\right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-M A1</td>
<td>1.28</td>
<td>2.07</td>
<td>1.49</td>
<td>31</td>
<td>58</td>
</tr>
<tr>
<td>P-M A2</td>
<td>0.81</td>
<td>2.07</td>
<td>1.48</td>
<td>29</td>
<td>59</td>
</tr>
<tr>
<td>P-M A3</td>
<td>1.16</td>
<td>2.06</td>
<td>1.46</td>
<td>30</td>
<td>59</td>
</tr>
<tr>
<td>Contrast anode 1</td>
<td>0.41</td>
<td>2.05</td>
<td>1.48</td>
<td>32</td>
<td>57</td>
</tr>
<tr>
<td>Contrast anode 2</td>
<td>0.38</td>
<td>2.05</td>
<td>1.46</td>
<td>33</td>
<td>59</td>
</tr>
<tr>
<td>Contrast anode 3</td>
<td>0.38</td>
<td>2.06</td>
<td>1.51</td>
<td>32</td>
<td>58</td>
</tr>
<tr>
<td>TY-1</td>
<td><0.5</td>
<td>>2.0</td>
<td>>1.5</td>
<td>>29</td>
<td><55</td>
</tr>
<tr>
<td>TY-2</td>
<td><1.2</td>
<td>>2.0</td>
<td>>1.5</td>
<td>>29</td>
<td><63</td>
</tr>
</tbody>
</table>

P-M A — Property-modified anode; TY — Standard anode
Table 3 Chemical performance of industrial property-modified anodes and common ones

<table>
<thead>
<tr>
<th>Anode</th>
<th>(R_{A1}(\text{mg}^*\text{cm}^{-2}\text{h}^{-1}))</th>
<th>Boiling rate of air %</th>
<th>(R_{CO1}(\text{mg}^*\text{cm}^{-2}\text{h}^{-1}))</th>
<th>Boiling rate of (\text{CO}_2) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>P M A 1</td>
<td>18.79</td>
<td>99.52</td>
<td>17.20</td>
<td>98.66</td>
</tr>
<tr>
<td>P M A 2</td>
<td>19.66</td>
<td>99.74</td>
<td>17.83</td>
<td>98.74</td>
</tr>
<tr>
<td>CA1</td>
<td>41.56</td>
<td>97.77</td>
<td>24.90</td>
<td>91.05</td>
</tr>
<tr>
<td>CA2</td>
<td>40.84</td>
<td>97.54</td>
<td>28.45</td>
<td>90.60</td>
</tr>
</tbody>
</table>

P M A — Property-modified anode; CA — Common anode

Table 3 shows, under the same preparation condition, the industrial property-modified anodes have more excellent resisting capability being corrupted by air and \(\text{CO}_2 \) than that of the common ones. Furthermore, the air oxidation rate \((R_{A1}) \) of industrial property-modified anodes is less than that of the common ones, and the \(\text{CO}_2 \) oxidation rate \((R_{CO1}) \) of the former is about 60%—70% of that of the later. From these, it can be forecasted that industrial property-modified anodes can reduce carbon consumption when they are used in aluminum electrolysis production.

5 ELECTROCHEMICAL PERFORMANCE

The electrochemical performance of carbon anodes is related greatly to electrolyte consumption. After finishing industrial preparation, the electrochemical performance of industrial property-modified anodes was tested in laboratory. So did the common ones under the same condition. The testing system was \(\text{Na}_3\text{AlF}_6\cdot\text{Al}_2\text{O}_3 \) molten electrolyte (with 10.9% \(\text{AlF}_3\cdot5\%\text{CaF}_2 \), mass fraction), the electrolysis temperature was 970 °C, and the analytical pure \(\text{Na}_3\text{AlF}_6 \) and \(\text{Al}_2\text{O}_3 \), the industrial pure \(\text{AlF}_3 \) and \(\text{CaF}_2 \) were adopted. In experiment electrolysis cell was set in the Ar ambience, and the anode area was controlled by sintering alumina thimble fixed on anode. The tested anode was fixed on the middle axes of graphite crucible through a piece of corundum with a hole in the middle part in order to keep the current density of anode distributing evenly. The lateral of anode uncovered by sintering alumina thimble was employed as experiment anode and the inner lateral of graphite crucible was employed as cathode. It was convenient for the carbon dioxide produced in anode reaction to separate out, and it could reduce the fluctuating of anode voltage.

The testing current was supplied through Model 273A Potentiostat/Galvanostat. The voltage between carbon anode and aluminum reference electrode was determined by cut current technology. Model 800 current interrupters (made in Electrosynthesis Company, Virginia, USA) with fast switching times were used. The performance parameter is as follows. The permitted maximum current was 10 A. The switching time was 1 μs. The duration of current interruption was 10 — 40 μs.

Fig. 2 shows the relation between overvoltage and current density of property-modified anodes and the common ones, and linear regression was adopted to deal with the Tafel curve in Fig. 2. From the results, we can know, when the anode current density is 1 A/cm², the average overvoltage of property-modified anodes is lower by 52 mV than that of the common ones. It indicates that property-modified anodes have good result of reducing anode overvoltage.

![Fig. 2 Comparison of Tafel curve between property-modified anode and common one](image)

Fig. 2 Comparison of Tafel curve between property-modified anode and common one

As a result, the property-modified prebaked anodes which prepared in industrial production have good physical, chemical and electrochemical performance, and they can be applied for aluminum electrolysis production.

6 CONCLUSIONS

1) With ordinary production process, accessional equipment and logical entrance for additives, batch of industrial property-modified anodes are prepared successfully.

2) The physical performances of property-modified prebaked anodes satisfy the demand of production.

3) Under the same condition, the property-modified prebaked anodes have better performance of resisting air and \(\text{CO}_2 \) corruption than the common ones.

4) When the anode current density is 1 A/cm², the average overvoltage of property-modified anodes is lower by 52 mV than that of the common ones, which indicates that property-modified anodes have good result of reducing anode overvoltage.

REFERENCES

(Edited by YANG Bing)