
 

 

 Trans. Nonferrous Met. Soc. China 35(2025) 2790−2802 

 
DNMKG: A method for constructing domain of 

nonferrous metals knowledge graph based on multiple corpus 
 

Hai-liang LI1, Hai-dong WANG2 
 

1. Youke Publishing Co., Ltd., Beijing 100088, China; 
2. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China 

 
Received 30 June 2023; accepted 29 April 2025 

                                                                                                  
 

Abstract: To address the underutilization of Chinese research materials in nonferrous metals, a method for constructing 
a domain of nonferrous metals knowledge graph (DNMKG) was established. Starting from a domain thesaurus, entities 
and relationships were mapped as resource description framework (RDF) triples to form the graph’s framework. 
Properties and related entities were extracted from open knowledge bases, enriching the graph. A large-scale, multi- 
source heterogeneous corpus of over 1×109 words was compiled from recent literature to further expand DNMKG. 
Using the knowledge graph as prior knowledge, natural language processing techniques were applied to the corpus, 
generating word vectors. A novel entity evaluation algorithm was used to identify and extract real domain entities, 
which were added to DNMKG. A prototype system was developed to visualize the knowledge graph and support 
human−computer interaction. Results demonstrate that DNMKG can enhance knowledge discovery and improve 
research efficiency in the nonferrous metals field. 
Key words: knowledge graph; nonferrous metals; thesaurus; word vector model; multi-source heterogeneous corpus 
                                                                                                             
 
 
1 Introduction 
 

The research on nonferrous metals is 
expanding rapidly in China, and a large number of 
research materials, such as academic literature [1,2] 
and web pages, are produced. These represent rich 
scientific knowledge. Researchers mainly search 
and use study materials obtained through search 
engines. Although search can help users find 
knowledge from a large amount of academic 
research data to a certain extent, this approach has 
limitations. The usual search method is based on 
mechanical matching of keyword strings, which 
often results in not retrieving literally mismatched 
content that is actually semantically related. 
Because the semantic level of the words entered by 
the user cannot be understood, searching lacks a 
semantic hierarchical association between the 

search result and the input word, thus missing a lot 
of valuable content. Because a large amount of 
different types of scientific research knowledge on 
materials is not stored and organized based on 
semantic associations, knowledge in the field of 
materials science cannot be recognized and 
understood by machines. However, automated 
knowledge discovery and knowledge integration 
can be pursued. Otherwise, the rapidly increasing 
knowledge cannot be effectively disseminated and 
utilized. 

In the era of big data, researchers’ need for 
knowledge has shifted from simply gathering 
information to more automated knowledge acqui- 
sition. Automatic or semi-automatic extraction of 
knowledge from vast amounts of data and 
information can transform information retrieval into 
knowledge mining and provide researchers with 
intelligent knowledge services. 
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A knowledge graph is an effective method   

to solve the above problems. A knowledge graph 
describes concepts, entities, and their relations in 
the objective world in a structured form. It is an 
important form of knowledge representation. The 
knowledge hidden within the massive amount of 
existing information is expressed by a knowledge 
graph in a way that is closer to human cognition. A 
knowledge graph also facilitates the ability to better 
organize, manage, and understand vast amounts of 
information. The knowledge graph concept was 
introduced by Google in 2012. In recent years, a 
variety of large-scale open domain knowledge maps 
have been constructed, such as DBPEDIA [3], 
YAGO [4], and FREEBASE [5,6] (Google Knowledge 
Graph). In China, there are Baidu Knowledge 
Graph and Sogou ZhiLiFang among others. These 
knowledge graphs follow the Resource Description 
Framework (RDF) [7] data model and contain 
hundreds of millions of entities and billions of facts 
(i.e., attribute values and relations with other 
entities), and these entities are organized in 
thousands of conceptual structures of the objective 
world. They have served extensively to improve 
search results, smart Q & A, and other business 
scenarios. 

The characteristics of academic and scientific 
knowledge regarding nonferrous metals in materials 
science are as follows: (1) It is mainly in the form 
of documents, books, patents, and web pages with 
scattered sources and inconsistent content systems; 
(2) The amount of research data is increasing,    
so it is difficult for ordinary retrieval methods to 
effectively extract knowledge from the massive 
amount of total information. Inadequate large-scale 
knowledge mining of materials science research has 
resulted in a small size of the existing knowledge 
graph. 

In this paper, a general method to construct a 
large-scale knowledge graph from the research 
materials of nonferrous metals was proposed.   
The method is named as DNMKG (domain of 
nonferrous metals knowledge graph). DNMKG can 
be built as a big and comprehensive knowledge 
graph with the help of semantic techniques. The 
contributions of this paper are as follows. 

(1) An effective method for building the 
framework of a nonferrous metals knowledge graph 
from a domain thesaurus was proposed. Based on 

this framework, entities and relations were 
extracted from the open knowledge base and stored 
into DNMKG in the form of RDF triples. 

(2) To enrich the entities and relations in the 
DNMKG, a multi-source heterogeneous nonferrous 
metals corpus was constructed, including papers, 
reference books, and monographs, which together 
comprise more than 1×109 words. 

(3) A pipeline based on natural language 
processing (NLP) was constructed to preprocess the 
corpus and generate word vector models through 
calculation. Then, a proposed entity evaluation 
algorithm was used to extract the related entities 
from the corpus. Finally, a prototype system    
was built to demonstrate the interface between 
researchers and the knowledge graph. 
 
2 Related works 
 
2.1 Materials science knowledge graph 

A knowledge graph is a multi-relational graph 
composed of entities (nodes) and relations (different 
types of edges). The entities express an existing 
concept in the world. The relations show the 
connections between two entities and are usually 
represented as a triple of the form (head entity, 
relation and tail entity). For example, <Beijing, 
isCapitalOf, China> is a relation in the triple form. 

In addition to open-domain knowledge graphs 
such as DBpedia and Freebase, knowledge graphs 
in many professional fields have been constructed. 
Knowledge graphs have been developed rapidly in 
bioinformatics [8,9], and many large-scale usable 
systems have been built in that domain. However, 
in the field of materials science, including 
nonferrous metals, the progress of knowledge 
graphs has been relatively slow. Some works based 
on XML Schema have attempted to integrate 
materials information. For example, MATML [10] 
aims to facilitate exchange of materials properties 
information, and JRC-MATDB [11] has been built 
for interoperability of engineering materials testing 
databases. The disadvantage of XML is that its 
relationship types are very few, making it 
challenging to sufficiently capture and reflect the 
semantic information. Some other knowledge 
graphs are based on ontology [12]. Ontology 
models concepts and their relations, whereas 
knowledge graphs model entities and their relations 
according to concepts. The abstraction level of 
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ontology is higher than that of knowledge graph. 
MatSeek [13] was designed for knowledge 
representation of materials science, integration of 
materials databases, modeling of origin data, and 
extraction of new knowledge through reasoning. 
SLACK [14] is based on a set of ontologies for 
laminate composite materials and designed for 
manufacturing and integrates them into a previously 
developed engineering design framework. The 
existing efforts mostly rely on manual construction 
by domain experts i.e., the classification is more 
accurate, but the time taken to build is longer and 
the update frequency is slower. 
 
2.2 Proposed approach for knowledge graph 

construction 
At present, the methods for constructing 

domain knowledge graphs are based on the use of a 
thesaurus, domain-independent open knowledge 
bases, and large-scale corpora. QIAO et al [15] 
established maps from an agricultural thesaurus to 
an agricultural knowledge graph schema layer and a 
data layer using rules for determining whether the 
thesaurus entry is a concept or an entity. ZHANG  
et al [16] built a metallic materials knowledge 
graph based on DBpedia and Wikipedia through 
algorithmic extraction of entities based on semantic 
similarity. WANG et al [17] used machine learning 
algorithms to auto-populate domain ontologies from 
online encyclopedias to compensate for the lack of 
a thesaurus description of the semantic relation 
between terms. The research of automated methods 
often stops at constructing knowledge graphs   
only from a thesaurus or only from an online 
encyclopedia from which entities and attributes can 

be extracted and fails to make full use of a large 
amount of domain-specific corpora, such as 
research materials. 
 
3 Construction of DNMKG 
 
3.1 Overview of approach 

In this paper, we designed a method to extract 
entities and their properties and relations from a 
nonferrous metals thesaurus, open knowledge bases, 
and the scientific literature corpus. The knowledge 
was represented as RDF triples, which together 
formed the knowledge graph. The knowledge graph 
was stored in the Neo4j database, which is a graph- 
based database, resulting in a large-scale triple- 
based semantic knowledge base. Figure 1 shows the 
overview of this approach. 

Definition 1: Knowledge graph 
An actual statement can be expressed as a 

semantic web triple <subject, predicate, object>, 
which can formalize semantic data into a 
knowledge triple set K, K S P O⊆ × × , where S is 
the subject set comprising entities, O is the object 
set comprising entities or entities’ properties, and P 
is the predicates set usually comprising relations 
between entities or between entities and properties. 
A knowledge graph is the set of the triples, so it can 
be represented as DNMKG={E, P, R}, where 
E={e|e is the entity of nonferrous metals}, P={p|p  
is the property of the entity}, and R={r|r is the 
relation of e and p}. 

Step 1 We obtained and digitized thesaurus 
books related to nonferrous metals. Using the 
thesaurus as an entity, with various types of 
relations between thesauruses, we mapped them  

 

 

Fig. 1 Overview of construction of DNMKG 
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into RDF triples and stored them in the form of 
graph-based data to establish the framework of 
DNMKG. 

Step 2 Using the entities of the nonferrous 
metals thesaurus as seed words, the entity attributes 
and related entities were extracted from multiple 
open knowledge bases. The obtained entities, 
attributes, and relations were converted into triples, 
which were merged and stored in DNMKG. 

Step 3 The scientific literature related to the 
field of nonferrous metals was collected, including 
papers, reference books, monographs, and textbooks. 
These materials were classified and stored to 
establish a large multi-source heterogeneous 
nonferrous metals corpus (MHNMCo). 

Step 4 Through a series of natural language 
processing and semantic analysis processes, 
MHNMCo was processed to extract candidate 
entities for nonferrous metals. Combined with the 
nonferrous metals word vector model, we applied a 
proposed candidate entity evaluation method to 
obtain a more complete DNMKG through multiple 
iterations. 
 
3.2 Building knowledge graph based on thesaurus 
3.2.1 Understanding structure of thesaurus 

A thesaurus is a collection of these concepts 
and their relations and thus contains rich semantic 
relations. It was first used in traditional literature 
indexing. There are three kinds of relations in a 
thesaurus, namely equivalence, hierarchical, and 
associative relations. 

The equivalence relation is also known as the 
identity relation: Y (use) and D (alternate). It 
includes synonymous and alternative relations that 
imply the same concept or the same usage. 

The hierarchical relation is also known as   
the subordinate relation: S (genus), F (sub) and Z 
(family head). This relation includes genus-species, 
whole-part, and multi-level relations. The hyponym 
of each level must be the same as the conceptual 
type of the hypernym and belong to the same 
category. 

The associative relation is also known as   
the phylogenetic relation: C (reference). It enables 
indexing and retrieval. The associative relation is 
important for expanding the scope of concepts. 

A thesaurus has a clear semantic structure and 
can be used to build a knowledge graph. Some 

researchers in other fields have already done related 
work. YUAN et al [18] compared existing ontology 
construction methods and proposed a thesaurus- 
based oil field ontology construction method. GU  
et al [19] built a Chinese ancient medical literature 
ontology. However, there is no relevant research in 
the field of nonferrous metals. 
3.2.2 Building thesaurus of nonferrous metals 

domain 
The China Thesaurus for Nonferrous Metals 

Industry [20] is the first large-scale comprehensive 
retrieval reference book in the field of nonferrous 
metals in China. It is also a reference book for 
standardizing the terminology of the nonferrous 
metals industry. It serves as bridge between the 
natural language used in written literature and the 
standardized language used in the knowledge base 
system. It contains 14224 entries in 29 categories, 
including nonferrous metal mining, mineral 
processing, smelting, pressure processing, metal 
materials, powder metallurgy, metallurgy and heat 
treatment, metal corrosion and protection, analytical 
testing, metallurgical automation, energy, metallur- 
gical construction, technical economy, environmental 
protection, and labor safety. We digitized this  
book to enable processing by computational 
methods. 

A typical example of a nonferrous metals 
thesaurus entry is as follows: 

Tungsten steels 
S Alloy steels 
Z Steel 
 

WCdCo alloys 
S Tungsten alloys 
Z Refractory metal alloys 
 

Tungsten alloys 
D Tungsten containing alloys 
S Transition metal alloys 
S Refractory metal alloys 
F Tungsten base alloys 
F Tungsten additions 
F WCdCo alloys 

3.2.3 Transforming thesaurus into knowledge graph 
The foundation of the knowledge graph is  

the entities and their relationships. The thesaurus 
already contains these elements. Through processing 
of the thesaurus, we can acquire the concepts and 
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entities related to the nonferrous metals discipline 
and the relationships between them, which can be 
used to build a knowledge graph. 

In this paper, we used “is” to indicate the 
equivalence relation, “isA” to indicate the 
hierarchical relation, and “related” to indicate the 
associative relation. We used the following process: 
Thesaurus−Relationship annotation−Relationship 
mapping−Building RDF triples—Storing the triples. 
The relation mapping is shown in Table 1. After the 
transformation, thousands of triples were generated 
and stored in the graph-based database Neo4j. This 
is the framework of DNMKG. Table 1 shows 
examples of entities and relations. Table 2 shows 
the 29 categories of entities in the framework of 
DNMKG. A classical example of framework of 
DNMKG is shown in Fig. 2. 
 
Table 1 Transformation of thesaurus to RDF triples 

Relations 
in 

thesaurus 

Relation 
mapping 

Before 
transformation 

After 
transformation 
(RDF triples) 

Equivalence 
relation 
 (Y, D) 

is 

Tungsten  
alloys 

D Tungsten 
containing 

alloys 

〈Tungsten 
 alloys, is, 
Tungsten 

containing 
alloys〉 

Hierarchical 
relation 

 (S, F, Z) 
isA 

Tungsten  
alloys 

F tungsten 
 base alloys 

〈Tungsten  
alloys, isA, 

Tungsten base 
alloys〉 

Associative 
relation 

 (C) 
related 

Coating 
C Metal 
 surface 

protection 

〈Coating, relate, 
Metal surface 

protection〉 

 
3.3 Enriching knowledge graph using open 

knowledge bases 
3.3.1 Open knowledge bases 

At present, there are some knowledge bases 
that can be easily accessed online (wikis), such   
as DBpedia, YAGO, and FreeBase. In China,  
Baidu Baike, Hudong Baike, and Chinese Wiki- 
pedia (zh.wikipedia.org) are the three largest 
encyclopedia sites. Generally, a page of online 
encyclopedia corresponds to an entity. This page 
often contains a lot of information, such as the 
entity’s name, an abstract that summarizes the most 
important information, the description (text that  

Table 2 29 categories of entities in framework of DNMKG 

Category Number of entity 

Mining 2129 

Mineral processing 2141 

General metallurgical issues 1393 

Metallurgy 1242 

Powder metallurgy 113 

Nonferrous metals smelting 1653 

Metallography 651 

Performance of metal 882 

Physical analysis tests on metals 139 

Heat treatment 228 
Metal corrosion and protection, 

 surface treatment 
578 

Metal casting 258 

Metal welding, cutting, bonding 300 

Metal pressure working 853 

Metals and alloys 1020 

Alloyology, various alloys 315 

Metal material 113 

Carbon 113 

Refractories 485 

Chemical testing of metals 423 

Metallurgical automation 196 

Computer technology 22 

Environmental science 501 

Industrial safety, labor protection 473 

Industrial economy 857 

Library and information work 193 

Elements and compounds 863 

Generic entries 2504 

Test equipment and instruments 88 

Total 20726* 
*As an entity can be classified into multiple categories, this total 
exceeds 14224, which was the actual total number of entities 
 
provides detailed information in various sections  
of the page), links (references to other pages), an 
infobox (structured information about the page in a 
table format), and a category (the topic of the page). 
The attributes and related entities can be extracted 
from the online encyclopedia pages [21]. A typical 
page is shown in Fig. 3.  
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Fig. 2 Classical example of framework of DNMKG 
 

WANG et al [22] presented an English–Chinese 
bilingual knowledge graph named XLore, which 
harvested 2466956 concepts, 16284901 instances, 
and 446236 relations from four online wikis, 
namely English Wikipedia, Chinese Wikipedia, 
Baidu Baike, and Hudong Baike. In this paper, 
XLore was used to complete the properties and 
relations and extract more related entities of 
DNMKG. 
3.3.2 Extracting entities and relations from knowledge 

using DNMKG 
The entities in the framework of DNMKG 

were matched to the entities in XLore one by one. 
Their attributes, classifications, and related entities 
were extracted from the matched entity page. Then, 
triples were generated and stored in DNMKG. 
Figure 4 shows an example of an entity’s 
enrichment. Through this stage of processing, 
DNMKG was substantially expanded. The number 
of entities increased, attributes became richer, and 
relations were strengthened. 
 
4 Enriching DNMKG using large-scale 

text corpus 
 

The above discussion showed how the 
framework of DNMKG was built using a thesaurus. 

Next, entities and related properties were 
supplemented using open knowledge bases. 
However, there are two shortcomings: (1) because 
of the low frequency of updates to the nonferrous 
metals thesaurus, new concepts and terms were 
absent, which resulted in a limited number of 
entities extracted from the open knowledge bases; 
(2) Online open knowledge bases are usually 
intended for public use, and therefore containing 
limited specialized knowledge of professional fields. 
This is especially true for the nonferrous metals 
domain, which also results in extracting a limited 
number of entities. To address these limitations, we 
developed a method to use a large-scale corpus to 
enrich DNMKG. 
 
4.1 MHNMCo: Multi-source heterogeneous 

nonferrous metals corpus 
Scientific literature in the field of nonferrous 

metals includes research papers, reference books, 
and monographs, among other materials. The 
content in the literature is relatively new and 
updated quickly. It can be considered the de facto 
standard corpus for knowledge mining. 

One of the important contributions of this 
article is the MHNMCo that we have built for 
enriching DNMKG (Fig. 5). We gathered thousands 
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Fig. 3 Typical page of Baidu encyclopedia (https://baike.baidu.com/item/%E6%B0%A7%E5%8C%96%E9%93%9D/ 
2849623) 
 
of documents from the last five years from 167 
nonferrous metals journals with the China National 
Knowledge Infrastructure (CNKI). Dozens of 
reference books and monographs were also 

digitized into structured or semi-structured form, 
including professional dictionaries, encyclopedias, 
metallographic maps, and handbooks, among  
others. With respect to research papers, metadata 
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Fig. 4 Example of entity enrichment 
 

 

Fig. 5 Example of building MHNMCo 
 
(titles, authors, keywords, abstracts, etc.) were 
extracted. For encyclopedias or dictionaries, the 
terms and their explanations were extracted 
separately. Structured and semi-structured corpora 
can express more semantic information and are 

more amenable to subsequent processing. 
A large amount of plain text content was 

extracted and cut into sentences and then stored   
in a database for processing. Table 3 provides an 
overview of MHNMCo. 
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Table 3 Overview of MHNMCo 

Type Source Number of 
documents 

Number of 
words 

Papers CNKI 242222 1067410000 
Reference 
books and 
handbooks 

www.ukus.com.cn 93 77900000 

Monographs www.ukus.com.cn 28 13650000 
Total  1158960000 

 
4.2 Extracting candidate entities 

For MHNMCo, a pipeline based on NLP was 
constructed to create a more extensive network   
of inter-word relations, which enabled richer 
knowledge of nonferrous metals entities as a 
supplement. Figure 6 shows the workflow. 

 
4.3 Corpus preparation 

The first step of text corpus processing is word 
segmentation. Professional domain dictionaries can 
aid NLP to segmenting words more accurately. We 
used a nonferrous metals domain dictionary, which 
contained a collection of domain specific nouns. We 
added the research paper keywords and reference 
book items extracted from MHNMCo into the 
dictionary. 

Firstly, we performed word segmentation 
processing on the documents in MHNMCo. A 
large-scale Chinese dictionary was constructed, 
which contained the research paper keywords and 
reference book items extracted from MHNMCo to 
ensure the accuracy of the word segmentation. 
Secondly, the corpus text was labeled with parts of 
speech. The verbs, adverbs, and nouns in the 
sentences were identified, but only kept all nouns. 
Stop words were also removed. We used Stanford 

University’s CoreNLP [23] to preprocess all the 
documents and sentences. It is a widely used 
integrated NLP toolkit that supports Chinese 
language. After the processing, the corpus was used 
to calculate the word vector model. 
 
4.4 Calculation of word vector model 

Word vector technique converts words in a 
corpus into dense vectors. Words with similar 
semantics have similar vector representations. 
There are several ways to generate word vectors 
starts, including a statistics-based language model 
and a neural network-based language model. Some 
of the classical language models are Word2Vec, 
GloVe, ELMo, and BERT. We used the Word2Vec 
model. 

Word2vec [24] is a word vector representation 
with a supervised method. Word2vec provides two 
neural network models, namely continuous bag-of- 
words and skip-gram, for computing continuous 
vector representations of words from very large 
data sets. We adopted skip-gram. Skip refers to the 
words in a certain window. Even if they are 
separated by some words, the probability of their 
co-occurrence can still be calculated. 

In the training stage, if the processed corpus is 
regarded as a sequence of words w1, w2, …, wT, the 
goal of the skip-gram model during training is to 
maximize the average value of the logarithm of the 
probability 1( | )j tp w w+  of co-occurrence:  

1
1

1 lg ( | )
T

j t
t k j k

p w w
T +

= − ≤ ≤
∑ ∑                     (1) 

 
where k is the size of the training window, which  
is the distance between the words before and after 
the current word, and in the following work, we set 

 

 
Fig. 6 Pipeline for enriching domain of DNMKG based on MHNMCo 
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k=10; T is the total number of entities. 
In the prediction stage, the skip-gram model 

associates two parameter vectors uw and vw for 
learning for each input w. The two parameter 
vectors are the input and output vectors of w, 
respectively. For a given word wj, the probability 
that the word wi is correctly predicted is as follows: 
 

T

T

1

exp( )
|

exp(
)

)
( i j

j

w w
i j V

i w
i

p w w

=

=

∑

u v

u v
                 (2) 

 
where V is the number of words in the dictionary, 
and T denotes the transpose of a vector. 

We used gensim [25] as our word2vec 
software. The processed corpus from the previous 
step was input into gensim. After training, we 
obtained the neural network model as the output. 
 
4.5 Extraction of candidate entities 

Using the nonferrous metals corpus and the 
word vector model, we built a candidate entity 
extraction algorithm to identify real entities. With 
the entities in DNMKG as input, the related entities 
and their relevance were calculated through the 
word vector model. Some of the entities appeared in 
DNMKG with the label “Entity”, and the others 
were candidate entities labeled “Candidate Entity”. 
We calculated the average relevance between these 
entities and the input entity and used it as the 
benchmark to determine whether the candidate 
entity is a real entity. Figure 7 shows a sample view 
of the calculation result. It is an undirected 
weighted graph. 
 

 
Fig. 7 Sample view of entity and its candidate entities 
 

Definition 2: Entities and candidate entities set  
EntitySet(ea)={e1, e2, e3, …|r1, r2, r3, …}      (3) 

CandidateEntitySet(ea)= 
{ce1, ce2, ce3, …|cr1, cr2, cr3, …}        (4)  

where ea refers to the input entity from DNMKG; e1, 
e2 and e3 refer to the entities calculated from word 
vector model; r1, r2 and r3 are the respective 
probabilities between e and ea; ce1, ce2 and ce3 refer 
to the candidate entities calculated from the word 
vector model, and cr1, cr2 and cr3 are the respective 
probabilities between ce and ea. We believe that 
compared with setting a constant as the benchmark, 
this average value dynamically reflects the 
minimum correlation that the current entity and its 
related entities should have. The correlation of 
candidate entities must be greater than the 
benchmark to be considered a true entity. 
 

Definition 3: Benchmark of entity’s relevance 

1
Benchmark( )

T

i
i

e r T
=

= ∑                    (5) 

where Benchmark(e) is the average of the relevance 
between these entities and the input entity. 
 

Definition 4: Candidate entities evaluation 
EntityEvaluation(e,cr)= 

True,  Benchmark( )
False,  Benchmark( )

cr α e
cr α e
≥ ⋅

 < ⋅
          (6) 

where α is an adjustment factor. We set α=1.      
If a candidate entity’s relevance is greater than 
α·Benchmark(e), it is an entity, otherwise it is not 
and entity. 

The detailed steps are as follows: 
Step 1 Extract an entity from DNMKG. 
Step 2 Calculate the top 30 entities with the 

highest correlation with the entity using the word 
vector model, retain the correlation, and calculate 
Benchmark(e) and EntityEvaluation(e,cr). Filter out 
new entities. 

Step 3 Extract the properties and related 
entities of the new entity from the open knowledge 
bases and store them in DNMKG. 

Step 4 Repeat Steps 1 to 3 until all entities in 
DNMKG are traversed. 
 
5 Experiment and discussion 
 

After applying our proposed pipeline to the 
thesaurus of nonferrous metals and MHNMCo, 
DNMKG had 51852 distinct entities and 226857 
RDF triples. 
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Table 4 lists the number of entities and the 
number of RDF triples in each stage during the 
construction of DNMKG. 

Firstly, the more complex part of constructing 
the knowledge graph was the discovery and 
recognition of domain concepts and entities. With 
the integration of domain expert knowledge, the 
thesaurus could find the domain categories quickly 
and accurately. With the thematic vocabulary, a 
classification system of the entire nonferrous metals 
knowledge map was established, which covered the 
nonferrous metals academic and scientific literature 
and the main entity categories of the industry. Of 
the total number of entities, 17.4% were extracted, 
and 12.8% of triples were extracted from it. The 
framework of DNMKG was thus formed, and it was 
more conducive for knowledge extraction in the 
subsequent processing stage. We consider that it is 
an effective approach to construct the domain 
knowledge map from the thesaurus. 
 
Table 4 Overview of DNMKG 

Type 
Number 

of 
thesaurus 

Number of 
thesaurus + 

open  
knowledge  

graph 

Number of 
thesaurus +  

open knowledge 
graph + 

 MHNMCo 

Entities 14203 37316 81852 

RDF triples 29074 108714 226857 

 
Next, the framework of DNMKG was 

supplemented with the existing open knowledge 
bases. At this stage, the number of entities was 
expanded by 162.7% compared with the previous 
stage and accounted for 45.6% of the total number 
of entities. In particular, almost all entity attributes 
were extracted through the open knowledge bases. 
A large number of related relationships were 
extracted, with other types were relatively few. This 
is because the subordinate relationships and the 
equivalence relationships were not established in 
the knowledge bases. 

Finally, the entities and relationships for 
semi-structured and unstructured corpora were 
extracted to further strengthen the knowledge graph. 
We sorted large-scale digital corpora, which is a 
highlight of this work. At this stage, the DNMKG 
constructed in this work was used as a priori 
knowledge. The number of related entities extracted 

increased by 119.3% compared with before, and the 
proportion of new entities added reached 54.4%, 
which represents a good extraction result. 

A prototype system was constructed to 
demonstrate the human−computer interaction form 
of DNMKG (Fig. 8). When the user enters a term, 
the network connections of this term in DNMKG 
will appear on the left, and the entities that are 
semantically related to it can be clearly seen. This 
interface can help researchers quickly understand 
the relevant knowledge hierarchy. At the same time, 
knowledge resources closely related to the term will 
be retrieved on the right. They are from MHNMCo 
and can guide users to further reading and learning. 
 
6 Conclusions and future work 
 

DNMKG is a semantic network of knowledge 
related to nonferrous metals, mineral processing, 
mining, smelting, and many other related areas. It 
provides researchers and practitioners with an 
effective method for the organization, management, 
and retrieval of large-scale professional content and 
improves the efficiency of acquiring research 
intelligence. This form of the knowledge map can 
be computerized and compared with other fields of 
knowledge mapping to facilitate interactive sharing 
and integration, enabling better organization and 
dissemination of multi-domain knowledge for 
researchers in the field of nonferrous metals. 

In the future, we plan to improve two aspects: 
(1) to develop an automated processing mechanism 
that can discover new entities, their attributes, and 
relationships on a timely basis and dynamically 
enrich DNMKG; (2) to further expand the types of 
entity relationships, such as those of alloy materials, 
to meet the needs of materials design, analysis, 
manufacturing, selection, and other scenarios in the 
field of metals. 
 
CRediT authorship contribution statement 

Hai-liang LI: Conceptualization, Methodology, 
Software, Data curation, Writing − Original draft, 
Visualization, Investigation; Hai-dong WANG: Writing 
− Reviewing and editing, Supervision. 
 
Declaration of competing interest 

The authors declare that they have no known 
competing financial interests or personal relationships 
that could have appeared to influence the work reported 
in this paper. 



Hai-liang LI, Hai-dong WANG/Trans. Nonferrous Met. Soc. China 35(2025) 2790−2802 2801 

 

 

Fig. 8 Prototype of human−computer interaction form of DNMKG 
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摘  要：为解决有色金属领域中文研究资料的利用不足问题，提出了一种构建有色金属领域知识图谱(DNMKG)

的方法。该方法以领域词表为基础，将实体和关系映射为 RDF 三元组，构建知识图谱的框架结构。通过从开放

知识库中提取属性和相关实体，进一步丰富了知识图谱的内容。此外，还从近期文献中构建了一个包含超过 10

亿字的多源异构大规模语料库，以进一步扩充 DNMKG。以知识图谱为先验知识，结合自然语言处理技术对语料

库进行分析，生成词向量。采用一种新的实体评估算法识别并提取真实的领域实体，并将其纳入 DNMKG。同时，

开发了一个原型系统用于知识图谱的可视化展示以及支持人机交互。研究结果表明，DNMKG 能够有效提升有色

金属领域的知识发现能力并显著提高研究效率。 

关键词：知识图谱；有色金属；词表；词向量模型；多源异构语料库 
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