

Available online at www.sciencedirect.com

ScienceDirect

Trans. Nonferrous Met. Soc. China 35(2025) 1987–1995

Transactions of
Nonferrous Metals
Society of China

www.tnmsc.cn

Construction and electrochemical performance of $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ cathode material for sodium-ion batteries

Mu-lan QIN^{1#}, Chao HU^{2#}, Guo-zhao FANG², Shu-quan LIANG², Wan-min LIU¹, Bin SHEN¹

1. College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China;

2. School of Materials Science and Engineering, Central South University, Changsha 410083, China

Received 2 November 2024; accepted 29 April 2025

Abstract: The electrochemical performance of layered O₃-type NaCrO₂ cathode material is significantly affected by the side reactions between NaCrO₂ and electrolyte during sodium storage. A uniform Cr₂O₃ coating layer was in situ constructed on the surface of NaCrO₂ by controlling the excess ratio of sodium source. The structure, morphology, valence and electrochemical performance of the Cr₂O₃-coated NaCrO₂ were characterized. The results indicate that the Cr₂O₃ coating layer does not alter the crystal structure and morphology of NaCrO₂, but effectively suppresses the side reactions between NaCrO₂ and electrolyte, and improves the surface/interfacial stability of NaCrO₂ material. The Cr₂O₃-coated NaCrO₂ exhibits improved electrochemical performance with a capacity retention of 66.4% after 500 cycles at 10C.

Key words: NaCrO₂; Cr₂O₃; sodium-ion battery; cathode material; electrochemical performance

1 Introduction

The rapid development of renewable energy, such as solar and wind energy, urgently requires low-cost energy storage systems. Although lithium-ion batteries (LIBs) have been widely adopted in portable devices and electric vehicles, the limited availability of lithium resources restricts their application in large-scale energy storage systems [1–3]. Sodium-ion batteries (SIBs) are considered to be one of the most promising alternatives to LIBs in the energy storage field, owing to their abundant sodium resources, favorable electrochemical performance, and environmental friendliness [4,5].

The development of suitable cathode materials is crucial for the commercialization of SIBs [5–7]. Layered transition metal oxides (Na_xMO₂, M=transition metal element, 0<x≤1) have attracted

extensive research as cathode materials for SIBs due to their high electrochemical activity, superior capacity, and ease of synthesis [8–11]. In particular, layered O₃-type NaCrO₂ stands out by virtue of certain remarkable advantages including a desirable flat charge/discharge voltages at around 3.0 V, high reversible capacity of 125 mA·h/g and excellent thermal stability [12–14]. However, NaCrO₂ experiences rapid capacity decay during cycling, primarily attributed to side reactions between the active material and the electrolyte, as well as structural instability caused by repeated Na⁺ insertion/extraction [15–17].

To optimize the electrochemical performance of NaCrO₂, various modifications, such as carbon coating [18–20], heteroatom doping [21–25] and morphology control [26–28], have been reported. Carbon coating can enhance the electrical conductivity of the material to improve the electrochemical performance. YU et al [29] modified

Mu-lan QIN and Chao HU contributed equally to this work

Corresponding author: Mu-lan QIN, Tel: +86-15773220865, E-mail: 70318@hnie.edu.cn

[https://doi.org/10.1016/S1003-6326\(25\)66795-1](https://doi.org/10.1016/S1003-6326(25)66795-1)

1003-6326/© 2025 The Nonferrous Metals Society of China. Published by Elsevier Ltd & Science Press

This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>)

the surface of NaCrO_2 with carbon using pitch as the carbon source, and the electronic conductivity of the material increases to 10^{-1} S/cm. The carbon-coated NaCrO_2 exhibits an ultrafast rate capability up to 150C with a specific capacity of 99 mA·h/g. However, oxide coating, a common approach for modifying other electrode materials [30–32], has rarely been reported for NaCrO_2 .

Cr_2O_3 produced as a by-product during the synthesis of NaCrO_2 is often regarded as an impurity phase because it reduces the specific capacity, although it has been used as a coating material in electrode materials for LIBs [33–35]. In recent years, the application of Cr_2O_3 in SIBs has also been reported, which can effectively increase the stability of the material's crystal structure and extend the cycle life of cathode at high current density. WANG et al [36] prepared in situ Cr_2O_3 -coated NaCrO_2 with improved electrochemical performance by adding excess chromium. The capacity retention of Cr_2O_3 -coated NaCrO_2 reaches 84.8% after 1000 cycles at 10C, and a specific capacity of 108 mA·h/g can still be obtained at a high rate of 60C. IKHE et al [37] reported Cr_2O_3 -coated and Al-doped NaCrO_2 which shows excellent cyclic stability with no capacity decay during 1000 cycles at 5C with a capacity of 107 mA·h/g.

In this study, a uniform Cr_2O_3 coating layer was constructed on the surface of NaCrO_2 by controlling the excess ratio of sodium to chromium. The coating layer protects NaCrO_2 from severe side reactions and enhances the surface/interface stability during charge–discharge processes, thereby resulting in improved electrochemical performance of NaCrO_2 at high rates.

2 Experimental

2.1 Material synthesis

A facile sol–gel method was used to synthesize NaCrO_2 cathode material. In a typical process, NaNO_3 and $\text{Cr}(\text{CH}_3\text{COO})_3$ were dissolved into H_2O to obtain a clear solution. Citric acid used as a chelating agent was added into the solution, and then $\text{NH}_3\cdot\text{H}_2\text{O}$ was added to adjust the pH value to 7. Subsequently, the solution was stirred and reacted at 70 °C for 5 h and then dried at 150 °C to form dry gel. Finally, the gel was annealed at 450 °C for 5 h in air and then calcined at 900 °C for 10 h under an Ar/H_2 atmosphere to obtain the

sample. When the molar ratios of NaNO_3 and $\text{Cr}(\text{CH}_3\text{COO})_3$ were set to 1.10:1 and 1.05:1, the synthesized samples were denoted as NCO-1.10 and NCO-1.05, respectively. In order to prevent the deterioration of material by the absorption of ambient moisture, the samples were stored in an Ar-filled glove box.

2.2 Material characterization

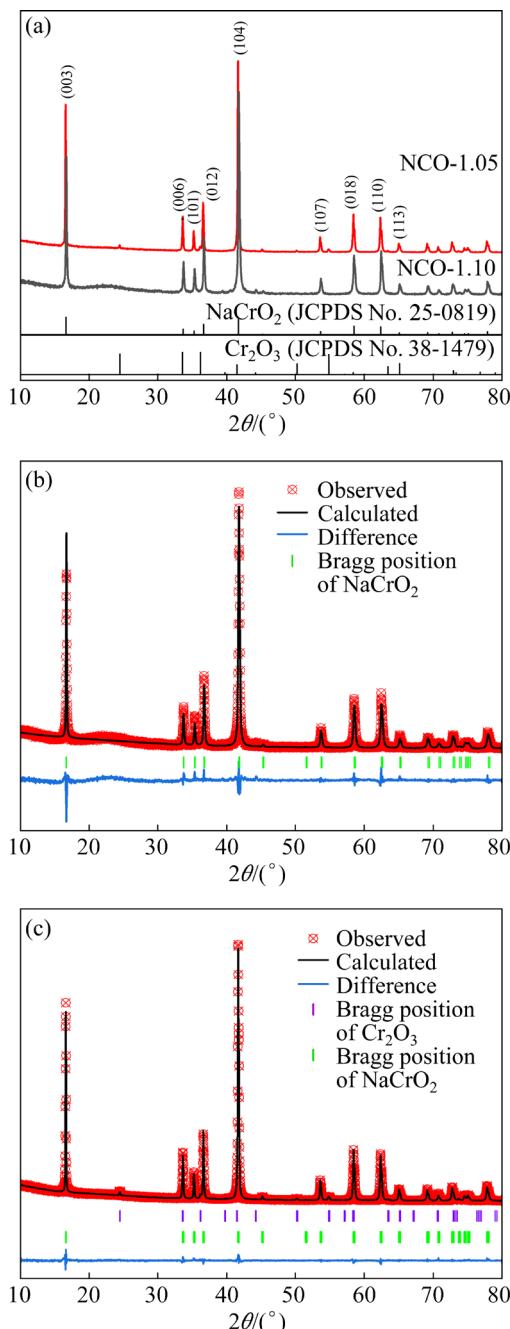
The crystallographic structures of samples were determined by X-ray power diffraction (XRD, Rigaku Mini Flex 600 with Cu K_α radiation, $\lambda=1.5418\text{ \AA}$) over the 2θ range of 10°–80°. The XRD patterns were refined via Rietveld program general structure analysis system (GSAS) software. The morphology and microstructure were characterized by field emission scanning electron microscopy (FESEM, FEI Nova NanoSEM 230) and transmission electron microscopy (TEM, FEI Titan G2 60–300) equipped with an X-ray energy dispersive spectrometer (EDS). The chemical valance state of each element on the surface was measured by X-ray photoelectron spectroscopy (XPS, VG Escalab–250xi).

2.3 Electrochemical evaluation

The electrochemical performances of the samples were tested in CR2025 coin cells. The working electrode was composed of active material, acetylene black and PVDF with a mass ratio of 8:1:1, and the loading of electrode was about 1.1 mg/cm². Sodium metal was used as the reference electrode and glass fiber (Whatman GF/D) was used as the separator. 1 mol/L NaClO_4 in ethylene carbonate (EC) + propylene carbonate (PC) (volume ratio of 1:1) solution with 5 vol.% fluoroethylene carbonate (FEC) was used as the electrolyte. The galvanostatic charge/discharge measurements were performed on a Neware battery test system (CT-4008T-5V20mA-164). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS, in the range from 100 kHz to 10 mHz) were conducted using an electrochemical workstation (CHI 660E).

3 Results and discussion

3.1 Physicochemical characteristics

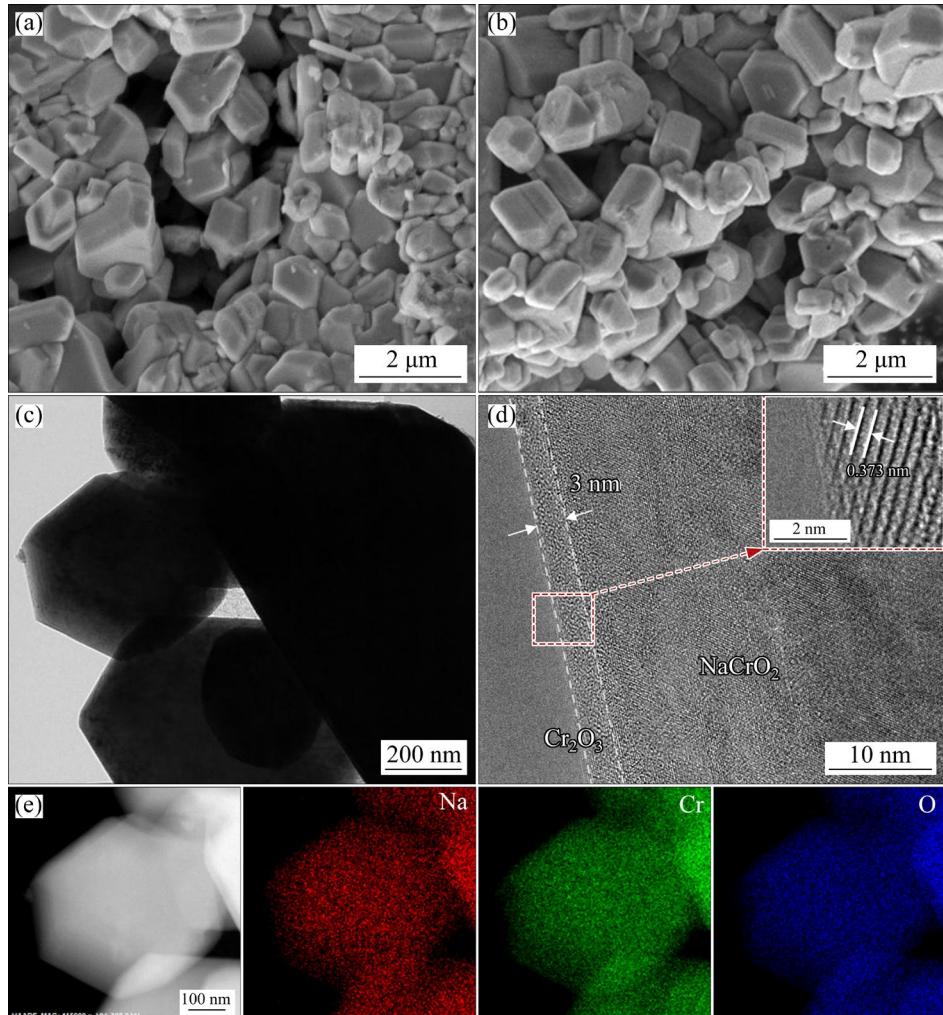

During the sol–gel synthesis of NaCrO_2 , Na^+ and Cr^{3+} were mixed homogeneously in the gel, and in-situ Cr_2O_3 -coated NaCrO_2 , rather than

sodium-poor phase Na_xCrO_2 ($x < 1$), was synthesized due to the volatilization of Na on the surface during calcination, although excess sodium was used. Figure 1 shows the XRD patterns of NCO-1.10 and NCO-1.05. As can be seen from Fig. 1(a), the main phase in the NCO-1.10 sample is the O3-type NaCrO_2 (JCPDS No. 25-0819). In sample NCO-1.05, in addition to the diffraction peaks belonging to NaCrO_2 , new diffraction peaks located at 24.5° , 36.2° , 50.2° and 54.9° can be indexed to the Cr_2O_3 phase. The XRD patterns of NCO-1.10

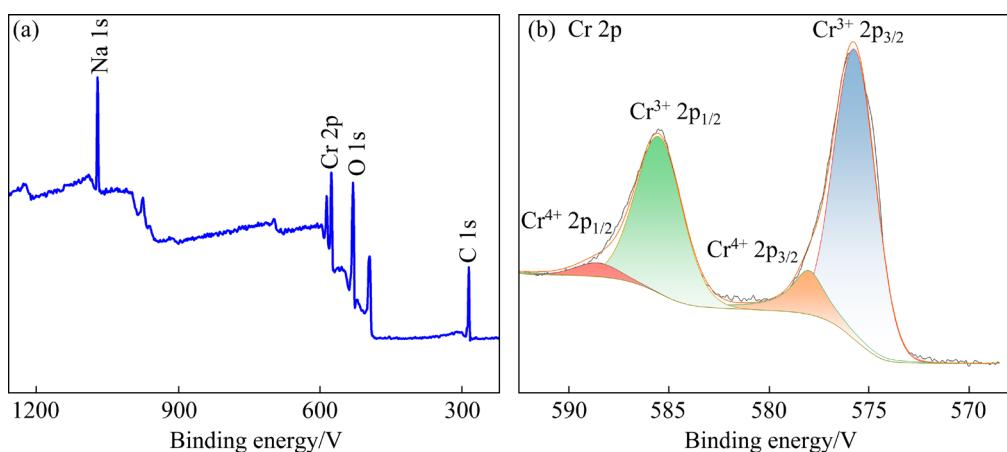
and NCO-1.05 were further refined (Figs. 1(b, c)), and the lattice parameters are given in Table 1. The results show that when the excess content of sodium reaches 10%, the synthesized sample is NaCrO_2 pure phase with no heterogeneous phase. When the excess content of sodium decreases to 5%, a two-phase material consisting of 98.11 wt.% NaCrO_2 and 1.73 wt.% Cr_2O_3 is synthesized, denoted as $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$. The structural parameters obtained by refinement are basically consistent with those reported in the literature [29,36]. There is almost no difference in the lattice parameters of the NaCrO_2 phase in the two samples, indicating that the Cr_2O_3 coating does not affect the crystal structure of NaCrO_2 .

Table 1 XRD refinement results of NCO-1.10 and NCO-1.05

Sample	$a/\text{\AA}$	$c/\text{\AA}$	$V/\text{\AA}^3$
NCO-1.10	2.9714	15.9573	122.015
NCO-1.05–98.11% NaCrO_2	2.9737	15.9577	122.204
NCO-1.05–1.73% Cr_2O_3	4.9581	13.5932	289.388


Fig. 1 XRD patterns of NCO-1.10 and NCO-1.05 (a); Rietveld refinements of XRD patterns of NCO-1.10 (b) and NCO-1.05 (c)

The morphology and microstructure of NaCrO_2 and $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ were characterized by SEM and TEM. As can be seen from Fig. 2, the samples, NaCrO_2 and $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$, are composed of polygonal-shaped particles with particle size of about 1 μm , which suggests that the Cr_2O_3 coating has no influence on the powder morphology. In the HRTEM image of $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$, a uniform coating layer with thickness of about 3 nm can be observed. The interplanar spacing of 0.373 nm observed on the particle edge (the inset in Fig. 2(d)) is in good agreement with the distance of neighboring (012) crystal planes of Cr_2O_3 , which further confirms the presence of Cr_2O_3 coating layer. The EDS mapping images of $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ (Fig. 2(e)) show the homogeneous distribution of Na, Cr and O elements. The uniform Cr_2O_3 coating layer can prevent the direct contact between the NaCrO_2 and the electrolyte, and improve the surface/interfacial stability of NaCrO_2 material.


In order to explore the oxidation states of surface/interface elements in the $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$, XPS analysis was further conducted. The XPS full spectrum (Fig. 3(a)) demonstrates the coexistence of Na, Cr and O elements in the $\text{NaCrO}_2/\text{Cr}_2\text{O}_3$.

The high-resolution Cr 2p spectrum and the corresponding fitted profiles are shown in Fig. 3(b). The Cr doublet in the Cr 2p spectrum is attributed to Cr 2p_{3/2} and Cr 2p_{1/2}. The fitted peaks located at 578.13 and 588.63 eV are assigned to Cr⁴⁺ 2p_{3/2} and

Cr⁴⁺ 2p_{1/2}, respectively. In addition, the fitted peaks located at 575.83 and 585.58 eV are assigned to Cr³⁺ 2p_{3/2} and Cr³⁺ 2p_{1/2}, respectively [24,38], which further proves that the coating layer on the surface of NaCrO₂ material is Cr₂O₃.

Fig. 2 SEM images of NaCrO₂ (a) and NaCrO₂@Cr₂O₃ (b); TEM (c), HRTEM (d) and EDS mapping (e) images of NaCrO₂@Cr₂O₃

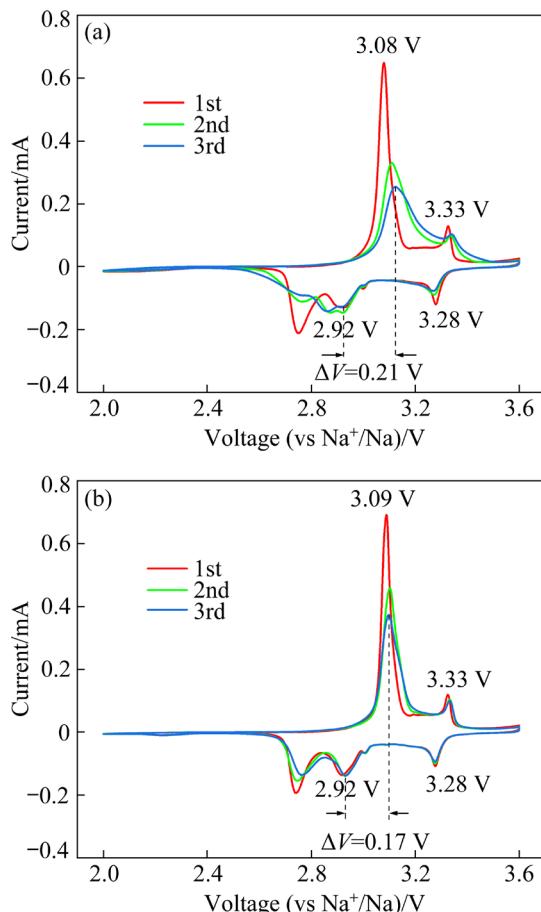


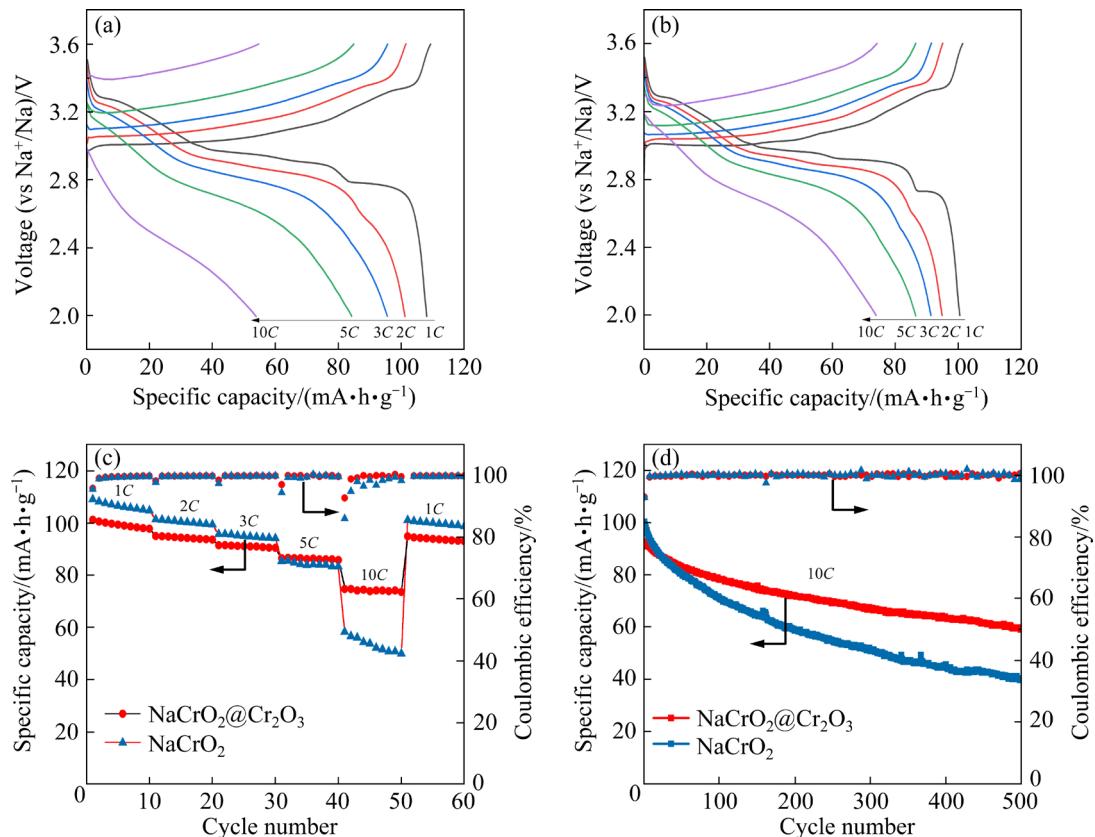
Fig. 3 XPS full spectrum (a) and high-resolution Cr 2p spectrum (b) of NaCrO₂@Cr₂O₃

3.2 Electrochemical performance

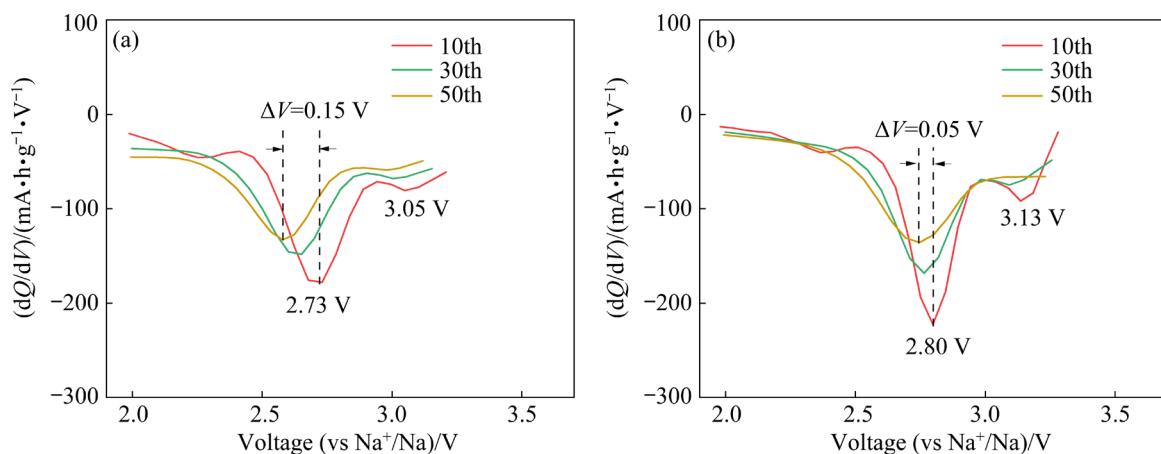
The redox processes of the NaCrO_2 were first investigated by CV measurements. Figures 4(a) and 4(b) show initial three CV curves of NaCrO_2 and $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ between 2.0 and 3.6 V at a sweep rate of 0.1 mV/s, respectively. There are two apparent anodic peaks centered at 3.09 and 3.33 V, which correspond to the cathodic peaks at 2.92 and 3.28 V, respectively. These reversible peaks are assigned to the oxidation/reduction of $\text{Cr}^{3+}/\text{Cr}^{4+}$, suggesting the two major phase transitions ($\text{O}_3 \rightleftharpoons \text{O}'_3 \rightleftharpoons \text{P}'_3$) in the charge–discharge processes [36,39]. In addition, the other small peaks correspond to the order/disorder phase transformation [27,40]. The potential difference between the anodic and the cathodic peaks of $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ (0.17 V) is less than that of NaCrO_2 (0.21 V) after 3 cycles, indicating that the $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ sample has reduced polarization and improved electrochemical reversibility during cycling.

Figures 5(a) and 5(b) show the typical charge/discharge curves of NaCrO_2 and $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ at

Fig. 4 Initial three CV curves of NaCrO_2 (a) and $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ (b) at 0.1 mV/s


various C -rates ($1C=125 \text{ mA}\cdot\text{h/g}$) between 2.0 and 3.6 V, respectively. Two charge voltage plateaus located at 3.0 and 3.3 V along with their discharge counterparts at 2.9 and 3.3 V can be clearly observed in the charge/discharge curves at 1C, which are consistent with the CV curves shown in Fig. 4. The voltage platform at 2.8 V is likely due to the mismatch between the ester-based electrolyte and the anode, resulting in a sudden increase in polarization voltage during the later stages of sodium ion extraction from anode [41], which is also observed in the previous reports [26,42]. The polarization of the materials increases gradually with the increase of C -rate, and the polarization of NaCrO_2 is much greater than that of $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$. Figure 5(c) shows the rate performance of NaCrO_2 and $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$. The NaCrO_2 exhibits the specific capacities of 109.1, 101.4, 95.7, 85.4, and 58.4 $\text{mA}\cdot\text{h/g}$ at 1C, 2C, 3C, 5C and 10C, respectively. The decreased specific capacities of $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ at low rates are attributed to the inactive Cr_2O_3 coating layer with no capacity contribution. However, the $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ shows the specific capacities of 86.5 and 74.7 $\text{mA}\cdot\text{h/g}$ at 5C and 10C, respectively. The enhanced rate performance can be attributed to the uniform Cr_2O_3 coating layer on the surface of the NaCrO_2 , which improves the surface/interfacial structure and effectively reduces the polarization of NaCrO_2 , conduced to the rapid Na^+ insertion/extraction.

The cycling stability of samples at high rate is also explored, as shown in Fig. 5(d). After 500 cycles at 10C, the $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ shows a specific discharge capacity of 60.5 $\text{mA}\cdot\text{h/g}$ with a capacity retention of 66.4%, and the coulombic efficiency is close to 100% during cycling. However, the NaCrO_2 can only maintain 40.4 $\text{mA}\cdot\text{h/g}$ with a capacity retention of 40.3%. The enhanced cycling performance of $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ can be attributed to the uniform Cr_2O_3 coating layer which prevents the direct contact between the active material and the electrolyte, suppressing electrolyte decompositions and other side reactions effectively, and guaranteeing the electrode stability [36]. Compared with the literature [36–38], no significant electrochemical performance advantages of the synthesized material are observed. This may be attributed to several factors, including exposure to moist air during electrode preparation, mismatch between


the selected electrolyte and the electrode, and the thickness of the coating layer needed to be optimized. These factors require further investigation and verification.

In order to understand the effects of Cr_2O_3 coating on the cycling performance, dQ/dV analyses of the discharge curves at the 10th, 30th and 50th cycles in Fig. 5(d) were performed. As shown in Fig. 6, two obvious reduction peaks centered at 2.80 and 3.13 V are observed in the dQ/dV curve of $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ at the 10th cycle, corresponding

to the reduction reaction of $\text{Cr}^{3+}/\text{Cr}^{4+}$. The higher reduction potential of $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ indicates higher energy. As the cycle number increases, the reduction peaks shift to lower potentials owing to the increased polarization. After 50 cycles, the difference value between the reduction potentials of $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ (0.05 V) is much less than that of NaCrO_2 (0.15 V). The reduced polarization of $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ can be attributed to the enhanced surface/interface stability, which is beneficial to improving the electrochemical performance.

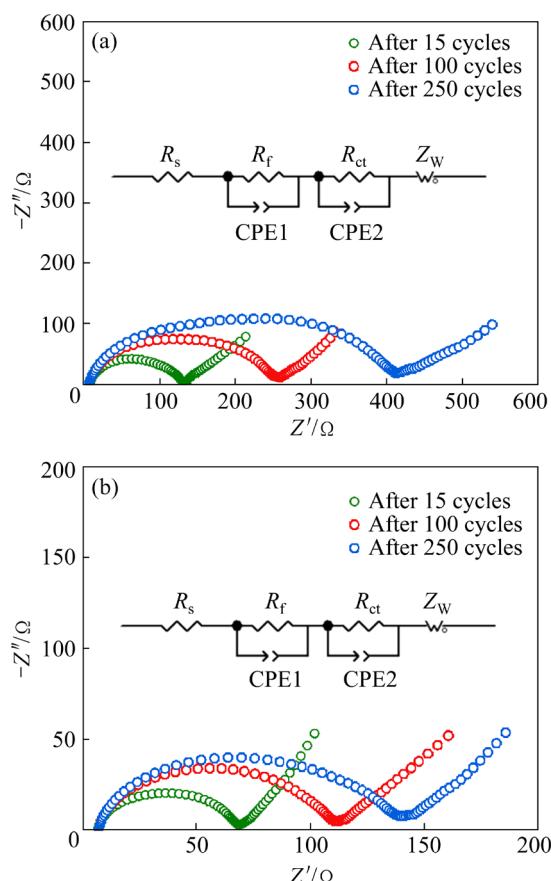


Fig. 5 Typical charge/discharge profiles of NaCrO_2 (a) and $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ (b) at various rates; Rate behaviors (c) and cycling performance at 10C (d) of NaCrO_2 and $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$

Fig. 6 dQ/dV curves of NaCrO_2 (a) and $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ (b) at 10C for different cycles

To further investigate the relationship between the improved electrochemical properties and the surface/interface stability, EIS tests were conducted on the electrodes. Figures 7(a) and 7(b) show the EIS curves of the NaCrO_2 and $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ half-cells after 15, 100 and 250 cycles at 10C, respectively. All Nyquist plots consist of surface film resistance (R_f), charge transfer resistance (R_{ct}) and Warburg impedance (Z_w), respectively [26,38]. The intercept of the Nyquist plot with the Z' -axis represents the ohmic resistance (R_s) of Na^+ migration in the electrolyte. The EIS curves were fitted by the Z-View software and the fitted data are summarized in Table 2. It can be seen that the R_{ct} values of the $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ after 15, 100 and 250 cycles are 36.8, 68.4 and 72.9 Ω , respectively, and the R_f values of the $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ are 20.5, 33.9 and 48.7 Ω , which are both much less than those of the NaCrO_2 . This indicates that the Cr_2O_3 coating does not cause negative kinetic effects, but rather modifies the interfacial reaction of the material, which is favorable to the Na^+ insertion/extraction at high rate.

Fig. 7 Nyquist plots and corresponding equivalent circuit model diagrams of NaCrO_2 (a) and $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ (b) electrodes at 10C after different cycles

Table 2 EIS parameters of equivalent circuits of NaCrO_2 and $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ electrodes after different cycles

Sample	Cycle No.	R_s/Ω	R_f/Ω	R_{ct}/Ω
NaCrO_2	15	7.8	76.2	43.8
	100	7.0	108.7	122.7
	250	6.9	126.7	266.1
$\text{NaCrO}_2@\text{Cr}_2\text{O}_3$	15	6.7	20.5	36.8
	100	6.8	33.9	68.4
	250	6.6	48.7	72.9

4 Conclusions

(1) A uniform Cr_2O_3 coating layer is in situ constructed on the surface of NaCrO_2 by controlling the excess ratio of sodium source. The content of Cr_2O_3 in the $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ is 1.73 wt.%, and the coating thickness is about 3 nm. The Cr_2O_3 -coated sample consists of polygonal-shaped particles with particle size of about 1 μm .

(2) The uniform Cr_2O_3 coating on the surface improves the surface/interface stability and reduces the polarization of NaCrO_2 , which greatly improves the electrochemical performance of NaCrO_2 .

(3) The Cr_2O_3 coating layer prevents the direct contact between the active material and the electrolyte, effectively suppressing the side reactions. The $\text{NaCrO}_2@\text{Cr}_2\text{O}_3$ material exhibits enhanced cycling performance, with a capacity retention of 66.4% after 500 cycles at 10C.

CRediT authorship contribution statement

Mu-lan QIN: Conceptualization, Formal analysis, Writing – Original draft, Writing – Review & editing, Funding acquisition, Supervision; **Chao HU:** Methodology, Investigation, Data curation, Software, Visualization; **Guo-zhao FANG:** Validation, Resources, Supervision; **Shu-quan LIANG:** Project administration; Resources; **Wan-min LIU:** Software, Supervision; **Bin SHEN:** Software, Visualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the Scientific Research Fund of Hunan Provincial Education Department, China (No. 22B0741).

References

- [1] ARMAND M, TARASCON J M. Building better batteries [J]. *Nature*, 2008, 451: 652–657.
- [2] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries [J]. *Chemistry of Materials*, 2010, 22: 587–603.
- [3] CHENG Fang-yi, LIANG Jing, TAO Zhan-liang, CHEN Jun. Functional materials for rechargeable batteries [J]. *Advanced Materials*, 2011, 23: 1695–1715.
- [4] PAN Hui-lin, HU Yong-sheng, CHEN Li-quan. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage [J]. *Energy & Environmental Science*, 2013, 6: 2338–2360.
- [5] RONG Xiao-hui, LU Ya-xiang, QI Xing-guo, ZHOU Quan, KONG Wei-he, TANG Kun, CHEN Li-quan, HU Yong-sheng. Na-ion batteries: From fundamental research to engineering exploration [J]. *Energy Storage Science and Technology*, 2020, 9: 515–522.
- [6] LV Wei-jun, HUANG Zhi-gao, YIN Ya-xia, YAO Hu-rong, ZHU Hai-liang, GUO Yu-guo. Strategies to build high-rate cathode materials for Na-ion batteries [J]. *ChemNanoMat*, 2019, 5: 1253–1262.
- [7] LIANG Shu-quan, GUO Shao, HE Wei, CAO Xin-xin, MA Jun-jian, ZHOU Jiang, FANG Guo-zhao. New exploration based on crystal chemistry of ion migration and energy storage mechanism in anion-close-packed cathode materials for rechargeable battery [J]. *The Chinese Journal of Nonferrous Metals*, 2024, 34(6): 1769–1785. (in Chinese)
- [8] LV Wei-jun, GAN Lu, YUAN Xin-guang, ZHENG Yong-ping, HUANG Yi-yin, ZHENG Li-tuo, YAO Hu-rong. Understanding the aging mechanism of Na-based layered oxide cathodes with different stacking structures [J]. *ACS Applied Materials & Interfaces*, 2022, 14: 33410–33418.
- [9] YAO Hu-rong, ZHENG Li-tuo, XIN Sen, GUO Yu-guo. Air-stability of sodium-based layered-oxide cathode materials [J]. *Science China Chemistry*, 2022, 65: 1076–1087.
- [10] QIN Mu-lan, YIN Chang-yu, XU Wen, LIU Yang, WEN Jun-hao, SHEN Bin, WANG Wei-gang, LIU Wan-min. Facile synthesis of high capacity P2-type $\text{Na}_{2/3}\text{Fe}_{1/2}\text{Mn}_{1/2}\text{O}_2$ cathode material for sodium-ion batteries [J]. *Transactions of Nonferrous Metals Society of China*, 2021, 31: 2074–2080.
- [11] LIANG Yong, WU Hu, LIU Wan-min, QIN Mu-lan, TANG Ze-xun, SHEN Bin, WANG Wei-gang, LIU Qiang. Effect of the calcination temperature on the morphology, structure and electrochemical properties of $\text{Na}_{0.67}\text{Ni}_{0.11}\text{Cu}_{0.11}\text{Fe}_{0.3}\text{Mn}_{0.48}\text{O}_2$ nanoparticles as cathode material for Na batteries [J]. *ACS Applied Nano Materials*, 2024, 7: 17768–17775.
- [12] KOMABA S, TAKEI C, NAKAYAMA T, OGATA A, YABUCHI N. Electrochemical intercalation activity of layered NaCrO_2 vs LiCrO_2 [J]. *Electrochemistry Communications*, 2010, 12: 355–358.
- [13] YABUCHI N, IKEUCHI I, KUBOTA K, KOMABA S. Thermal stability of Na_xCrO_2 for rechargeable sodium batteries: Studies by high-temperature synchrotron X-ray diffraction [J]. *ACS Applied Materials and Interfaces*, 2016, 8: 32292–32299.
- [14] XIA X, DAHN J R. NaCrO_2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes [J]. *Electrochemical and Solid-State Letters*, 2012, 15: 2–6.
- [15] ZHOU Yong-ning, DING Jing-jing, NAM K W, YU Xi-qian, BAK S M, HU En-yuan, LIU Jue, BAI Jian-ming, LI Hong, FU Zheng-wen, YANG Xiao-qing. Phase transition behavior of NaCrO_2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy [J]. *Journal of Materials Chemistry A*, 2013, 1: 11130–11134.
- [16] KUBOTA K, IKEUCHI I, NAKAYAMA T, TAKEI C, YABUCHI N, SHIBA H, NAKAYAMA M, KOMABA S. New insight into structural evolution in layered NaCrO_2 during electrochemical sodium extraction [J]. *Journal of Physical Chemistry C*, 2015, 119: 166–175.
- [17] BO Shou-huang, LI Xin, TOUMAR A J, CEDER G. Layered-to-rock-salt transformation in desodiated Na_xCrO_2 ($x=0.4$) [J]. *Chemistry of Materials*, 2016, 28: 1419–1429.
- [18] DING Jing-jing, ZHOU Yong-ning, SUN Qian, FU Zheng-wen. Cycle performance improvement of NaCrO_2 cathode by carbon coating for sodium ion batteries [J]. *Electrochemistry Communications*, 2012, 22: 85–88.
- [19] BHARDWAJ A, PANWAR A K. Effect of carbon shell over NaCrO_2 core by C_2H_2 decomposition to enhance electrochemical properties for rechargeable sodium-ion batteries [J]. *Applied Surface Science*, 2022, 573: 151449.
- [20] WU Jia-hui, HU Guo-rong, DU Ke, PENG Zhong-dong, HUANG Min, FAN Ju, GONG Yi-fan, GUAN Di-chang, SHI You, LIU Rui-rui, CAO Yan-bing. Inhibiting electrochemical phase transition of NaCrO_2 with long-cycle stability by surface fluorination treatment [J]. *Electrochimica Acta*, 2022, 403: 139641.
- [21] LI Wei, WANG Yong, HU Guo-rong, PENG Zhong-dong, CAO Yan-bing, ZENG Yue-xi, DU Ke. Ti-doped NaCrO_2 as cathode materials for sodium-ion batteries with excellent long cycle life [J]. *Journal of Alloys and Compounds*, 2019, 779: 147–155.
- [22] WANG Yue-sheng, CUI Pei-xin, ZHU Wen, FENG Zi-min, VIGEANT M J, DEMERS H, GUERFI A, ZAGHIB K. Enhancing the electrochemical performance of an $\text{O}_3\text{-NaCrO}_2$ cathode in sodium-ion batteries by cation substitution [J]. *Journal of Power Sources*, 2019, 435: 226760–226767.
- [23] XI Kai-ying, CHU Shu-fen, ZHANG Xiao-yu, ZHANG Xue-ping, ZHANG Hao-yang, XU Hang, BIAN Jing-jing, FANG Tian-cheng, GUO Shao-hua, LIU Pan, CHEN Ming-wei, ZHOU Hao-shen. A high-performance layered Cr-based cathode for sodium-ion batteries [J]. *Nano Energy*, 2020, 67: 104215–104221.
- [24] LEE I, OH G, LEE S, YU T Y, ALFARUQI M H, MATHEW V, SAMBANDAM B, SUN Y K, HWANG J Y, KIM J. Cationic and transition metal co-substitution strategy of O_3 -type NaCrO_2 cathode for high-energy sodium-ion batteries [J]. *Energy Storage Materials*, 2021, 41: 183–195.
- [25] MA Cui, LI Xun-lu, YUE Xin-yang, BAO Jian, LUO Rui-jie, ZHOU Yong-ning. Suppressing $\text{O}_3\text{-O}'_3$ phase transition in NaCrO_2 cathode enabling high rate capability for sodium-ion batteries by Sb substitution [J]. *Chemical Engineering Journal*, 2022, 432: 134305.
- [26] WANG Yong, LI Wei, HU Guo-rong, PENG Zhong-dong, CAO Yan-bing, GAO Hong-cai, DU Ke, GOODENOUGH J B. Electrochemical performance of large-grained NaCrO_2 cathode materials for Na-ion batteries synthesized by decomposition of $\text{Na}_2\text{Cr}_2\text{O}_7\text{-}2\text{H}_2\text{O}$ [J]. *Chemistry of Materials*, 2019, 31: 5214–5223.
- [27] LIANG Long-wei, SUN Xuan, DENIS D K, ZHANG

Jin-yang, HOU Lin-rui, LIU Yang, YUAN Chang-zhou. Ultralong layered NaCrO₂ nanowires: A competitive wide-temperature-operating cathode for extraordinary high-rate sodium-ion batteries [J]. ACS Applied Materials & Interfaces, 2019, 11: 4037–4046.

[28] WANG Shuo, CHEN Fei, HE Xiao-dong, ZHANG Li-ming, CHEN Fang, WANG Jun-ru, DONG Jie-min, CHEN Chun-hua. Self-template synthesis of NaCrO₂ sub-microspheres for stable sodium storage [J]. ACS Applied Materials & Interfaces, 2021, 13: 12203–12210.

[29] YU C Y, PARK J S, JUNG H G, CHUNG K Y, AURBACH D, SUN Y K, MYUNG S T. NaCrO₂ cathode for high-rate sodium-ion batteries [J]. Energy & Environmental Science, 2015, 8: 2019–2026.

[30] KALIYAPPAN K, LIU Jian, XIAO Bi-wei, LUSHINGTON A, Li Ru-ying, SHAM T K, SUN Xue-liang. Enhanced performance of P2-Na_{0.66}(Mn_{0.54}Co_{0.13}Ni_{0.13})O₂ cathode for sodium-ion batteries by ultrathin metal oxide coatings via atomic layer deposition [J]. Advanced Functional Materials, 2017, 27: 1701870–1701877.

[31] YU Yang, KONG Wei-jin, LI Qing-yuan, NING De, SCHUMACHER Ge, SU Chun-jian, LIU Xiang-feng. Understanding the multiple effects of TiO₂ coating on NaMn_{0.33}Fe_{0.33}Ni_{0.33}O₂ cathode material for Na-ion batteries [J]. ACS Applied Energy Materials, 2020, 3: 933–942.

[32] CHANG Yi-jiao, XIE Guang-hui, ZHOU Yong-mao, WANG Jie-xi, WANG Zhi-xing, GUO Hua-jun, YOU Bian-zheng, YAN Guo-chun. Enhancing storage performance of P2-type Na_{2/3}Fe_{1/2}Mn_{1/2}O₂ cathode materials by Al₂O₃ coating [J]. Transactions of Nonferrous Metals Society of China, 2022, 32: 262–272.

[33] SAHAN H, GÖKTEPE H, PATAT S, ÜLGEN A. Effect of the Cr₂O₃ coating on electrochemical properties of spinel LiMn₂O₄ as a cathode material for lithium battery applications [J]. Solid State Ionics, 2010, 181: 1437–1444.

[34] CHENG Cui-xia, YI Hui-yang, CHEN Fang. Effect of Cr₂O₃ coating on LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ as cathode for lithium-ion batteries [J]. Journal of Electronic Materials, 2014, 43: 3681–3687.

[35] ZOU Hai-lin, LIANG Xin, WANG Zhong-hui, CHENG Sheng, XIANG Hong-fa. Preparation of Li₄Ti₅O₁₂ microspheres with a pure Cr₂O₃ coating layer and its effect for lithium storage [J]. Chinese Journal of Chemical Physics, 2017, 30: 103–111.

[36] WANG Shuo, CHEN Fei, ZHU Tian-yuan, HE Xiao-dong, LIAO Jia-ying, ZHANG Li-ming, DING Xiang, HU Qiao, CHEN Chun-hua. In situ-formed Cr₂O₃ coating on NaCrO₂ with improved sodium storage performance [J]. ACS Applied Materials & Interfaces, 2020, 12: 44671–44678.

[37] IKHE A B, PARK W B, MANASI M, AHN D, SOHN K S, PYO M. Unprecedented cyclability and moisture durability of NaCrO₂ sodium-ion battery cathode via simultaneous Al doping and Cr₂O₃ coating [J]. ACS Applied Materials & Interfaces, 2023, 15: 14958–14969.

[38] MATHIYALAGAN K, PONNAIAH A, KARUPPIAH K, RENGAPILLAI S, MARIMUTHU S. Enhanced performance on layered O₃-Na_{0.95}CrO₂ cathode material for emerging sodium-ion batteries [J]. Ionics, 2020, 26: 3929–3936.

[39] CHEN C Y, MATSUMOTO K, NOHIRA T, HAGIWARA R, FUKUNAGA A, SAKAI S, NITTA S, INAZAWA S. Electrochemical and structural investigation of NaCrO₂ as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA-KFSA [J]. Journal of Power Sources, 2013, 237: 52–57.

[40] MENG Xiang-cong, LIANG Jin-ji, LIANG Min, LI Wen-ya, LIN Chen-han, KE Xi, SHI Zhi-cong, LIU Li-ying. Superior rate performance and structural evolution of O₃-type layered NaCrO₂ for sodium ion batteries at high temperatures [J]. Science China Materials, 2023, 66: 3445–3452.

[41] BAEK M, KIM J, JEONG K, YANG S, KIM H, LEE J, KIM M, KIM K J, CHOI J K. Naked metallic skin for homoepitaxial deposition in lithium metal batteries [J]. Nature Communications, 2023, 14: 1296.

[42] LIANG Jin-ji, LIU Li-ying, LIU Xiang-si, MENG Xiang-cong, ZENG Lin-yong, LIU Jun, LI Jie, SHI Zhi-cong, YANG Yong. O₃-type NaCrO₂ as a superior cathode material for sodium/potassium-ion batteries ensured by high structural reversibility [J]. ACS Applied Materials Interfaces, 2021, 13: 22635–22645.

钠离子电池 NaCrO₂@Cr₂O₃ 正极材料的构建与电化学性能

秦牡兰¹, 胡超², 方国赵², 梁叔全², 刘万民¹, 申斌¹

1. 湖南工程学院 材料与化工学院, 湘潭 411104;

2. 中南大学 材料科学与工程学院, 长沙 410083

摘要: 层状 O₃ 型 NaCrO₂ 正极材料在储钠过程中与电解液的副反应严重影响了其电化学性能。通过控制钠源过量比, 在 NaCrO₂ 正极材料表面原位构建一层均匀的 Cr₂O₃ 包覆层, 并对包覆材料的结构、形貌、价态和电化学性能进行表征。结果表明, Cr₂O₃ 包覆层不会改变 NaCrO₂ 的晶体结构和形貌, 但能有效抑制 NaCrO₂ 与电解液之间的副反应, 提高 NaCrO₂ 材料的表/界面稳定性。Cr₂O₃ 包覆 NaCrO₂ 正极材料显示出更好的电化学性能, 以 10C 循环 500 次后容量保持率达到 66.4%。

关键词: NaCrO₂; Cr₂O₃; 钠离子电池; 正极材料; 电化学性能

(Edited by Bing YANG)