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Abstract: Phase classification has a clear guiding significance for the design of high entropy alloys. For mutually
exclusive and non-mutually exclusive classifications, the composition descriptors, commonly used physical parameter
descriptors, elemental-property descriptors, and descriptors extracted from the periodic table representation (PTR) by
the convolutional neural network were collected. Appropriate selection among features with rich information is helpful
for phase classification. Based on random forest, the accuracy of the four-label classification and balanced accuracy of
the five-label classification were improved to be 0.907 and 0.876, respectively. The roles of the four important features
were summarized by interpretability analysis, and a new important feature was found. The model extrapolation ability
and the influence of Mo were demonstrated by phase prediction in (CoFeNiMn);—<Mox. The phase information is
helpful for the hardness prediction, the classification results were coupled with the PTR of hardness data, and the
prediction error (the root mean square error) was reduced to 56.69.

Key words: high entropy alloy; phase classification; feature engineering; periodic table representation; convolutional
neural network; hardness prediction

theoretical calculation methods, such as first-
principles calculation and calculation of phase
diagram (CALPHAD), are difficult and time-
consuming for large-scale exploration [2,5].
Data-driven science has become the fourth

1 Introduction

High entropy alloys (HEAs) are a new type of
alloys that generally contain five or more elements

in mole fractions of between 5% and 35% [1,2].
Due to their unique compositions and structures,
they have excellent properties, such as superior
corrosion and wear resistance, high hardness, and
high-temperature thermal stability [1—4]. The study
of phase formation is meaningful for the design of
HEAs. Due to the large and complex composition
and structure space of HEAs, experiments and some

paradigm in materials research, after experiment,
theory and computer simulation [6]. With the
increase of materials data and the improvement
of algorithms [7—10], machine learning (ML) could
efficiently and automatically predict various material
properties and inversely design desirable materials
[11-14]. Thus, many researchers built ML models
to predict the phase formation of HEAs [11,15-18].
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With an appropriate set of material descriptors, the
ability of the ML model to learn the internal laws of
the material data would be improved [19,20]. The
common descriptors for HEAs phase classification
are composition descriptors and empirical physical
parameter descriptors [15—18]. The common
empirical physical parameters include the mean
electron concentration (VEC), the
configuration entropy change (AS), and so on. Their
prediction effect has been demonstrated in previous
HEAs studies [16—18]. However, the HEAs phase
classification still faces research problems. How to
make the information contained in the features
further enriched? How to select and verify the
appropriate feature combinations? How to uncover
different roles of the features? How to couple
phase classification with the study of mechanical
properties, such as hardness prediction? Exploring
these problems and providing solutions based on
ML are also the purpose of this work.

To enrich the information and improve the
representation ability of the descriptors, it is worth
exploring to add more phase classification related
descriptors to the feature pool, and select an
appropriate  feature combination. Almost all
common physical parameters for HEAs are
proposed based on domain knowledge, and
calculated based on the composition and physical
properties of the constituent elements. Thus, more
elemental-property  parameters that are not
suggested by domain knowledge could be
considered. Furthermore, to avoid the limitations of
human-defined computation methods of parameters,
other new and promising descriptors could be
extracted from the “periodic table representation
(PTR)” of the material by the convolutional neural
network (CNN) model [21]. The properties of the
elements, such as relative atomic mass and atomic
radius, are related to their positions in the periodic
table. Therefore, in addition to the composition
information, the PTR also implies the potential laws
of the periodic table. The CNN model is then
trained based on the PTR to extract the material
descriptors or to predict the target property. In this
work, the CNN model with the PTR input is
referred to as CNN+PTR, and the descriptors
extracted from the PTR by CNN model are named
as CNN+PTR descriptors.

The CNN is an end-to-end model that includes
an automatic feature extractor and a neural network

valence

model [22,23], and it is powerful for image
processing tasks in materials science [24]. Based on
the combination of the CNN model and PTR, some
material properties have been successfully predicted
[20,25—27], such as the critical casting diameter of
metallic glasses [25]. In the HEAs studies, based
on the CNN+PTR model, FENG et al [21] used
the model trained on a big dataset of alloy
glass-forming ability to extract descriptors of HEAs
for HEAs phase prediction, and GUO et al [27]
achieved three binary classifications of HEAs
phases. In our previous work, a CNN+PTR
regression model, which has a PTR with various
information additions, is adopted to predict the
hardness of HEAs [28]. Therefore, the descriptors
derived from CNN+PTR are promising for
automatically extracting useful information for the
phase classification of HEAs. However, most
CNN+PTR works have used the CNN+PTR models
to predict material properties, and only a few have
adopted models to extract features for further
exploration. As the information contained in the
descriptors should be enriched, there is great
potential for combining these different types of
descriptors for feature selection to achieve phase
classification of HEAs.

To the authors’ knowledge, most studies on
HEAs phase classification by ML focused on
mutually exclusive classification [15,17,18] and a
few on non-mutually exclusive classification [16].
While some studies have adopted interpretable
analysis methods, few studies have analyzed the
specific roles of different feature ranges for
different phases. There is also a need for further
in-depth research on HEAs phase classification in
practical applications, such as extrapolation for
alloy systems outside the training set and deep
coupling of phase classification and material
property prediction. The main innovation of this
work is the proposal and application of a new
ML framework for mutually exclusive and non-
mutually exclusive phase classifications of HEAs.
Different from pervious works [15—18], a new
feature pool containing multiple types of features
was proposed for HEAs phase classifications, and
appropriate feature combinations were selected. The
new important features were analyzed, their roles in
different phase formations were revealed, and the
model extrapolation performance was explored. In
the HEAs research, the present work can be used to
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construct phase classification models and analyze
the factors affecting phase formation. Furthermore,
this work proposed and validated a method to
couple phase classification with hardness prediction,
which can be used to improve the HEAs hardness
prediction and analyze the structure-property
relationship.

In this work, four types of descriptors with
different information were combined as the original
features pool. Then, feature selection based on
genetic algorithm (GA) was implemented for
mutually exclusive four-label and non-mutually
exclusive five-label HEAs phase classifications.
The phase classification model with selected feature
combination was constructed. The interpretability
analyses were carried out to attain cognition of the
mapping mode of the phase classification model
and the rules of phase formation in HEAs. In order
to understand the physical factors influencing phase
formation and to guide the exploration of HEAs
with the desired phase, it is important to analyze
important features in this new and large feature pool
and to determine different feature ranges that
promote or inhibit the formation of different phases.
The phase classification model with the selected
descriptors was validated on additional and
representative HEAs system of (CoFeNiMn);--Moy,
and the influence of the Mo content on phase
formation was revealed. In order to deeply couple
the structure information and property prediction of
HEAs, the predicted phase classification results
were added into the PTR to improve the HEAs
hardness prediction of the CNN+PTR model and
stacking model. This framework could be extended
to other material properties research.

2 Materials and methods

2.1 Feature engineering

The feature engineering refers to a series of
processes performed on the raw data to generate
input features that are suitable for the ML
models [29,30]. It generally includes feature
construction, feature transformation, feature
selection, and so on. For the phase classification of
HEASs, various features should be considered in the
feature construction, regardless of their importance
in determining the HEAs phase, such as
composition features, and the physical parameter
features proposed based on domain knowledge and

playing important role in the HEAs phases
formation. Due to the limitations of the existing
domain knowledge, a variety of physical parameter
features based on different elemental properties can
be generated by compositional weighted averaging,
taking maximum and minimum values, and other
operations. The specific information on these three
types of features is presented in the next section.
However, these features are manually designed,
which are limited by the human-defined calculation
operations and creates barriers to feature collection
and calculation, leading to limited prediction
performance. Therefore, other features are extracted
automatically by CNN from the PTR. The specific
process is described in Section 2.3.

In the feature transformation, as the method
adopted in Refs. [29,30], the constructed features
could be transformed by mathematical variations,
such as X7 and X\.X; for different features X; and X>,
respectively. This method could mathematically
change how the features influence the phase
prediction in ML algorithms and characterize
the material from high dimensionality [29,30].
However, the features adopted in this work contain
sufficiently rich information, which has been
extracted and processed in various ways. In
addition, the feature dimension is too large after
performing the transformation operation. Therefore,
similar feature transformation operations are not
used.

In the feature selection, it can be mainly
divided into the filter method, embedded method,
and wrapper method. The filter method, which is
based on Pearson’s correlation coefficient,
Chi-square test, and so on, only considers simple
correlation indexes and may remove potentially
important features. The embedded method relies on
some specific ML models. For the general wrapper
methods, such as sequential backward selection, the
result easily falls into the local optimum. However,
wrapper methods based on optimization algorithms
can ensure accuracy and efficiency. A representative
optimization algorithm is the GA, a method to
search for the optimal solution by simulating the
natural evolutionary process. It can avoid the
feature selection process from falling into the local
optimum to a certain extent and find suitable
feature combinations.

For the hardness prediction of HEAs, another
type of feature engineering method is adopted. Not



1858 Shuai LI, et al/Trans. Nonferrous Met. Soc. China 35(2025) 1855—-1874

only the composition information is represented in
the PTR, but the corresponding phase information
predicted by the HEAs phase classification model
and hardness-related physical parameters are added
in the blank positions of the PTR in different ways.
Then, the CNN model is adopted to be trained in
the PTR and used to predict the hardness of HEAs.
It achieves the deep coupling of phase classification
and hardness prediction of HEAs.

2.2 Dataset briefing

892 HEAs phase data collected from the
literature [27,28] are adopted as the phase dataset,
and their processing conditions are all as-cast. The
concentrations of the constituent elements are
referred to as the composition descriptors. 23
physical parameters commonly used for HEAs
properties prediction are named as HEAs common
descriptors [11,16—18,31], which include VEC, AS
and so on. In addition, 132 elemental-property
parameters are extracted from the Magpie feature
set, which is proposed by WARD et al [32], and
they are named as elemental-property descriptors.
They are defined as the composition-weighted
mean, mean absolute deviation, range, minimum,
maximum and mode of 22 different physical
properties of constituent elements, and the
elemental-properties include the specific volume
and magnetic moment (per atom) of the element at
the 0 K ground state, and so on. The latter two types
of descriptors are known as physical parameter
descriptors and the detailed information of them
is provided in Table S1 of the Supplementary
Information (SI) and related paragraph next to the
Table S1 of the SI, and the main sources of access
come from literature [14,32].

The phase could be categorized in different
ways depending on the different demands. In this
work, two different types of phase classification
schemes are adopted. One is the mutually exclusive
phase classification, which involves four common
labels: solid solutions (SS), intermetallic compounds
(IM), SS+IM mixed phases and amorphous phases
(AM) [17,18]. In this scheme, each alloy belongs to
only one of the phase categories. The other is the
mutually non-exclusive phase classification [16,28],
which involves five labels: face centered cubic
(FCC), body centered cubic (BCC), hexagonally
close-packed (HCP), IM and amorphous (AM). In
this scheme, each sample could be described as one

label for single-phase alloy or a combination of
multiple labels for multi-phase alloys, such as
FCC+BCC. Thus, the five-label -classification
scheme is able to predict various phases, even those
not present in the training set. For this phase dataset,
the number of occurrences of the constituent
elements is counted and shown in Fig. S1 of the SI.

2.3 CNN model with periodic table representation

In the construction of the CNN+PTR
classification model, the mapping process of the
PTR is shown in Fig. 1(a), which takes AlCo-
CuFeNi as an example. The PTR image is a 9%18
matrix, and the columns and rows of the PTR
correspond to the groups and periods of the periodic
table, respectively. The atomic percentages of the
constituent elements are filled in the corresponding
positions and zeros are filled in the remaining
positions. The construction process of the CNN
model is shown in Fig. 1(b). It can be seen that the
CNN model consists of two parts. One is the
combination of several convolutional layers and
pooling layers, the other is a shallow neural
network model. The former is a feature extractor
that automatically extracts features from the PTR
images and the latter is a classifier which predicts
HEAs phases based on the extracted features.

The CNN+PTR model can be used to directly
predict the phases of HEAs or to extract features.
The extracted material descriptors are the output of
the flatten layer and the dimension is 192. The CNN
model is compressed and simplified from the visual
geometry group (VGG) to suit this work [21,28].
The structure and hyper-parameters of different
CNN models are determined through multiple
experiments, and the details are provided in the
Fig. S2 of the SI that is drawn by the drawing
function of the TensorFlow package in Python
software. The training process of the CNN-+
PTR model has randomness, so the prediction
performance is estimated as the average of
three times of ten-fold cross-validation and the
intermediate values of the different results.

2.4 Feature selection of genetic algorithm

Genetic algorithm is a global search algorithm
for solving optimization problems [33], and it
has proved to be a powerful tool for the feature
selection [34,35]. In order to select an appropriate
feature combination for the phase classification
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model, GA is adopted and the feature selection
process is shown in Fig. 2. In GA, a binary string
with the length of the total number of features is
generated to represent the feature combination,
where each bit corresponds to a feature. The binary
string is encoded by adding either the value 1 or the
value 0 to each bit, where the value 1 indicates the
presence of the corresponding feature and vice
versa. Such a string is defined as an individual, and
a collection of individuals is called a population.
The feature selection process of GA consists of

1859

five parts. Starting with the random generation of
the initial population, the other four steps are
repeated cyclically until the number of iterations
reaches a preset value. Specifically, in the fitness
calculation step, the fitness value for each
individual is evaluated as the accuracy of the
ML model with the corresponding combination of
features, as evaluated by the ten-fold cross-
validation. In the selection step, a new population is
selected from the input population by using the
roulette wheel selection method, where individuals

a
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with higher fitness values are more likely to be
selected repeatedly. In the crossover step, a certain
number of individuals are selected based on the
crossover probability, and then a new individual is
generated by randomly selecting two individuals
from them and filling each position in a new
individual with a value randomly selected from the
corresponding values in these two individuals. A
new population is formed by combining a certain
number of newly generated individuals with the
individuals not selected in the crossover step. In the
mutation step, for each value in each individual, the
value selected based on the mutation probability is
replaced to the opposite value. The final feature
selection result of the GA is the individual with the
best accuracy that has occurred over the iterations
of multiple GA runs. The hyper-parameters of the
GA are determined through multiple experiments
and experience, and they are listed in Table S2 of
the SI.

2.5 Interpretability analysis method

The “black box” nature of the ML model hides
specific mapping processing in the model and
hinders the understanding of the material properties.
Therefore, two interpretability analysis methods,
feature importance of the Random Forest (RF)
model and SHapley Additive exPlanations (SHAP)
[36] are adopted in the phase classification model.
Based on the SHAP results, the SHAP average
absolute plot, the SHAP summary plot and the
SHAP dependence plot could be shown. The
importance value of each feature in the RF model
represents the contribution of that feature in the
model training, which is the sum of the reduction in
impurity at each feature split during the training
process. The impurity is estimated by the Gini
index. SHAP is a post-hoc, model-independent
interpretation method developed from game theory.
It decomposes the prediction of each sample into
the contribution of each feature [36]. The prediction
of each sample could be considered as the sum of
the SHAP values of all features:

Y (1)

where p is the model prediction result and y, is a
constant. The SHAP value for the ith feature (¢) is
calculated as follows:

~ SN FI=]S]-1)!
¢i Sg;{i} |F|'
[fSu{i} (XSu{i})_fS (XS)] (2)

where F is the feature set involving all features, S is
the feature subset of F, S {i} is the union of the
feature subset S and the ith feature, fg ., (Xs0 )
is the prediction result of the ML model with the ith
feature, and fs(Xs) is the prediction of the ML model
trained without the ith feature. Equations (1) and (2)
are applied to each sample to calculate the SHAP
values of each feature. For a HEA phase, if the
SHAP value of a feature is positive, the feature
enhances the prediction of this phase; conversely,
the feature with a negative SHAP value weakens
the prediction of this phase. The higher the absolute
SHAP value, the greater the importance of the feature.

3 Results and discussion

3.1 Process of HEAs phase classification and

hardness prediction

The flow chart of this work is shown in
Fig. 3. It can be seen that the whole work is divided
into two parts: the primary part is the phase
classification of HEAs, and the secondary part is
the phase classification-assisted hardness prediction.
In the HEAs phase classification, firstly, four types
of descriptors, which contain a wide variety of rich
information about the HEAs phase classification,
are generated. Secondly, based on the selected ML
classification algorithm and RF model, the features
are selected by GA for the mutually exclusive and
the non-mutually exclusive phase classifications.
Thirdly, the RF models are constructed with the
corresponding selected feature combinations for
different phase classification schemes. Finally,
for the mutually exclusive four-label phase
classification, interpretability analyses are carried
out to gain insight into the mapping mode from
features to phase classification and the way that
some important physical parameters influence
the HEAs phase formation. Meanwhile, the
extrapolation and generalization performance of
the phase classification model is validated on the
HEAs system of (CoFeNiMn);-.Mo,. In the HEAs
hardness prediction, in order to improve the
prediction performance, the phase prediction
probabilities obtained from the non-mutually
exclusive five-label phase classification and some
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HEAs hardness-related physical parameters are
added into the PTR of the HEAs hardness data.

3.2 Model construction and comparative analysis

results

For the model selection, five ML models
commonly used in HEAs phase classifications
are considered. They are RF, K-nearest neighbor
classification (KNN), logistic regression classification
(LR), support vector machine classification (SVC)
and decision tree classification (DTC) [14,17,18,34].
In order to ensure the reliability and generalization
of model selection, four types of material
descriptors, composition descriptors, 23 common
HEAs physical parameter descriptors, 132
elemental-property parameter descriptors and 192
CNN+PTR extracted descriptors are adopted as
input features, respectively. In addition, the
CNN-+PTR classification models are constructed as

described in Section 2.3.

It must be emphasized that for the non-
mutually exclusive five-label phase classification, a
trained CNN+PTR model could predict the phase
formation for HEAs, but other ML algorithms are
only applicable to mutually exclusive classification,
and they classify alloys into one of the categories
present in the training set. Thus, it is necessary to
construct five models for five binary classifications
to determine whether five phases are present in
HEAs respectively. The performance of non-
mutually exclusive classification model is usually
estimated by the balanced accuracy [16], which is
the average proportion of correct predictions in
each category. The calculation formula is shown as
follows [16]:

11T & .
Balanced accuracFEZ—ZI ( Yy = yij) 3)
i=1 j=1

m; ;
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where k is the number of categories; m; is the
number of samples in category i; /() is indicator
function, and the function value is 1 if the condition
in the brackets is met, otherwise it is 0; y; and f/y
are the true label and the prediction result for the jth
sample in the category i, respectively; the forms of
the true label and the prediction result are set
according to whether the sample belongs to
category i or not. The prediction performance of
these ML models is shown in Fig. 4. In this work,
the prediction performance of the ML models is
estimated by the average value of the ten-fold
cross-validation.
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Fig. 4 Prediction performance of different models with
different descriptors: (a) Results for four-label phase

classification; (b) Results for five-label phase
classification
It could be seen that for these two

classification schemes, with the inputs of any of the
four types of features, the RF model outperforms
other common models, only except for the LR
model with 192-dimensional CNN+PTR features in
five-label phase classification. This demonstrates
that the RF model has good prediction ability for

any kind of features and phase classification task.
Based on such results and our experience, the RF
model could also show satisfactory performance in
the following phase classification tasks. RF is an
ensemble learning model which could reduce the
high “bias” and high “variance” for a single ML
model. RF introduces randomness into the model
training, so it is less prone to overfitting, and may
also have better prediction ability for data outside
the existing dataset. In addition, compared to other
models, the RF model also has the advantages of
being noise-resistant, possessing a high training
speed, and having simple hyper-parameters that
generally do not require tuning. Therefore, in this
work, based on these reasons, RF is chosen as the
phase classification model and performed for
further feature selection.

It is difficult to rank the role of different types
of descriptors because they have different effects in
different cases. The CNN+PTR model, which uses
only composition information and the periodic table
of elements as input, outperforms most of the other
models, especially those based on composition
descriptors. This is because the CNN+PTR model
extracts phase-related physical information from the
positions of the constituent elements in the periodic
table. Therefore, the prediction performance of
the models based on the CNN+PTR extracted
descriptors is also good, especially when the LR
model is used for the five-label phase classification.
The elemental-property descriptors perform best in
the RF model for these two classification schemes.
Therefore, the addition of the elemental-property
descriptors and CNN+PTR descriptors to the feature
pool is expected for the development of high-
quality HEAs phase classifiers.

3.3 Feature selection and comparative analysis

results

In order to combine all the useful information,
feature pool containing four types of descriptors is
constructed. This feature pool could represent
composition information, physical information from
the physical properties of the constituent elements,
and periodic table information. The combination of
all of these features is referred to as features-all.
Then, in order to select the optimal feature
combination from features-all for two phase
classifications, GA with RF model is utilized for
feature selection. In order to show the change trends



Shuai LI, et al/Trans. Nonferrous Met. Soc. China 35(2025) 1855—-1874

of the feature number and the prediction
performance during the optimization process of the
GA, the changes in the feature number and the
accuracy of the optimal individual found from the
beginning to different iteration numbers are shown
in Fig. S3 of the SI. It can be seen that in the
different phase classification tasks, as the iteration
process proceeds, the prediction performance
gradually rises and the feature number in the
corresponding feature combination generally
decreases. This suggests that GA-based feature
selection ensures both prediction performance and
significant feature number reduction, which implies
improving model generalization and avoiding
over-fitting for RF model.

The selected feature combination for four-label
phase classification is referred to as features-select-
four-label, and that for five mutually exclusive
binary phase classifications in non-mutually
exclusive five-label phase classification is named as
features-select-FCC, features-select-BCC, and so
on, respectively. For convenience, any selected
feature combination can be abbreviated as features-
select if it does not refer specifically to a phase
classification. The content of each features-select is
listed in Tables S3 and S4 of the SI. The number of
different types of descriptors in features-select and
the prediction performance of RF models with
and five-label
classifications are shown in Table 1. It should be
noted that, because the balanced accuracy is
estimated by the average proportion of correct
predictions in each category, the value obtained for
the five-label is lower than the accuracy for any of
the five labels when they are predicted individually.

For the RF model with features-select-four-
label, the accuracy value of the mutually exclusive
four-label phase classification is 0.907. Based on

features-select for four-label
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the five RF models with features-select-BCC,
features-select-FCC, and so on, the balance
accuracy of the mutually non-exclusive five-label
phase classification is 0.876, and the accuracy
values of the five binary phase classifications are
all above 0.92, and even above 0.98 for both HCP
and AM phases. Each features-select contains
more than one type of descriptor, and both the
elemental-property descriptors and the CNN+PTR
descriptors are included. Thus, it is necessary to
combine multiple descriptors, especially elemental-
property and CNN+PTR descriptors for feature
selection.

In order to verify the accuracy of model
selection, we selected the SVC model, which
also generally shows good phase classification
performance in Fig. 4, for the above feature
selection process. The results are shown in Table S5
of the SI. The random grid search method is used
for tuning hyper-parameters of SVC model. It can
be seen that the prediction ability of the RF model
is generally similar to that of the SVC model in
phase classification tasks. However, the feature
numbers in the selected features for the SVC model
are all obviously larger than those for the RF model,
so the feature dimensionality reduction effect of the
feature selection with the RF model is more
obvious than that with the SVC model. In summary,
it is demonstrated again that the RF model should
be selected to perform feature selection and HEAs
phase classification.

In order to further explore the effects of the
combination of different types of features and
feature selection, the prediction performance of the
RF models with different features is compared
and analyzed. The prediction performance of the
RF model with elemental-property descriptors,
features-all and features-select is shown in Fig. 5. It

Table 1 Prediction performance for features-select and number of different type descriptors included in features-select

Number of Number of HEAs Number of Number of
Classification task composition common elemental-property = CNN+PTR Accuracy
descriptor descriptor descriptor descriptor
Four-label (SS, AM, IM, SS+IM) 1 4 13 10 0.907
Five-label (FCC) 3 1 7 12 0.969
Five-label (BCC) 2 0 13 5 0.954
Five-label (HCP) 0 0 7 6 0.982
Five-label (IM) 5 7 14 8 0.921
Five-label (AM) 3 1 6 12 0.996
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could be seen that the prediction performance of the
RF model with features-all is almost equivalent to
that with elemental-property descriptors, and this is
due to the high dimensionality of features-all and
the information redundancy in it. The prediction
performance of the RF model is significantly
improved by the feature selection of the GA, and
the effectiveness of the feature selection is
demonstrated. For the sake of showing the role of
different types of descriptors in features-select, the
prediction performance of each type of descriptor in
features-select is shown in Fig. 5. The prediction
performance of features-select is significantly better
than that of others. The conclusions of the model
comparison in two classification schemes are

consistent. In summary, for different HEAs phase
classification schemes, the ML workflow that
combines four types of features and appropriate
feature selection of GA could show excellent
prediction performance.

3.4 Interpretability analysis results

The interpretability analysis is used for the
four-label phase classification because the study of
these four phases, especially the formation of the
SS, is meaningful for the research of HEAs and
receives wide attention [2,3]. In order to analyze
the specific ways in which material descriptors
influence the formation of different HEAs phases,
two interpretability methods, feature importance of
the RF model and SHAP are adopted. Furthermore,
four types of figures, the RF model feature
importance plot, the SHAP average absolute plot,
the SHAP summary plot and the SHAP dependence
plot are shown.

3.4.1 Feature importance

Since the prediction performance of the RF
model is evaluated by the ten-fold cross validation,
the feature importance of the RF model and the
SHAP values of different features for four phases
are calculated as the average values of the ten
models results for the dataset. The normalized
feature importance of the RF model and the average
absolute SHAP values are shown in Figs. 6(a) and
(b), respectively. The greater the absolute value of
the SHAP value, the greater the influence of the
feature on the target. It could be seen that the
ranking of the features is generally similar in these
two figures. In particular, the top four features are
exactly the same. This demonstrates the reliability
of the feature importance. The distributions of the
SHAP values of these features for four phases are
shown in the SHAP summary plot in Fig. S4 of the
SI. The CNN+PTR extracted descriptors have no
clear physical meaning, so there is no further
interpretative analysis for them.

From Fig. 6, it could be seen that the four most
important features are radii gamma (y), radii local
mismatch (D,), electronegativity local mismatch
(D,) and mean GSvolume pa (V_,). The first three
belong to the HEAs common physical parameter
descriptors and the last one belongs to elemental-
property descriptors. The corresponding formulae
are as follows:
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where 7 is the mean value of the atomic radius,
7= lzn:Cir[ ; 7min and 7max are the minimum atomic
n -

radius and the maximum atomic radius of all
elements, respectively; C;, i, y; and (Vk=); are the
mole ratio, atomic radius, Pauling electronegativity
and the specific volume at the 0 K ground state of
the ith element, respectively. The parameters y, D,
and D, were used in previous works on predicting

the properties of HEAs [28,33]. The parameter
Vi_, is a physical parameter first found in this
paper to have a great influence on the phase
classification of HEAs.

3.4.2 Analysis results of important features

The plots of the two most important features
for different phases are shown in Fig.7 and the
plots of the third and fourth important features for
different phases are shown in Fig. S5 of the SI.
They show the SHAP values of different feature
values for different phases, where (a) and (b) show
the SHAP values of different features, and (a;—as)
and (b;—bs) represent the SHAP values of a given
feature for four phases. In each figure, points with
dark color indicate that the SHAP values are greater
than 0, and the feature values have positive effect
on the target phase prediction; points with light
color are the opposite. It is found that for these
features there are some boundaries between positive
and negative SHAP values. The summary and
analysis of them, especially for the SS phase, are
meaningful for exploring the HEAs with the desired
phases and for understanding the -classification
process of the model.

As shown in Fig. 7(a), the high values of the
parameter y inhibit the formation of the SS phase
and favor the formation of the other phases, and
vice versa. The transition threshold is 1.08 for the
SS and SS+IM phases and 1.10 for the IM and AM
phases, and these two values are close. The
conclusions are similar to those obtained by
parameter partitioning in the study by WANG
et al [37] and the Hume—Rothery rules. As shown in
Fig. 7(b), the trends of SHAP values for different
phases with feature values of D, [38] are like those
of y. For the SS, IM and SS+IM phases, the SHAP
values of D, change to the opposite sign in a
transition range from 1.8 to 4.7. The transition
range is firstly proposed in this work to describe a
feature value range with both positive and negative
SHAP values, where the SHAP values on either
side of the range have opposite signs. The transition
threshold is 4.7 for the AM phase. These two
parameters represent the atomic size difference
in HEAs from different perspectives. Large
differences in atomic size would result in lattice
distortions and be detrimental to the stability of
solid solutions. The y is the ratio between the solid
angles of the smallest and largest atoms [37,39].
Since the atoms with the largest and smallest sizes
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Fig. 7 Plots of two most important features of y (a) and D, (b) for different phase predictions

play a dominant role in determining lattice stability, parameter D..

as an indicator of revealing atomic stacking As shown in Fig. S5(a) of the SI, the high
mismatches and topological instability [37,39], the values of the parameter D, inhibit the formation of
parameter y plays a more important role than the SS and SS+IM phases and favor the formation of
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IM and AM phases, and vice versa. The transition
threshold is 0.27. D, represents the difference in
Pauling electronegativity within the HEAs, and
the electronegativity is a chemical property that
describes the tendency of an atom to attract
electrons towards itself [40]. Thus, the greater the
difference in electronegativity values between the
constituent elements, the easier it is to form the IM
phase, especially the Topological Closed Packed
phase, in HEAs [40]. Meanwhile, the bonds formed
between atoms with large differences in electro-
negativity values tend to be stronger, which may
limit the maximum solid solubility.

As shown in Fig. S5(b), the relationship
between the value range of parameter V,_, and
the HEAs phase prediction is relatively complex,
and the detailed results are shown in Table S6 of the
SI. In general, if a high-purity SS phase is required,
it is recommended that the I7K:0 is less than 11.3,
and for the AM phase, V,_, needs to be greater
than 21.0. The parameter V,_, is the composition-
weighted mean of the elemental specific volume at
the 0 K ground state. Specific volume is the ratio of
the volume of a substance to its mass, and its
value is affected by temperature [41]. When the
temperature is 0 K and the element reaches the
ground state, the specific volume represents the
absolute minimum volume and reflects the
arrangement and interaction of the atoms. The value
of this elemental property is taken from the Open
Quantum Materials Database (OQMD) [42].

The specific volume affects the structural
stability of alloys and has been used to determine
the glass phase formation [41,43]. Some structures
are stable at small specific volumes, while others
are the opposite. For example, the SS phase is more
compact in structure than the other phases, and a
small specific volume is beneficial to maintaining a
compact structure and reducing the lattice distortion
and strain energy, thus improving the stability of the
SS phase. On the contrary, a higher specific volume
would favor the formation of the glass phase of the
AM phase [44]. LOUZGUINE-LUZGIN et al [44]
have found that the structure of ZresNijoCusAlys-
Pdi2s changes from completely glass phase to
the SS-containing microstructure under different
annealing conditions, with the specific volume
generally decreasing. Therefore, with different
specific volumes, the phase formation would also
be different to ensure the stability of the structure.

In addition, based on the Cohen—Grest free-
volume theory [45], it is demonstrated that the
viscosity at the melting temperature is related to the
volume change during crystallization [46]. The
high-temperature viscosity and the free volume of a
liquid have a significant effect on the critical
cooling rate of vitrification, and the correlation
between them is crucial for understanding the
crystallization kinetics of bulk metallic glasses [46].
The specific volume of the alloy is strongly related
to the parameter V,_,. Therefore, this parameter
can provide unique and useful information for the
researches of phase formation and other properties
in HEAs.

3.5 Model validation and analysis results in

(CoFeNiMn);-\Mo, HEAs

As an example of evaluating the model
performance in practical applications, i.e., the
generalization and exploration abilities of the
phase classification model, some representative
experimental data are additionally provided for
model prediction. The content of element Mo is the
only composition descriptor among the features-
select for the four-label phase classification.
Moreover, Mo is often considered an important
element in the design of HEAs [47—49]. Therefore,
the HEAs system (CoFeNiMn);-.Mo,, which is not
present in the phase dataset, is selected. These
HEAs were prepared by vacuum arc-melting [49].
Based on X-ray diffraction measurements, it was
found that the HEAs evolved from a single FCC
matrix to an FCC + Laves phase, i.e., from SS to
SS+IM phase, after the addition of Mo to
CoFeNiMn [49]. The proportion of Laves phase
gradually increases with increasing Mo content
[50—-52]. The detailed information is listed in
Table S7 of the SI, and the source of access comes
from Ref. [50].

The RF model with the features-select in
four-label classification is used to predict the
collected data, and the prediction results are shown
in Fig. 8. It could be seen that as the Mo content
increases, the prediction probability of SS decreases,
that of SS+IM phases increases, and those of IM
and AM phases are all close to 0. The relationship
between SHAP values and Mo content for the
four phases is shown in Fig. 9. The trends of
the microstructure change are in good agreement
with the experiment results and the interpretability
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analysis results in Fig. 9. The phase at Mo content
of 0.0588 is predicted to be SS, rather than the
SS+IM obtained in experiment because the content
of Laves phase is too low and is distributed in
granular form on the FCC solid solution matrix [50].
Due to the large atomic radius, high modulus,
and high electronegativity of Mo [53,54], the
addition of Mo would result in lattice distortions
and form intermetallic compound. Specifically,
some of the Mo is incorporated into the FCC solid
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solution structure and induces lattice distortion, and
the remainder forms the Fe;Mo Laves phase with
the Fe element [50]. As shown in Fig. 9, the
transition threshold of Mo content is 0.06 for the SS
and SS+IM phases and 0.03 for the IM and AM
phases. Both thresholds are low for the lowest
constituents of HEAs. Therefore, the presence of
Mo is likely to induce the formation of the SS+IM
phase in HEAs of (CoFeNiMn),—Mo,.

3.6 Deep coupling of phase classification with

hardness prediction

An important reason for studying the phase
classification of HEAs is that the phase has a great
influence on the properties of HEAs. However,
the relationship between them is often described
qualitatively and is difficult to be used to design
HEAs with specific properties. For HEAs hardness
prediction, the collected HEAs hardness dataset
contains 483 data, and their processing conditions
are all as-cast [28]. In addition, 12 empirical
physical parameters related to the hardness of
HEAs are calculated and presented in Table S8 of
the SI, and the sources of access come from author’s
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Fig. 9 Relationship between SHAP value and Mo content for four phases
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experience and previous work [28]. In the process
of constructing the CNN-+PTR hardness prediction
model, two additional rows are added below the
PTR, and then the physical parameters are
standardized by the z-score method and displayed in
Rows 10 and 11 with a dispersed arrangement.
Furthermore, the phase probabilities predicted by
the existing four-label and five-label phase
classification models are added to the PTR in the
middle four or five positions of the first row. The
schematic of the PTR mapping is shown in Fig. S6
of the SI. In this model, the predicted phase
classification results, 1i.e., the microstructure
information, are used to predict HEAs properties
and to establish a quantitative relationship between
them.

Several CNN+PTR models with different
information are constructed, the hyper-parameters
and other details of the model structure and training
process are introduced in the Fig. S2 of the SI, and
they are determined through multiple experiments.
An ensemble learning strategy, the stacking method,
is adopted to obtain more accurate and stable
prediction results. Specifically, three CNN models
are trained on the same training set and the phase
prediction probabilities of the training set and the
testing set are used as features for the new training
set and the new testing set. Then, a support vector
regression (SVR) model is trained on the new
training set. The errors of the hardness prediction
models are evaluated by the mean of the root mean
square error (RMSE) in three times ten-fold cross-
validation. The results are shown in Table 2, where
“true” indicates that the corresponding information
is added to the PTR, and “None” indicates the
opposite.

Table 2 Prediction errors (RMSE) of different CNN+PTR
and stacking models

Phase information pI;lrla}lllillz?;r CNS;;)I:TR St:rcrlzl:g
None None 67.75 64.27
Four-label phases None 67.84 63.16
Five-label phases None 64.11 61.18
None True 61.73 58.73
Four-label phases True 61.45 58.13
Five-label phases True 60.02 56.69

It could be seen from Table 2 that the stacking
method significantly improves the accuracy of the

hardness prediction. In addition, the stacking
method constructs the final model based on
the randomness of CNN+PTR to improve the
stability of hardness prediction. The reason is that
ensemble learning could reduce the high “bias”
and high “variance” and mitigate the statistical,
computational and representation problem for a
single ML model. Therefore, the stacking model is
adopted as the final hardness prediction model. In
order to determine whether the model is statistically
improved by the addition of different information
or the implementation of the stacking method,
the Diebold—Mariano (DM) test [55] is used to
compare the prediction performance of different
models from a statistical point of view. The details
and results are given in Table S9 of the SI and
related paragraph next to Table S9. The results can
be summarized and analyzed as follows.

In the cases where no physical parameters are
added, the addition of the five-label phase
classification probabilities obviously improves the
prediction accuracy of the stacking model, but the
four-label phase classification results do not. This is
because, unlike the mutually exclusive four-label
phase classification, each phase in the non-mutually
exclusive five-label phase classification can be
predicted individually, and various combinations of
these phases can be represented. Furthermore, these
five phases are particularly related to the hardness
of HEAs. For example, the FCC phase generally
results in relatively low hardness, and the BCC and
IM (Laves, ¢ and #) phases generally result in
relatively high hardness, and the mixed phase alloys
have uncertain properties [41].

In the cases where physical parameters are
added to the PTR, the prediction performance of the
stacking models is all significantly improved. These
12 physical parameters represent different physical
properties based on the domain knowledge.
Therefore, the addition of 12 physical parameters
helps predict the HEAs hardness. However, the
effect of adding the five-label phase information is
relatively small in these cases. This may be because
most of the physical parameters are related to the
formation of HEAs phases and could represent
the phase information of HEAs [43], such as the
parameter y mentioned above and the wvalence
electron concentration (VEC). For HEAs, the BCC
phase is stable at a low VEC value and the FCC
phase is stable at a high VEC value [44—46].
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3.7 Challenges and outlook

Data availability is a major challenge for the
phase classification and hardness prediction of
HEAs. Despite the increasing research on HEAs,
there is still limited relevant data reported,
especially for some properties such as hardness.
This limits the exploration and generalization
capabilities of ML models. In future research, as
much relevant data as possible should be collected,
or data augmentation could be used.

For the phase classification, various types of
features were considered in this work, especially
CNN+PTR  features, which enriched the
information of the features and led to better
accuracy of the models. These phase classification
models can be used to determine the microstructure
of unknown HEAs, and different ranges of physical
parameters summarized above are instructive for
designing HEAs with the desired microstructure.
However, the phase classification models can be
further enhanced and the derived phase formation
laws are limited by the classification method and
classification accuracy of the models. Thus, in
future research, the variety of features could be
expanded; more detailed phase classification
schemes could be further explored; the inter-
pretability analysis of the model could be further
deepened and optimized to explore more useful
factors affecting the phase formation of HEAs.

In the hardness prediction, for the best model,
the RMSE is 56.69, the R*> (coefficient of
determination) is 0.92 and the MAPE (mean
absolute percentage error) is 8.43%. It could be
used to predict the hardness of unknown HEAs and
to design HEAs with high hardness. However,
the accuracy of the model needs to be further
improved, mainly due to insufficient data. In other
perspectives, the hardness prediction accuracy is
significantly improved by adding the phase
classification probability and physical parameters
to the PTR. Therefore, in future research, the
coupling between phase classification and hardness
prediction can be further deepened. More hardness
relevant information, more physical
parameters, can also be incorporated into the
hardness prediction model. The way used in this
work could also be extended to other material
research tasks.

In the integrated computing materials and

such as

engineering (ICME), machine learning, physical
modeling methods, such as phase field (PF), first
principles, molecular dynamic simulations, and
corresponding experiments could be coupled
together to accelerate materials design and
manufacturing [56]. The “integrated phase field
method” (IPFM) has great potential and is
becoming one of the most important and promising
core components of ICME [56]. With the
advancement of PF simulation and computer
computing power, a promising application area is
the combination of PF simulation, image data
construction and ML to optimize the microstructure
and design materials with desired properties [57].
As summarized in Ref. [58], the research directions
of ML-PF worthy exploring in the future include
the prediction of material properties from their
microstructure [59,60], reverse design for material
with specific property by optimizing alloy micro-
structure or processing condition [61,62], and
acceleration of PF simulation [63]. In this work,
based on the collected experiment data, the phase
is predicted by the ML model, and the phase
prediction probabilities are adopted to improve
the hardness prediction. Guided by the above
introduction, more data from theory calculation
could be adopted. Based on the microstructure
evolution and alloy properties explored by PF and
so on [57,58,60], the deeper structural information
could be coupled into the mechanical performance
prediction, and the design of HEAs with high
properties could be achieved accurately and
efficiently.

4 Conclusions

(1) Based on the ML flow, high-performance
ML models were constructed for the mutually
exclusive four-label and the non-mutually exclusive
five-label HEAs phase classifications.

(2) The interpretability analyses in the four-
label phase classification demonstrated important
descriptors of y, D,, D, and V,_,, and further
indicated the influence of different descriptor value
ranges on different phase forms. The ¥,_,which
has never been raised and emphasized for HEAs
phase classification was found, and the concept of
transition range was proposed. The results could
guide the exploration of HEAs with desired phase.



Shuai LI, et al/Trans. Nonferrous Met. Soc. China 35(2025) 1855—-1874

(3) The generalization and exploration abilities
of the model were successfully validated in
(CoFeNiMn); Mo, HEAs and the influence of Mo
content on the phase formation was revealed.

(4) In order to improve the hardness prediction,
the phase prediction results and the physical
parameters were added to the PTR, and the stacking
method was employed. The accuracy of HEAs
hardness prediction by CNN+PTR model could be
significantly improved by ensemble learning and
information addition of structure and physical
parameters which are mostly related to the phase
formation.
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