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Abstract: Phase classification has a clear guiding significance for the design of high entropy alloys. For mutually 
exclusive and non-mutually exclusive classifications, the composition descriptors, commonly used physical parameter 
descriptors, elemental-property descriptors, and descriptors extracted from the periodic table representation (PTR) by 
the convolutional neural network were collected. Appropriate selection among features with rich information is helpful 
for phase classification. Based on random forest, the accuracy of the four-label classification and balanced accuracy of 
the five-label classification were improved to be 0.907 and 0.876, respectively. The roles of the four important features 
were summarized by interpretability analysis, and a new important feature was found. The model extrapolation ability 
and the influence of Mo were demonstrated by phase prediction in (CoFeNiMn)1−xMox. The phase information is 
helpful for the hardness prediction, the classification results were coupled with the PTR of hardness data, and the 
prediction error (the root mean square error) was reduced to 56.69. 
Key words: high entropy alloy; phase classification; feature engineering; periodic table representation; convolutional 
neural network; hardness prediction 
                                                                                                             

 
 
1 Introduction 
 

High entropy alloys (HEAs) are a new type of 
alloys that generally contain five or more elements 
in mole fractions of between 5% and 35% [1,2]. 
Due to their unique compositions and structures, 
they have excellent properties, such as superior 
corrosion and wear resistance, high hardness, and 
high-temperature thermal stability [1−4]. The study 
of phase formation is meaningful for the design of 
HEAs. Due to the large and complex composition 
and structure space of HEAs, experiments and some 

theoretical calculation methods, such as first- 
principles calculation and calculation of phase 
diagram (CALPHAD), are difficult and time- 
consuming for large-scale exploration [2,5]. 

Data-driven science has become the fourth 
paradigm in materials research, after experiment, 
theory and computer simulation [6]. With the 
increase of materials data and the improvement   
of algorithms [7−10], machine learning (ML) could 
efficiently and automatically predict various material 
properties and inversely design desirable materials 
[11−14]. Thus, many researchers built ML models 
to predict the phase formation of HEAs [11,15−18]. 
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With an appropriate set of material descriptors, the 
ability of the ML model to learn the internal laws of 
the material data would be improved [19,20]. The 
common descriptors for HEAs phase classification 
are composition descriptors and empirical physical 
parameter descriptors [15−18]. The common 
empirical physical parameters include the mean 
valence electron concentration (VEC), the 
configuration entropy change (∆S), and so on. Their 
prediction effect has been demonstrated in previous 
HEAs studies [16−18]. However, the HEAs phase 
classification still faces research problems. How to 
make the information contained in the features 
further enriched? How to select and verify the 
appropriate feature combinations? How to uncover 
different roles of the features? How to couple  
phase classification with the study of mechanical 
properties, such as hardness prediction? Exploring 
these problems and providing solutions based on 
ML are also the purpose of this work. 

To enrich the information and improve the 
representation ability of the descriptors, it is worth 
exploring to add more phase classification related 
descriptors to the feature pool, and select an 
appropriate feature combination. Almost all 
common physical parameters for HEAs are 
proposed based on domain knowledge, and 
calculated based on the composition and physical 
properties of the constituent elements. Thus, more 
elemental-property parameters that are not 
suggested by domain knowledge could be 
considered. Furthermore, to avoid the limitations of 
human-defined computation methods of parameters, 
other new and promising descriptors could be 
extracted from the “periodic table representation 
(PTR)” of the material by the convolutional neural 
network (CNN) model [21]. The properties of the 
elements, such as relative atomic mass and atomic 
radius, are related to their positions in the periodic 
table. Therefore, in addition to the composition 
information, the PTR also implies the potential laws 
of the periodic table. The CNN model is then 
trained based on the PTR to extract the material 
descriptors or to predict the target property. In this 
work, the CNN model with the PTR input is 
referred to as CNN+PTR, and the descriptors 
extracted from the PTR by CNN model are named 
as CNN+PTR descriptors. 

The CNN is an end-to-end model that includes 
an automatic feature extractor and a neural network 

model [22,23], and it is powerful for image 
processing tasks in materials science [24]. Based on 
the combination of the CNN model and PTR, some 
material properties have been successfully predicted 
[20,25−27], such as the critical casting diameter of 
metallic glasses [25]. In the HEAs studies, based  
on the CNN+PTR model, FENG et al [21] used  
the model trained on a big dataset of alloy 
glass-forming ability to extract descriptors of HEAs 
for HEAs phase prediction, and GUO et al [27] 
achieved three binary classifications of HEAs 
phases. In our previous work, a CNN+PTR 
regression model, which has a PTR with various 
information additions, is adopted to predict the 
hardness of HEAs [28]. Therefore, the descriptors 
derived from CNN+PTR are promising for 
automatically extracting useful information for the 
phase classification of HEAs. However, most 
CNN+PTR works have used the CNN+PTR models 
to predict material properties, and only a few have 
adopted models to extract features for further 
exploration. As the information contained in the 
descriptors should be enriched, there is great 
potential for combining these different types of 
descriptors for feature selection to achieve phase 
classification of HEAs. 

To the authors’ knowledge, most studies on 
HEAs phase classification by ML focused on 
mutually exclusive classification [15,17,18] and a 
few on non-mutually exclusive classification [16]. 
While some studies have adopted interpretable 
analysis methods, few studies have analyzed the 
specific roles of different feature ranges for 
different phases. There is also a need for further 
in-depth research on HEAs phase classification in 
practical applications, such as extrapolation for 
alloy systems outside the training set and deep 
coupling of phase classification and material 
property prediction. The main innovation of this 
work is the proposal and application of a new   
ML framework for mutually exclusive and non- 
mutually exclusive phase classifications of HEAs. 
Different from pervious works [15−18], a new 
feature pool containing multiple types of features 
was proposed for HEAs phase classifications, and 
appropriate feature combinations were selected. The 
new important features were analyzed, their roles in 
different phase formations were revealed, and the 
model extrapolation performance was explored. In 
the HEAs research, the present work can be used to 
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construct phase classification models and analyze 
the factors affecting phase formation. Furthermore, 
this work proposed and validated a method to 
couple phase classification with hardness prediction, 
which can be used to improve the HEAs hardness 
prediction and analyze the structure-property 
relationship. 

In this work, four types of descriptors with 
different information were combined as the original 
features pool. Then, feature selection based on 
genetic algorithm (GA) was implemented for 
mutually exclusive four-label and non-mutually 
exclusive five-label HEAs phase classifications. 
The phase classification model with selected feature 
combination was constructed. The interpretability 
analyses were carried out to attain cognition of the 
mapping mode of the phase classification model 
and the rules of phase formation in HEAs. In order 
to understand the physical factors influencing phase 
formation and to guide the exploration of HEAs 
with the desired phase, it is important to analyze 
important features in this new and large feature pool 
and to determine different feature ranges that 
promote or inhibit the formation of different phases. 
The phase classification model with the selected 
descriptors was validated on additional and 
representative HEAs system of (CoFeNiMn)1−xMox, 
and the influence of the Mo content on phase 
formation was revealed. In order to deeply couple 
the structure information and property prediction of 
HEAs, the predicted phase classification results 
were added into the PTR to improve the HEAs 
hardness prediction of the CNN+PTR model and 
stacking model. This framework could be extended 
to other material properties research. 
 
2 Materials and methods 
 
2.1 Feature engineering 

The feature engineering refers to a series of 
processes performed on the raw data to generate 
input features that are suitable for the ML   
models [29,30]. It generally includes feature 
construction, feature transformation, feature 
selection, and so on. For the phase classification of 
HEAs, various features should be considered in the 
feature construction, regardless of their importance 
in determining the HEAs phase, such as 
composition features, and the physical parameter 
features proposed based on domain knowledge and 

playing important role in the HEAs phases 
formation. Due to the limitations of the existing 
domain knowledge, a variety of physical parameter 
features based on different elemental properties can 
be generated by compositional weighted averaging, 
taking maximum and minimum values, and other 
operations. The specific information on these three 
types of features is presented in the next section. 
However, these features are manually designed, 
which are limited by the human-defined calculation 
operations and creates barriers to feature collection 
and calculation, leading to limited prediction 
performance. Therefore, other features are extracted 
automatically by CNN from the PTR. The specific 
process is described in Section 2.3. 

In the feature transformation, as the method 
adopted in Refs. [29,30], the constructed features 
could be transformed by mathematical variations, 
such as X1

2 and X1X2 for different features X1 and X2, 
respectively. This method could mathematically 
change how the features influence the phase 
prediction in ML algorithms and characterize    
the material from high dimensionality [29,30]. 
However, the features adopted in this work contain 
sufficiently rich information, which has been 
extracted and processed in various ways. In 
addition, the feature dimension is too large after 
performing the transformation operation. Therefore, 
similar feature transformation operations are not 
used. 

In the feature selection, it can be mainly 
divided into the filter method, embedded method, 
and wrapper method. The filter method, which is 
based on Pearson’s correlation coefficient, 
Chi-square test, and so on, only considers simple 
correlation indexes and may remove potentially 
important features. The embedded method relies on 
some specific ML models. For the general wrapper 
methods, such as sequential backward selection, the 
result easily falls into the local optimum. However, 
wrapper methods based on optimization algorithms 
can ensure accuracy and efficiency. A representative 
optimization algorithm is the GA, a method to 
search for the optimal solution by simulating the 
natural evolutionary process. It can avoid the 
feature selection process from falling into the local 
optimum to a certain extent and find suitable 
feature combinations. 

For the hardness prediction of HEAs, another 
type of feature engineering method is adopted. Not 
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only the composition information is represented in 
the PTR, but the corresponding phase information 
predicted by the HEAs phase classification model 
and hardness-related physical parameters are added 
in the blank positions of the PTR in different ways. 
Then, the CNN model is adopted to be trained in 
the PTR and used to predict the hardness of HEAs. 
It achieves the deep coupling of phase classification 
and hardness prediction of HEAs. 

 
2.2 Dataset briefing 

892 HEAs phase data collected from the 
literature [27,28] are adopted as the phase dataset, 
and their processing conditions are all as-cast. The 
concentrations of the constituent elements are 
referred to as the composition descriptors. 23 
physical parameters commonly used for HEAs 
properties prediction are named as HEAs common 
descriptors [11,16−18,31], which include VEC, ∆S 
and so on. In addition, 132 elemental-property 
parameters are extracted from the Magpie feature 
set, which is proposed by WARD et al [32], and 
they are named as elemental-property descriptors. 
They are defined as the composition-weighted 
mean, mean absolute deviation, range, minimum, 
maximum and mode of 22 different physical 
properties of constituent elements, and the 
elemental-properties include the specific volume 
and magnetic moment (per atom) of the element at 
the 0 K ground state, and so on. The latter two types 
of descriptors are known as physical parameter 
descriptors and the detailed information of them  
is provided in Table S1 of the Supplementary 
Information (SI) and related paragraph next to the 
Table S1 of the SI, and the main sources of access 
come from literature [14,32]. 

The phase could be categorized in different 
ways depending on the different demands. In this 
work, two different types of phase classification 
schemes are adopted. One is the mutually exclusive 
phase classification, which involves four common 
labels: solid solutions (SS), intermetallic compounds 
(IM), SS+IM mixed phases and amorphous phases 
(AM) [17,18]. In this scheme, each alloy belongs to 
only one of the phase categories. The other is the 
mutually non-exclusive phase classification [16,28], 
which involves five labels: face centered cubic 
(FCC), body centered cubic (BCC), hexagonally 
close-packed (HCP), IM and amorphous (AM). In 
this scheme, each sample could be described as one 

label for single-phase alloy or a combination of 
multiple labels for multi-phase alloys, such as 
FCC+BCC. Thus, the five-label classification 
scheme is able to predict various phases, even those 
not present in the training set. For this phase dataset, 
the number of occurrences of the constituent 
elements is counted and shown in Fig. S1 of the SI. 
 
2.3 CNN model with periodic table representation 

In the construction of the CNN+PTR 
classification model, the mapping process of the 
PTR is shown in Fig. 1(a), which takes AlCo- 
CuFeNi as an example. The PTR image is a 9×18 
matrix, and the columns and rows of the PTR 
correspond to the groups and periods of the periodic 
table, respectively. The atomic percentages of the 
constituent elements are filled in the corresponding 
positions and zeros are filled in the remaining 
positions. The construction process of the CNN 
model is shown in Fig. 1(b). It can be seen that the 
CNN model consists of two parts. One is the 
combination of several convolutional layers and 
pooling layers, the other is a shallow neural 
network model. The former is a feature extractor 
that automatically extracts features from the PTR 
images and the latter is a classifier which predicts 
HEAs phases based on the extracted features. 

The CNN+PTR model can be used to directly 
predict the phases of HEAs or to extract features. 
The extracted material descriptors are the output of 
the flatten layer and the dimension is 192. The CNN 
model is compressed and simplified from the visual 
geometry group (VGG) to suit this work [21,28]. 
The structure and hyper-parameters of different 
CNN models are determined through multiple 
experiments, and the details are provided in the 
Fig. S2 of the SI that is drawn by the drawing 
function of the TensorFlow package in Python 
software. The training process of the CNN+    
PTR model has randomness, so the prediction 
performance is estimated as the average of    
three times of ten-fold cross-validation and the 
intermediate values of the different results. 
 
2.4 Feature selection of genetic algorithm 

Genetic algorithm is a global search algorithm 
for solving optimization problems [33], and it   
has proved to be a powerful tool for the feature 
selection [34,35]. In order to select an appropriate 
feature combination for the phase classification 
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model, GA is adopted and the feature selection 
process is shown in Fig. 2. In GA, a binary string 
with the length of the total number of features is 
generated to represent the feature combination, 
where each bit corresponds to a feature. The binary 
string is encoded by adding either the value 1 or the 
value 0 to each bit, where the value 1 indicates the 
presence of the corresponding feature and vice 
versa. Such a string is defined as an individual, and 
a collection of individuals is called a population. 

The feature selection process of GA consists of 

five parts. Starting with the random generation of 
the initial population, the other four steps are 
repeated cyclically until the number of iterations 
reaches a preset value. Specifically, in the fitness 
calculation step, the fitness value for each 
individual is evaluated as the accuracy of the    
ML model with the corresponding combination of 
features, as evaluated by the ten-fold cross- 
validation. In the selection step, a new population is 
selected from the input population by using the 
roulette wheel selection method, where individuals 

 

 

Fig. 1 Flow chart of CNN+PTR for HEAs phase classification: (a) Example of PTR; (b) PTR-based CNN phase 
classification model 
 

 

Fig. 2 Flow chart of feature selection based on GA consisting of initial population generation, genetic algorithm and 
feature selection result 
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with higher fitness values are more likely to be 
selected repeatedly. In the crossover step, a certain 
number of individuals are selected based on the 
crossover probability, and then a new individual is 
generated by randomly selecting two individuals 
from them and filling each position in a new 
individual with a value randomly selected from the 
corresponding values in these two individuals. A 
new population is formed by combining a certain 
number of newly generated individuals with the 
individuals not selected in the crossover step. In the 
mutation step, for each value in each individual, the 
value selected based on the mutation probability is 
replaced to the opposite value. The final feature 
selection result of the GA is the individual with the 
best accuracy that has occurred over the iterations 
of multiple GA runs. The hyper-parameters of the 
GA are determined through multiple experiments 
and experience, and they are listed in Table S2 of 
the SI. 
 
2.5 Interpretability analysis method 

The “black box” nature of the ML model hides 
specific mapping processing in the model and 
hinders the understanding of the material properties. 
Therefore, two interpretability analysis methods, 
feature importance of the Random Forest (RF) 
model and SHapley Additive exPlanations (SHAP) 
[36] are adopted in the phase classification model. 
Based on the SHAP results, the SHAP average 
absolute plot, the SHAP summary plot and the 
SHAP dependence plot could be shown. The 
importance value of each feature in the RF model 
represents the contribution of that feature in the 
model training, which is the sum of the reduction in 
impurity at each feature split during the training 
process. The impurity is estimated by the Gini 
index. SHAP is a post-hoc, model-independent 
interpretation method developed from game theory. 
It decomposes the prediction of each sample into 
the contribution of each feature [36]. The prediction 
of each sample could be considered as the sum of 
the SHAP values of all features:  

0
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where ŷ  is the model prediction result and 0ŷ  is a 
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( )
\{ }

| | ! | | | | 1 !
| | !i

S F i

S F S
F

φ
⊆

− −
= ⋅∑  

{ } { }( ) ( )[ ]S i S i S Sf Χ f Χ∪ ∪ −               (2) 
 
where F is the feature set involving all features, S is 
the feature subset of F, { }S i∪  is the union of the 
feature subset S and the ith feature, { } { }( )S i S if Χ∪ ∪  
is the prediction result of the ML model with the ith 
feature, and fS(XS) is the prediction of the ML model 
trained without the ith feature. Equations (1) and (2) 
are applied to each sample to calculate the SHAP 
values of each feature. For a HEA phase, if the 
SHAP value of a feature is positive, the feature 
enhances the prediction of this phase; conversely, 
the feature with a negative SHAP value weakens 
the prediction of this phase. The higher the absolute 
SHAP value, the greater the importance of the feature. 
 
3 Results and discussion 
 
3.1 Process of HEAs phase classification and 

hardness prediction 
The flow chart of this work is shown in  

Fig. 3. It can be seen that the whole work is divided 
into two parts: the primary part is the phase 
classification of HEAs, and the secondary part is 
the phase classification-assisted hardness prediction. 
In the HEAs phase classification, firstly, four types 
of descriptors, which contain a wide variety of rich 
information about the HEAs phase classification, 
are generated. Secondly, based on the selected ML 
classification algorithm and RF model, the features 
are selected by GA for the mutually exclusive and 
the non-mutually exclusive phase classifications. 
Thirdly, the RF models are constructed with the 
corresponding selected feature combinations for 
different phase classification schemes. Finally,   
for the mutually exclusive four-label phase 
classification, interpretability analyses are carried 
out to gain insight into the mapping mode from 
features to phase classification and the way that 
some important physical parameters influence   
the HEAs phase formation. Meanwhile, the 
extrapolation and generalization performance of  
the phase classification model is validated on the 
HEAs system of (CoFeNiMn)1−xMox. In the HEAs 
hardness prediction, in order to improve the 
prediction performance, the phase prediction 
probabilities obtained from the non-mutually 
exclusive five-label phase classification and some  
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Fig. 3 Flow chart of this work consisting of phase classification and hardness prediction of HEAs 
 
HEAs hardness-related physical parameters are 
added into the PTR of the HEAs hardness data. 
 
3.2 Model construction and comparative analysis 

results 
For the model selection, five ML models 

commonly used in HEAs phase classifications   
are considered. They are RF, K-nearest neighbor 
classification (KNN), logistic regression classification 
(LR), support vector machine classification (SVC) 
and decision tree classification (DTC) [14,17,18,34]. 
In order to ensure the reliability and generalization 
of model selection, four types of material 
descriptors, composition descriptors, 23 common 
HEAs physical parameter descriptors, 132 
elemental-property parameter descriptors and 192 
CNN+PTR extracted descriptors are adopted as 
input features, respectively. In addition, the 
CNN+PTR classification models are constructed as 

described in Section 2.3. 
It must be emphasized that for the non- 

mutually exclusive five-label phase classification, a 
trained CNN+PTR model could predict the phase 
formation for HEAs, but other ML algorithms are 
only applicable to mutually exclusive classification, 
and they classify alloys into one of the categories 
present in the training set. Thus, it is necessary to 
construct five models for five binary classifications 
to determine whether five phases are present in 
HEAs respectively. The performance of non- 
mutually exclusive classification model is usually 
estimated by the balanced accuracy [16], which is 
the average proportion of correct predictions in 
each category. The calculation formula is shown as 
follows [16]:  

Balanced accuracy= ( )
1 1

1 1 ˆ
imk

ij ij
i ji

I y y
k m= =

=∑ ∑      (3) 
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where k is the number of categories; 𝑚𝑚𝑖𝑖  is the 
number of samples in category i; I(·) is indicator 
function, and the function value is 1 if the condition 
in the brackets is met, otherwise it is 0; yij and ˆijy  
are the true label and the prediction result for the jth 
sample in the category i, respectively; the forms of 
the true label and the prediction result are set 
according to whether the sample belongs to 
category i or not. The prediction performance of 
these ML models is shown in Fig. 4. In this work, 
the prediction performance of the ML models is 
estimated by the average value of the ten-fold 
cross-validation. 
 

 
Fig. 4 Prediction performance of different models with 
different descriptors: (a) Results for four-label phase 
classification; (b) Results for five-label phase 
classification 
 

It could be seen that for these two 
classification schemes, with the inputs of any of the 
four types of features, the RF model outperforms 
other common models, only except for the LR 
model with 192-dimensional CNN+PTR features in 
five-label phase classification. This demonstrates 
that the RF model has good prediction ability for 

any kind of features and phase classification task. 
Based on such results and our experience, the RF 
model could also show satisfactory performance in 
the following phase classification tasks. RF is an 
ensemble learning model which could reduce the 
high “bias” and high “variance” for a single ML 
model. RF introduces randomness into the model 
training, so it is less prone to overfitting, and may 
also have better prediction ability for data outside 
the existing dataset. In addition, compared to other 
models, the RF model also has the advantages of 
being noise-resistant, possessing a high training 
speed, and having simple hyper-parameters that 
generally do not require tuning. Therefore, in this 
work, based on these reasons, RF is chosen as the 
phase classification model and performed for 
further feature selection. 

It is difficult to rank the role of different types 
of descriptors because they have different effects in 
different cases. The CNN+PTR model, which uses 
only composition information and the periodic table 
of elements as input, outperforms most of the other 
models, especially those based on composition 
descriptors. This is because the CNN+PTR model 
extracts phase-related physical information from the 
positions of the constituent elements in the periodic 
table. Therefore, the prediction performance of  
the models based on the CNN+PTR extracted 
descriptors is also good, especially when the LR 
model is used for the five-label phase classification. 
The elemental-property descriptors perform best in 
the RF model for these two classification schemes. 
Therefore, the addition of the elemental-property 
descriptors and CNN+PTR descriptors to the feature 
pool is expected for the development of high- 
quality HEAs phase classifiers. 
 
3.3 Feature selection and comparative analysis 

results 
In order to combine all the useful information, 

feature pool containing four types of descriptors is 
constructed. This feature pool could represent 
composition information, physical information from 
the physical properties of the constituent elements, 
and periodic table information. The combination of 
all of these features is referred to as features-all. 
Then, in order to select the optimal feature 
combination from features-all for two phase 
classifications, GA with RF model is utilized for 
feature selection. In order to show the change trends 
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of the feature number and the prediction 
performance during the optimization process of the 
GA, the changes in the feature number and the 
accuracy of the optimal individual found from the 
beginning to different iteration numbers are shown 
in Fig. S3 of the SI. It can be seen that in the 
different phase classification tasks, as the iteration 
process proceeds, the prediction performance 
gradually rises and the feature number in the 
corresponding feature combination generally 
decreases. This suggests that GA-based feature 
selection ensures both prediction performance and 
significant feature number reduction, which implies 
improving model generalization and avoiding 
over-fitting for RF model. 

The selected feature combination for four-label 
phase classification is referred to as features-select- 
four-label, and that for five mutually exclusive 
binary phase classifications in non-mutually 
exclusive five-label phase classification is named as 
features-select-FCC, features-select-BCC, and so 
on, respectively. For convenience, any selected 
feature combination can be abbreviated as features- 
select if it does not refer specifically to a phase 
classification. The content of each features-select is 
listed in Tables S3 and S4 of the SI. The number of 
different types of descriptors in features-select and 
the prediction performance of RF models with 
features-select for four-label and five-label 
classifications are shown in Table 1. It should be 
noted that, because the balanced accuracy is 
estimated by the average proportion of correct 
predictions in each category, the value obtained for 
the five-label is lower than the accuracy for any of 
the five labels when they are predicted individually. 

For the RF model with features-select-four- 
label, the accuracy value of the mutually exclusive 
four-label phase classification is 0.907. Based on 

the five RF models with features-select-BCC, 
features-select-FCC, and so on, the balance 
accuracy of the mutually non-exclusive five-label 
phase classification is 0.876, and the accuracy 
values of the five binary phase classifications are  
all above 0.92, and even above 0.98 for both HCP 
and AM phases. Each features-select contains  
more than one type of descriptor, and both the 
elemental-property descriptors and the CNN+PTR 
descriptors are included. Thus, it is necessary to 
combine multiple descriptors, especially elemental- 
property and CNN+PTR descriptors for feature 
selection. 

In order to verify the accuracy of model 
selection, we selected the SVC model, which   
also generally shows good phase classification 
performance in Fig. 4, for the above feature 
selection process. The results are shown in Table S5 
of the SI. The random grid search method is used 
for tuning hyper-parameters of SVC model. It can 
be seen that the prediction ability of the RF model 
is generally similar to that of the SVC model in 
phase classification tasks. However, the feature 
numbers in the selected features for the SVC model 
are all obviously larger than those for the RF model, 
so the feature dimensionality reduction effect of the 
feature selection with the RF model is more 
obvious than that with the SVC model. In summary, 
it is demonstrated again that the RF model should 
be selected to perform feature selection and HEAs 
phase classification. 

In order to further explore the effects of the 
combination of different types of features and 
feature selection, the prediction performance of the 
RF models with different features is compared  
and analyzed. The prediction performance of the  
RF model with elemental-property descriptors, 
features-all and features-select is shown in Fig. 5. It 

 
Table 1 Prediction performance for features-select and number of different type descriptors included in features-select 

Classification task 
Number of 

composition  
descriptor 

Number of HEAs 
common 

descriptor 

Number of 
elemental-property 

descriptor 

Number of 
CNN+PTR 
descriptor 

Accuracy 

Four-label (SS, AM, IM, SS+IM) 1 4 13 10 0.907 

Five-label (FCC) 3 1 7 12 0.969 

Five-label (BCC) 2 0 13 5 0.954 

Five-label (HCP) 0 0 7 6 0.982 

Five-label (IM) 5 7 14 8 0.921 

Five-label (AM) 3 1 6 12 0.996 
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Fig. 5 Prediction performance of RF models with 
different features: (a) Results for four-label phase 
classification; (b) Results for five-label phase 
classification 

 
could be seen that the prediction performance of the 
RF model with features-all is almost equivalent to 
that with elemental-property descriptors, and this is 
due to the high dimensionality of features-all and 
the information redundancy in it. The prediction 
performance of the RF model is significantly 
improved by the feature selection of the GA, and 
the effectiveness of the feature selection is 
demonstrated. For the sake of showing the role of 
different types of descriptors in features-select, the 
prediction performance of each type of descriptor in 
features-select is shown in Fig. 5. The prediction 
performance of features-select is significantly better 
than that of others. The conclusions of the model 
comparison in two classification schemes are 

consistent. In summary, for different HEAs phase 
classification schemes, the ML workflow that 
combines four types of features and appropriate 
feature selection of GA could show excellent 
prediction performance. 
 
3.4 Interpretability analysis results 

The interpretability analysis is used for the 
four-label phase classification because the study of 
these four phases, especially the formation of the 
SS, is meaningful for the research of HEAs and 
receives wide attention [2,3]. In order to analyze  
the specific ways in which material descriptors 
influence the formation of different HEAs phases, 
two interpretability methods, feature importance of 
the RF model and SHAP are adopted. Furthermore, 
four types of figures, the RF model feature 
importance plot, the SHAP average absolute plot, 
the SHAP summary plot and the SHAP dependence 
plot are shown. 
3.4.1 Feature importance 

Since the prediction performance of the RF 
model is evaluated by the ten-fold cross validation, 
the feature importance of the RF model and the 
SHAP values of different features for four phases 
are calculated as the average values of the ten 
models results for the dataset. The normalized 
feature importance of the RF model and the average 
absolute SHAP values are shown in Figs. 6(a) and 
(b), respectively. The greater the absolute value of 
the SHAP value, the greater the influence of the 
feature on the target. It could be seen that the 
ranking of the features is generally similar in these 
two figures. In particular, the top four features are 
exactly the same. This demonstrates the reliability 
of the feature importance. The distributions of the 
SHAP values of these features for four phases are 
shown in the SHAP summary plot in Fig. S4 of the 
SI. The CNN+PTR extracted descriptors have no 
clear physical meaning, so there is no further 
interpretative analysis for them. 

From Fig. 6, it could be seen that the four most 
important features are radii gamma (γ), radii local 
mismatch (Dr), electronegativity local mismatch  
(Dχ) and mean GSvolume_pa 0( ).KV =  The first three 
belong to the HEAs common physical parameter 
descriptors and the last one belongs to elemental- 
property descriptors. The corresponding formulae 
are as follows: 
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Fig. 6 Role of features in phase classification: (a) Feature 
importance of features-select in RF model; (b) Mean 
absolute SHAP values of features-select for four phases 
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where r  is the mean value of the atomic radius, 

1

1 n

i i
i

r C r
n =

= ∑ ; rmin and rmax are the minimum atomic 

radius and the maximum atomic radius of all 
elements, respectively; Ci, ri, χi and (VK=0)i are the 
mole ratio, atomic radius, Pauling electronegativity 
and the specific volume at the 0 K ground state of 
the ith element, respectively. The parameters γ, Dr 
and Dχ were used in previous works on predicting 

the properties of HEAs [28,33]. The parameter 
0KV =  is a physical parameter first found in this 

paper to have a great influence on the phase 
classification of HEAs. 
3.4.2 Analysis results of important features 

The plots of the two most important features 
for different phases are shown in Fig. 7 and the 
plots of the third and fourth important features for 
different phases are shown in Fig. S5 of the SI. 
They show the SHAP values of different feature 
values for different phases, where (a) and (b) show 
the SHAP values of different features, and (a1−a4) 
and (b1−b4) represent the SHAP values of a given 
feature for four phases. In each figure, points with 
dark color indicate that the SHAP values are greater 
than 0, and the feature values have positive effect 
on the target phase prediction; points with light 
color are the opposite. It is found that for these 
features there are some boundaries between positive 
and negative SHAP values. The summary and 
analysis of them, especially for the SS phase, are 
meaningful for exploring the HEAs with the desired 
phases and for understanding the classification 
process of the model. 

As shown in Fig. 7(a), the high values of the 
parameter γ inhibit the formation of the SS phase 
and favor the formation of the other phases, and 
vice versa. The transition threshold is 1.08 for the 
SS and SS+IM phases and 1.10 for the IM and AM 
phases, and these two values are close. The 
conclusions are similar to those obtained by 
parameter partitioning in the study by WANG    
et al [37] and the Hume–Rothery rules. As shown in 
Fig. 7(b), the trends of SHAP values for different 
phases with feature values of Dr [38] are like those 
of γ. For the SS, IM and SS+IM phases, the SHAP 
values of Dr change to the opposite sign in a 
transition range from 1.8 to 4.7. The transition 
range is firstly proposed in this work to describe a 
feature value range with both positive and negative 
SHAP values, where the SHAP values on either 
side of the range have opposite signs. The transition 
threshold is 4.7 for the AM phase. These two 
parameters represent the atomic size difference   
in HEAs from different perspectives. Large 
differences in atomic size would result in lattice 
distortions and be detrimental to the stability of 
solid solutions. The γ is the ratio between the solid 
angles of the smallest and largest atoms [37,39]. 
Since the atoms with the largest and smallest sizes  
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Fig. 7 Plots of two most important features of γ (a) and Dr (b) for different phase predictions 
 
play a dominant role in determining lattice stability, 
as an indicator of revealing atomic stacking 
mismatches and topological instability [37,39], the 
parameter γ plays a more important role than the 

parameter Dr. 
As shown in Fig. S5(a) of the SI, the high 

values of the parameter Dχ inhibit the formation of 
SS and SS+IM phases and favor the formation of 



Shuai LI, et al/Trans. Nonferrous Met. Soc. China 35(2025) 1855−1874 1867 

IM and AM phases, and vice versa. The transition 
threshold is 0.27. Dχ represents the difference in 
Pauling electronegativity within the HEAs, and  
the electronegativity is a chemical property that 
describes the tendency of an atom to attract 
electrons towards itself [40]. Thus, the greater the 
difference in electronegativity values between the 
constituent elements, the easier it is to form the IM 
phase, especially the Topological Closed Packed 
phase, in HEAs [40]. Meanwhile, the bonds formed 
between atoms with large differences in electro- 
negativity values tend to be stronger, which may 
limit the maximum solid solubility. 

As shown in Fig. S5(b), the relationship 
between the value range of parameter 0KV =  and 
the HEAs phase prediction is relatively complex, 
and the detailed results are shown in Table S6 of the 
SI. In general, if a high-purity SS phase is required, 
it is recommended that the 0KV =  is less than 11.3, 
and for the AM phase, 0KV =  needs to be greater 
than 21.0. The parameter 0KV =  is the composition- 
weighted mean of the elemental specific volume at 
the 0 K ground state. Specific volume is the ratio of 
the volume of a substance to its mass, and its  
value is affected by temperature [41]. When the 
temperature is 0 K and the element reaches the 
ground state, the specific volume represents the 
absolute minimum volume and reflects the 
arrangement and interaction of the atoms. The value 
of this elemental property is taken from the Open 
Quantum Materials Database (OQMD) [42]. 

The specific volume affects the structural 
stability of alloys and has been used to determine 
the glass phase formation [41,43]. Some structures 
are stable at small specific volumes, while others 
are the opposite. For example, the SS phase is more 
compact in structure than the other phases, and a 
small specific volume is beneficial to maintaining a 
compact structure and reducing the lattice distortion 
and strain energy, thus improving the stability of the 
SS phase. On the contrary, a higher specific volume 
would favor the formation of the glass phase of the 
AM phase [44]. LOUZGUINE-LUZGIN et al [44] 
have found that the structure of Zr65Ni10Cu5Al7.5- 
Pd12.5 changes from completely glass phase to   
the SS-containing microstructure under different 
annealing conditions, with the specific volume 
generally decreasing. Therefore, with different 
specific volumes, the phase formation would also 
be different to ensure the stability of the structure. 

In addition, based on the Cohen−Grest free- 
volume theory [45], it is demonstrated that the 
viscosity at the melting temperature is related to the 
volume change during crystallization [46]. The 
high-temperature viscosity and the free volume of a 
liquid have a significant effect on the critical 
cooling rate of vitrification, and the correlation 
between them is crucial for understanding the 
crystallization kinetics of bulk metallic glasses [46]. 
The specific volume of the alloy is strongly related 
to the parameter 0KV = . Therefore, this parameter 
can provide unique and useful information for the 
researches of phase formation and other properties 
in HEAs. 
 
3.5 Model validation and analysis results in  

(CoFeNiMn)1−xMox HEAs 
As an example of evaluating the model 

performance in practical applications, i.e., the 
generalization and exploration abilities of the  
phase classification model, some representative 
experimental data are additionally provided for 
model prediction. The content of element Mo is the 
only composition descriptor among the features- 
select for the four-label phase classification. 
Moreover, Mo is often considered an important 
element in the design of HEAs [47−49]. Therefore, 
the HEAs system (CoFeNiMn)1−xMox, which is not 
present in the phase dataset, is selected. These 
HEAs were prepared by vacuum arc-melting [49]. 
Based on X-ray diffraction measurements, it was 
found that the HEAs evolved from a single FCC 
matrix to an FCC + Laves phase, i.e., from SS to 
SS+IM phase, after the addition of Mo to 
CoFeNiMn [49]. The proportion of Laves phase 
gradually increases with increasing Mo content 
[50−52]. The detailed information is listed in  
Table S7 of the SI, and the source of access comes 
from Ref. [50]. 

The RF model with the features-select in 
four-label classification is used to predict the 
collected data, and the prediction results are shown 
in Fig. 8. It could be seen that as the Mo content 
increases, the prediction probability of SS decreases, 
that of SS+IM phases increases, and those of IM 
and AM phases are all close to 0. The relationship 
between SHAP values and Mo content for the  
four phases is shown in Fig. 9. The trends of    
the microstructure change are in good agreement 
with the experiment results and the interpretability 
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Fig. 8 Prediction probabilities of four phases for 
(CoFeNiMn)1−xMox 

 

analysis results in Fig. 9. The phase at Mo content 
of 0.0588 is predicted to be SS, rather than the 
SS+IM obtained in experiment because the content 
of Laves phase is too low and is distributed in 
granular form on the FCC solid solution matrix [50]. 

Due to the large atomic radius, high modulus, 
and high electronegativity of Mo [53,54], the 
addition of Mo would result in lattice distortions 
and form intermetallic compound. Specifically, 
some of the Mo is incorporated into the FCC solid 

solution structure and induces lattice distortion, and 
the remainder forms the Fe2Mo Laves phase with 
the Fe element [50]. As shown in Fig. 9, the 
transition threshold of Mo content is 0.06 for the SS 
and SS+IM phases and 0.03 for the IM and AM 
phases. Both thresholds are low for the lowest 
constituents of HEAs. Therefore, the presence of 
Mo is likely to induce the formation of the SS+IM 
phase in HEAs of (CoFeNiMn)1−xMox. 

 
3.6 Deep coupling of phase classification with 

hardness prediction 
An important reason for studying the phase 

classification of HEAs is that the phase has a great 
influence on the properties of HEAs. However,  
the relationship between them is often described 
qualitatively and is difficult to be used to design 
HEAs with specific properties. For HEAs hardness 
prediction, the collected HEAs hardness dataset 
contains 483 data, and their processing conditions 
are all as-cast [28]. In addition, 12 empirical 
physical parameters related to the hardness of 
HEAs are calculated and presented in Table S8 of 
the SI, and the sources of access come from author’s 

 

 
Fig. 9 Relationship between SHAP value and Mo content for four phases 
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experience and previous work [28]. In the process 
of constructing the CNN+PTR hardness prediction 
model, two additional rows are added below the 
PTR, and then the physical parameters are 
standardized by the z-score method and displayed in 
Rows 10 and 11 with a dispersed arrangement. 
Furthermore, the phase probabilities predicted by 
the existing four-label and five-label phase 
classification models are added to the PTR in the 
middle four or five positions of the first row. The 
schematic of the PTR mapping is shown in Fig. S6 
of the SI. In this model, the predicted phase 
classification results, i.e., the microstructure 
information, are used to predict HEAs properties 
and to establish a quantitative relationship between 
them. 

Several CNN+PTR models with different 
information are constructed, the hyper-parameters 
and other details of the model structure and training 
process are introduced in the Fig. S2 of the SI, and 
they are determined through multiple experiments. 
An ensemble learning strategy, the stacking method, 
is adopted to obtain more accurate and stable 
prediction results. Specifically, three CNN models 
are trained on the same training set and the phase 
prediction probabilities of the training set and the 
testing set are used as features for the new training 
set and the new testing set. Then, a support vector 
regression (SVR) model is trained on the new 
training set. The errors of the hardness prediction 
models are evaluated by the mean of the root mean 
square error (RMSE) in three times ten-fold cross- 
validation. The results are shown in Table 2, where 
“true” indicates that the corresponding information 
is added to the PTR, and “None” indicates the 
opposite. 
 
Table 2 Prediction errors (RMSE) of different CNN+PTR 
and stacking models 

Phase information Physical 
parameter 

CNN+PTR 
error 

Stacking 
error 

None None 67.75 64.27 
Four-label phases None 67.84 63.16 
Five-label phases None 64.11 61.18 

None True 61.73 58.73 
Four-label phases True 61.45 58.13 
Five-label phases True 60.02 56.69 

 
It could be seen from Table 2 that the stacking 

method significantly improves the accuracy of the 

hardness prediction. In addition, the stacking 
method constructs the final model based on     
the randomness of CNN+PTR to improve the 
stability of hardness prediction. The reason is that 
ensemble learning could reduce the high “bias”  
and high “variance” and mitigate the statistical, 
computational and representation problem for a 
single ML model. Therefore, the stacking model is 
adopted as the final hardness prediction model. In 
order to determine whether the model is statistically 
improved by the addition of different information  
or the implementation of the stacking method,   
the Diebold−Mariano (DM) test [55] is used to 
compare the prediction performance of different 
models from a statistical point of view. The details 
and results are given in Table S9 of the SI and 
related paragraph next to Table S9. The results can 
be summarized and analyzed as follows. 

In the cases where no physical parameters are 
added, the addition of the five-label phase 
classification probabilities obviously improves the 
prediction accuracy of the stacking model, but the 
four-label phase classification results do not. This is 
because, unlike the mutually exclusive four-label 
phase classification, each phase in the non-mutually 
exclusive five-label phase classification can be 
predicted individually, and various combinations of 
these phases can be represented. Furthermore, these 
five phases are particularly related to the hardness 
of HEAs. For example, the FCC phase generally 
results in relatively low hardness, and the BCC and 
IM (Laves, σ and η) phases generally result in 
relatively high hardness, and the mixed phase alloys 
have uncertain properties [41]. 

In the cases where physical parameters are 
added to the PTR, the prediction performance of the 
stacking models is all significantly improved. These 
12 physical parameters represent different physical 
properties based on the domain knowledge. 
Therefore, the addition of 12 physical parameters 
helps predict the HEAs hardness. However, the 
effect of adding the five-label phase information is 
relatively small in these cases. This may be because 
most of the physical parameters are related to the 
formation of HEAs phases and could represent  
the phase information of HEAs [43], such as the 
parameter γ mentioned above and the valence 
electron concentration (VEC). For HEAs, the BCC 
phase is stable at a low VEC value and the FCC 
phase is stable at a high VEC value [44−46]. 
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3.7 Challenges and outlook 
Data availability is a major challenge for the 

phase classification and hardness prediction of 
HEAs. Despite the increasing research on HEAs, 
there is still limited relevant data reported, 
especially for some properties such as hardness. 
This limits the exploration and generalization 
capabilities of ML models. In future research, as 
much relevant data as possible should be collected, 
or data augmentation could be used. 

For the phase classification, various types of 
features were considered in this work, especially 
CNN+PTR features, which enriched the 
information of the features and led to better 
accuracy of the models. These phase classification 
models can be used to determine the microstructure 
of unknown HEAs, and different ranges of physical 
parameters summarized above are instructive for 
designing HEAs with the desired microstructure. 
However, the phase classification models can be 
further enhanced and the derived phase formation 
laws are limited by the classification method and 
classification accuracy of the models. Thus, in 
future research, the variety of features could be 
expanded; more detailed phase classification 
schemes could be further explored; the inter- 
pretability analysis of the model could be further 
deepened and optimized to explore more useful 
factors affecting the phase formation of HEAs. 

In the hardness prediction, for the best model, 
the RMSE is 56.69, the R2 (coefficient of 
determination) is 0.92 and the MAPE (mean 
absolute percentage error) is 8.43%. It could be 
used to predict the hardness of unknown HEAs and 
to design HEAs with high hardness. However,   
the accuracy of the model needs to be further 
improved, mainly due to insufficient data. In other 
perspectives, the hardness prediction accuracy is 
significantly improved by adding the phase 
classification probability and physical parameters  
to the PTR. Therefore, in future research, the 
coupling between phase classification and hardness 
prediction can be further deepened. More hardness 
relevant information, such as more physical 
parameters, can also be incorporated into the 
hardness prediction model. The way used in this 
work could also be extended to other material 
research tasks. 

In the integrated computing materials and 

engineering (ICME), machine learning, physical 
modeling methods, such as phase field (PF), first 
principles, molecular dynamic simulations, and 
corresponding experiments could be coupled 
together to accelerate materials design and 
manufacturing [56]. The “integrated phase field 
method” (IPFM) has great potential and is 
becoming one of the most important and promising 
core components of ICME [56]. With the 
advancement of PF simulation and computer 
computing power, a promising application area is 
the combination of PF simulation, image data 
construction and ML to optimize the microstructure 
and design materials with desired properties [57]. 
As summarized in Ref. [58], the research directions 
of ML-PF worthy exploring in the future include 
the prediction of material properties from their 
microstructure [59,60], reverse design for material 
with specific property by optimizing alloy micro- 
structure or processing condition [61,62], and 
acceleration of PF simulation [63]. In this work, 
based on the collected experiment data, the phase  
is predicted by the ML model, and the phase 
prediction probabilities are adopted to improve  
the hardness prediction. Guided by the above 
introduction, more data from theory calculation 
could be adopted. Based on the microstructure 
evolution and alloy properties explored by PF and 
so on [57,58,60], the deeper structural information 
could be coupled into the mechanical performance 
prediction, and the design of HEAs with high 
properties could be achieved accurately and 
efficiently. 
 
4 Conclusions 
 

(1) Based on the ML flow, high-performance 
ML models were constructed for the mutually 
exclusive four-label and the non-mutually exclusive 
five-label HEAs phase classifications. 

(2) The interpretability analyses in the four- 
label phase classification demonstrated important 
descriptors of γ, Dr, Dχ and 0KV = , and further 
indicated the influence of different descriptor value 
ranges on different phase forms. The 0KV = which 
has never been raised and emphasized for HEAs 
phase classification was found, and the concept of 
transition range was proposed. The results could 
guide the exploration of HEAs with desired phase. 
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(3) The generalization and exploration abilities 
of the model were successfully validated in 
(CoFeNiMn)1−xMox HEAs and the influence of Mo 
content on the phase formation was revealed. 

(4) In order to improve the hardness prediction, 
the phase prediction results and the physical 
parameters were added to the PTR, and the stacking 
method was employed. The accuracy of HEAs 
hardness prediction by CNN+PTR model could be 
significantly improved by ensemble learning and 
information addition of structure and physical 
parameters which are mostly related to the phase 
formation. 
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基于成分、常见物理、元素性质描述符和 

元素周期表表示的高熵合金相分类 
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3. 哈尔滨理工大学 电气与电子工程学院 工程电介质及其应用教育部重点实验室，哈尔滨 150080 

 
摘  要：相分类对于高熵合金的设计具有明显的指导意义。为了实现互斥和非互斥相分类，收集了成分描述符、

常用物理参数描述符、元素属性描述符以及通过卷积神经网络从元素周期表表示(PTR)中提取的描述符。在具有

丰富信息的特征中进行适当选择有助于相分类。基于随机森林，四分类的准确率和五分类的平衡准确率分别提高

到 0.907 和 0.876。通过可解释性分析总结了 4 个最重要特征的作用，并发现一个新重要特征。通过对

(CoFeNiMn)1−xMox 进行相预测，证明了模型外推能力和 Mo 元素的影响。相信息有助于硬度预测，分类结果与硬

度数据的 PTR 相耦合，预测误差(均方根误差)降低到 56.69。 

关键词：高熵合金；相分类；特征工程；周期表表示法；卷积神经网络；硬度预测 
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