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Abstract: To improve the slow kinetics and poor mechanical strength of aqueous silver peroxide—aluminum (AgO—Al)
battery cathode materials, the effects of different binders including polytetrafluoroethylene (PTFE) and
polyvinylpyrrolidone (PVP) on the AgO cathode material were investigated. The samples were characterized by
scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV),
electrochemical impedance spectrum (EIS), and galvanostatic discharge. In contrast to the pure AgO and AgO—PTFE
electrodes, the results demonstrated that the PVP effectively bound the electrode materials together. The prepared
AgO—PVP as the cathode material of AgO—Al batteries could improve the battery capacity, exhibiting a high specific
capacity (389.95 mA-h/g at 500 mA/cm?), a high operating voltage (1.75 V at 500 mA/cm?), a maximum energy density
(665.65 W-h/kg), and a maximum power density (5236 W/kg). Furthermore, the electrochemical mechanism of the
AgO—-PVP cathode material was examined, revealing that the electrode exhibited rapid ion diffusion and effective
interfacial ion/electron transport.
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other non-lithium anode materials. The aluminum
anodes have garnered considerable interest due to
their abundant resources, high theoretical capacity,

1 Introduction

Aqueous silver peroxide—aluminum (AgO—Al)
batteries have gained worldwide attention for their
high energy density, long storage time, and fast
discharge rate, making them ideal for military
underwater applications, aerospace industries, and
other fields [1-3]. The anode material is an
aluminum (Al) alloy with low corrosion
characteristics and is volumetrically superior to

and safe chemistry [4-9]. The AgO cathode also
plays a wvital role in the electrochemical
characteristics of batteries. A silver peroxide (AgO)
battery was developed to increase the energy
density of silver oxide. For a 2e reaction, the silver
peroxide (AgO) has a theoretical capacity of up to
432 mA-h/g, which is approximately double the
specific capacity (231 mA-h/g) of monovalent silver
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oxide (Ag,0) [10]. Ag>O can increase the battery’s
internal resistance during the discharge process due
to its comparatively high electrical resistance.

Furthermore, AgO and its derivatives exhibit
exceptional discharge rates, and often regarded as
optimal materials for high-power electrodes [11].
The cathode limits the capacities of the AgO—Al
battery to minimize the amount of expensive silver
employed. In other words, the overall properties of
AgO—Al battery are influenced mainly by the
electrochemical behavior of the AgO cathode,
rather than the aluminum anode.

Cathodes are typically composed of active
material, binder, and conductive additive. Binders
are an essential component that plays a critical role
in maintaining the electrical connectivity of active
material [12—15]. The binder plays a vital role in
electrode formulation since it maintains the
physical structure of the electrode. The electrode
would disintegrate in the absence of a binder.
Anideal binder must possess a high adhesion
capacity to attach the electrode materials to the
current collector, as well as the ability to establish a
superior electric network between the active
material and conductive material [16,17]. The AgO
cathode exhibits poor mechanical strength leading
to the detachment of the active material and
subsequent decrease in electrode capacity during
the discharge process.

An effective method for the electrochemical
performance of AgO cathode is to enhance the
mechanical stability of the electrode by adding a
small amount of binder to the AgO electrode.
Previous studies have extensively focused on binder
materials, with polytetrafluoroethylene (PTFE)
being the predominant binder utilized in the
majority of AgO batteries [18—20]. Polyvinylidene
fluoride (PVDF) [21], polyethylene oxide (PEO)
[22] and polyacrylonitrile (PAN) have also been
used as binders in the production of silver oxide
cathodes for high-rate reserve batteries [23,24].
However, PVDF must be utilized in combination
with the costly and hazardous reagent N-methyl-2-
pyrrolidone (NMP). PAN shows instability in alkali
and can be hydrolyzed to sodium polyacrylate in
concentrated alkali above 80 °C, whereas PEO has
weak thermal stability. Addressing this issue will
not only determine the potential applications of
additives but also significantly contribute to the

advancement of AgO—Al batteries. PVP, a synthetic
water-soluble polymer molecule, offers promising
prospects due to its affordable cost, minimal
toxicity, and superior biocompatibility.

This study introduces a simple and highly
effective method for preparing AgO cathodes using
various additives such as polytetrafluoroethylene
(PTFE) and polyvinylpyrrolidone (PVP), and
compares the electrochemical performance,
morphology, and microstructure of the as-obtained
AgO cathode materials during discharge. The
results of electrochemical performance demonstrated
that the AgO cathode with PVP binders had a high
voltage plateau, enabling it to produce a much
greater specific capacity at high discharge current
densities compared to the pure AgO electrode or
the electrode with PTFE binder. The reaction
mechanism was investigated using a range of
characterizations. The results confirmed that the
electrode with a PVP binder exhibited the lowest
charge transfer resistances and the highest ion
diffusion rate. This improvement was attributed to
the enhanced mechanical strength of the electrode,
which facilitated better contact between the active
substance and the electrolyte. This study offers
environmentally friendly and high-performance
AgO cathodes for aqueous AgO—Al batteries.

2 Experimental
2.1 Preparation of AgO cathode and
characterization

All the chemical reagents were of analytical
grade and used without any further purification. A
high-purity AgO powder material was synthesized
according to a previous report from our group [25].
To fabricate the AgO electrode, a binder solution
(PVP blended with deionized water or PTFE
blended with anhydrous ethanol) was combined
with AgO active material to produce a homogenous
slurry. This slurry was then poured onto a
gold-plated current collector and dried at 60 °C
for 5h in a vacuum oven. The PVP has a
polymerization degree of 17 and an approximate
average relative molecular mass of 10000. Figure 1
depicts the chemical structures of the binders, polytetra-
fluoroethylene (PTFE) and polyvinylpyrrolidone
(PVP), whereas Table 1 displays the composition of
AgO cathode samples.
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Fig. 1 Chemical structures (a, c) and monomer ball and
stick models (b, d) of PTFE (a, b) and PVP (c, d)

Table 1 Compositions of slurries for AgO cathodes

Cathode slurry Mass ratio
Sample .
composition of slurry
AgO—-N AgO 100
AgO—-PTFE AgO: PTFE: Super P 95:2.5:2.5
AgO—PVP AgO: PVP: Super P 95:2.5:2.5

The morphology and microstructure of the
prepared materials were assessed using field
emission scanning electron microscopy (FE-SEM,
TESCAN MIRA4, USA) and high-resolution
transmission electron microscopy (HRTEM, JEM
F200, JOEL). The crystal structures of all samples
were recorded using a D/max 2500 X-ray powder
diffractometer with a CuK, 40 kV/250 mA X-ray
source. To analyze the chemical elements and
valence state of the elements, X-ray photoelectron
spectroscopic (XPS) analyses were performed using
an ESCALAB 250 XI equipped with an Al
monochromatic source and a charge neutralizer.

2.2 Electrochemical measurements

The electrochemical
carried out using a standard three-electrode system,
where the prepared AgO cathodes were used as the
working electrodes, while a platinum sheet (4 cm?)
and a mercury/mercury oxide (Hg/HgO) electrode
were used as the counter electrode and reference
electrode, respectively. The active electrodes were
developed by applying a layer of AgO slurry onto
a gold-plated copper mesh current collector
measuring 1 cm?. For the experiments, a cathode
with a mass of 246 mg was employed directly.

The galvanostatic discharge was measured
using a Neware battery system (CT-4008-5V6A-S1)

measurements  were

from China. CV and EIS were performed at room
temperature using an electrochemical workstation
(CHI660E, Chenhua, China). The potential during
the CV measurements exhibited a range of 0.824—
1.824 V (vs RHE). The EIS measurements were
between 1x1072 and 1x10°Hz, with a SmV AC
modulation amplitude. The results of the proposed
equivalent circuit were evaluated by fitting the
data using the Z-view electrochemical impedance
spectroscopy analysis software (Scribner, Inc.).

The specific capacity (C), energy density (E),
and power density (P) of the batteries were
calculated using the following equations:

C=IAt/m (1)
E=1[Udt/m 2)
P=E/At 3)

where I, At, m, and U denote the discharge current,
discharge time, mass load of active material, and
discharge voltage, respectively.

The potentials observed against Hg/HgO were
converted to the scale of the reversible hydrogen
electrode (RHE) using the given equation (prue=
@HeHzo1t0.098+0.059pH).

3 Results and discussion

3.1 Material characteristics

Three different electrodes were prepared for
electrochemical assessments, consisting of pure
AgO, AgO combined with PTFE, and AgO
combined with PVP. These electrodes were
designated as AgO—N, AgO—PTFE, and AgO—PVP,
respectively. Figure2  depicts a schematic
representation of the design and preparation process
of the AgO—PVP cathode. Initially, a homogeneous
mixture was prepared by combining AgO (5 g) and
Super P carbon black (0.13 g). After that, the binder,
PVP, which was dissolved in distilled water, was
added to the mixed powder prepared in the first step,
following the mass ratio specified in Table 1. The
mixture was then stirred until it formed a
homogenous slurry. After being evenly coated with
the slurry, the collector was uniformly pressed to
form a 1 mm-thick electrode. The electrode was
then placed in a vacuum-drying oven and baked at
70°C for 5h. The AgO-PTFE electrode was
fabricated using a similar procedure. For comparison,
the AgO—N electrode, composed only of pure AgO,
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was also made using the same method, but without AgO particles were loosely dispersed in the AgO—N
the use of any binders. electrode, the PTFE formed crosslinks with AgO

Figures 3(a—c) demonstrate that the prepared particles in the AgO—PTFE electrode, and the PVP
electrodes have a porous surface structure that was tightly bonded to AgO particles in the
facilitates the transport and diffusion of ions. The AgO—PVP electrode. To evaluate the structure in
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Fig. 3 FESEM images of AgO—N (a), AgO—PTFE (b) and AgO—PVP (c), TEM and HRTEM images of AgO—PVP
electrode (d, e), selected area electron diffraction (SAED) pattern of AgO—PVP (f), high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM) image of AgO—PVP (g), and corresponding elemental
mappings of Ag (h), C (i) and O (j)
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detail, a high-resolution TEM (HRTEM) image of
the AgO—PVP electrode was obtained, revealing
clear lattice fringes and thus confirming the high
degree of crystallinity. The existence of (202) and
(112) crystallographic planes of AgO was
confirmed based on the interplanar distances with
spacings of 0.233 and 0.214 nm, respectively. The
diffraction rings in the selected area -electron
diffraction (SAED) pattern (Fig. 3(f)) revealed the
presence of (100), (110), and (112) planes of AgO.
The comparisons of high-angle annular dark-field
scanning TEM (HAADF-STEM) and elemental
mapping image of AgO—PVP (Figs. 3(g—j)) were
utilized to establish the presence of the uniformly
distributed elements Ag, C and O. The morphological
characteristics of the AgO—PVP cathode exhibit
highly desirable properties for achieving the ultra-
efficient electrochemical performance in AgO—Al
batteries.

3.2 Working mechanism of aqueous AgO-—Al

battery

The AgO—Al battery is an alkaline aqueous
battery composed of silver peroxide (AgO) as the
cathode material, aluminum (Al) as the anode, and
an aqueous alkaline solution as the electrolyte. Al
was selected as the anode due to its electrochemical
characteristics and ease of fabrication. Sodium
hydroxide serves as the electrolyte, facilitating the
electrical conduction within the batteries through
the participation of OH™ ions. The primary chemical
reactions for reduction and oxidation at the cathode
and anode are respectively given as [26]

Cathode:
3AgO(s)+3H,0(1)+6e=—=3Ag(s)+60H (aq) 4

Anode:
2Ag(s)+80OH (aq)=—2Al0,(aq)+4H,O())+6e  (5)

The overall cell reaction is represented as
2Al1(s)+3AgO(s)+20H (aq)—

2A10, (aq)+HO(1)+3Ag(s) (6)

The standard potential of this cell was
calculated utilizing the standard free-energy data.
Theoretical open circuit cell voltage varied between
2.695 and 2.952 V, depending on the oxidation state
of silver. The maximum capacity of the AgO/Ag

pair, as determined by a 2e reaction, was
432 mA-h/g. In addition, AgO and its derivatives

exhibit exceptionally high discharge rates, making
them often regard as optimal materials for high-
power electrodes [11].

However, the operating potential of the
batteries using Al as the anode material is generally
lowered as a result of the parasitic corrosion of
aluminum [27-29]. The reaction describing the
corrosion of aluminum anode is given by
2Al(s)+2H,0(1)+20H (aq)=—2A10,(aq)+3Hx(g)

(7

The corrosion of aluminum at room
temperature resulted in the production of an oxide
layer, which subsequently led to an increase in the
internal resistance of the battery. The optimal
operating temperature for the battery was
determined to be 82.5 °C, as it was observed that
the evolution of H, gas was minimized at this
temperature. The rate of H, evolution increased
twofold for every 10 °C increase [30]. As a result,
the battery selected a temperature of 80—85 °C for
discharge.

3.3 Properties of assembled AgO—Al batteries

To assemble various AgO—Al batteries, AgO
cathodes fabricated with different binders and Al
alloy anodes were utilized. The electrolyte for these
batteries was an aqueous solution comprising
4.5 mol/L. NaOH and 20 g/ Na>SnOs. Na,SnO;
was added to inhibit the corrosion reaction of Al
anode. The galvanostatic discharge profiles of
AgO—Al batteries with cathodes composed of AgO
and various binders at a current rate of 650 mA/cm?
are illustrated in Fig. 4(a). The plateau of discharge
voltage (1.65 V) for the AgO—Al battery with the
AgO—PVP cathode was higher compared with the
other two cathodes. As shown in Fig. 4(b), the open
circuit voltages (OCVs) of AgO—Al batteries with
different cathodes ranged from 2.4 to 2.5 V. As the
discharge current density increased, there was a
linear drop in the discharge voltage. The maximum
output power density of the AgO—Al battery with
AgO-PVP cathode was 1154.25 mW/cm?, which
was higher than that of the AgO—Al batteries with
AgO—PTFE cathode (1085.94 mW/cm?) and pure
AgO cathode (999.00 mW/cm?). This suggests that
the shape of AgO—PVP, which includes a large
specific surface area and porous structure,
facilitates the efficient exposure of active sites. The
rate performance of AgO—Al batteries with
AgO—PVP electrodes was evaluated by measuring
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Fig. 4 FElectrochemical properties of AgO—Al batteries: (a) Galvanostatic discharge curves of AgO—Al batteries

fabricated using different binders under discharge current density of 650 mA/cm? (b) Discharge profiles and

corresponding power densities for cathode with different binders; (c) Comparison of specific capacity of AgO—Al

battery with AgO—PVP cathode under different discharge current densities; (d) Ragone plot of comparing performance
for AgO—Al battery with AgO—PVP cathode to reported literature values

the galvanostatic discharge at different current
densities. Figure 4(c) displays the galvanostatic
discharge curves at various current densities (500,
650, 800, and 1000 mA/cm?) in the voltage range of
2.5-0.3 V. The AgO—Al battery experienced a
decrease in capacity as the current density increased,
mostly because the polarization effect became more
pronounced during discharge [31]. The AgO—Al
battery with AgO—-PVP cathode exhibited an
operating voltage plateau of 1.75V and a
corresponding capacity of 389.95mA-h/g at a
current density of 500 mA/cm?. At the maximum
current density of 1000 mA/cm?, the values were
greater than 1.3 V and 343.22 mA-h/g, respectively.
In addition, the aqueous AgO—Al battery with
AgO—PVP cathode achieved a maximum energy
density of 665.65 W-h/kg and a maximum power
density of 5236 W/kg (based on the mass of AgO),
as demonstrated by the Ragone plot in Fig. 4(d).
These values surpass those reported in existing

literature. Furthermore, the specific capacity of the
battery with AgO—-PVP cathode was either
comparable to or higher than that of previously
reported silver-based batteries (Table 2), including

Table 2 Comparison of cathodes used in silver-based

batteries
Cathode  Current density/ Sp eciﬁ ¢
material (mA-cm?) P a01t}i/l Ref.
(mA-h-g)
AgO/CMC 600 344 [18]
AgO/PAN 600 313 [23]
AgO/PVDF 600 321 [23]
AgO/
CMcg&SBR 1000 285 [25]
Ag nanobelts 10 260.7 [31]
Ag@AEVs4 12° 176 [32]
AgO—PVP 500 389.95 This work
AgO-PVP 1000 343.22  This work
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AgO/CMC (344 mA-h/g at 600 mA/cm?) [18],
AgO/PAN (313 mA-h/g at 600 mA/cm?) [23],
AgO/PVDF (321 mA-h/g at 600 mA/cm?) [23],
AgO/CMC&SBR (285 mA-h/g at 1000 mA/cm?)
[25], Ag nanobelts (260.7 mA-h/g at 10 mA/cm?)
[31], and Ag@AgV3s4 (176 mA-h/gat 12 A/g) [32].
This confirms that PVP, as a binder, is superior in
improving the discharge performance of the AgO
cathode in the aqueous AgO—Al battery.

3.4 Electrochemical reaction kinetics
A cyclic voltammetric analysis was conducted
to investigate the energy storage mechanism of the
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AgO-PVP electrode. The CV curve at a scanning
rate of 1.0 mV/s exhibited two pairs of redox
peaks, as illustrated in Fig. 5(a). AgO/Ag>O and
Ag,0O/Ag are two redox couples for the AgO—PVP
electrode [33]. Two distinct oxidation peaks were
identified during the process of converting Ag to
Ag,0 and Ag,O to AgO. These peaks occurred at
1.38V and 1.59V (vs RHE), respectively. The
reduction peaks for the conversion of AgO to
Ag,0 and Ag,O to Ag were observed at 1.33 and
1.02 V (vs RHE), respectively. These reactions are
divided into two steps, as illustrated in Egs. (8) and
(9) [34-41]:

(b)
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Fig. 5 (a) Cyclic voltammogram of AgO—PVP electrode at scanning rate of 1.0 mV/s; (b) Cyclic voltammogram of
AgO—PVP electrode at different scanning rates; (c) lg I, versus lg v plots of three peaks in CV curves; (d) Capacitive
and diffusion contribution rates of CV curves; (e) Nyquist plots for AgO—N, AgO—PTFE and AgO—PVP (Inset: enlarged
plot in high-frequency range); (f) Relationship between real part of impedance and low angular frequency ()
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Step I: 2AgO+H,0+2e=—Ag,0+20H" (8)
Step II: AgyO+H,0+2e=2Ag+20H" 9)

Following that, a series of CV experiments
were conducted at different scanning rates (0.2 to
1.0 mV/s) to investigate the electrochemical storage
kinetics of the AgO—PVP cathode (Fig. 5(b)). The
voltages of Peaks 1 and 2 increased gradually with
the scanning rate, whereas the voltage of Peaks 3
and 4 decreased. The wvariation in voltage and
gradual removal of reduction Peak 4 at higher
scanning rates can be attributed to the electrode
polarization. The relationship between the peak
current (/, mA) and the scanning rate (v, mV/s) is
described by the equation of /=aV’, where a and b
are adjustable constants, and the b wvalues are
obtained from the fit. In general, the value of b
falls in the range of 0.5—1. A value of »#=0.5 implies
a diffusion-controlled electrochemical process,
whereas a value of b=1 indicates a capacitive-
limited process [42]. From the fitting plots of peaks
1, 2 and 3 in Fig. 5(c), it can be observed that the
values of b for each peak were 0.25, 0.53 and 0.48,
respectively. These values indicate that the
AgO-PVP electrode undergoes a diffusion-
controlled electrochemical reaction. Furthermore,
according to the equation of /=k\v+kav'?, the terms
kv and kv'? represent the capacitive-limited and
diffusion-controlled components, respectively [43].
Figure 5(d) shows that at the scanning rates of 0.2,
0.4, 0.6, 0.8 and 1.0 mV/s, the respective diffusion
contributions were 85%, 73%, 65%, 58% and 50%
respectively. This further confirms that the diffusion
process plays a significant part in the overall
capacity. The high diffusion contribution rate is
advantageous due to the porous structure, which has
a large specific surface area and numerous reaction
sites, which facilitates rapid ions diffusion.

An electrochemical impedance spectroscopy
(EIS) analysis was conducted using an open circuit
voltage (OCV) to investigate the electrochemical
kinetics and resistance of the AgO cathodes with
various binders. Figure 5(e) presents Nyquist plots
of electrodes AgO—N, AgO—PTFE, and AgO—PVP.
An inset of Fig. 5(e) illustrates the relevant fitting
equivalent circuit. All the curves showed a similar
shape, indicating a slash in the low-frequency
region and a semicircle in the high and middle-
frequency regions. The semicircle and slash were
associated with the charge transfer resistance (R.)

and diffusion migration resistance (R;), respectively.
The diameter of the semicircle in the high-
frequency range was shown to be directly
connected to the charge-transfer resistance. The R
values of AgO—N, AgO-PTFE and AgO-PVP
measured by EIS analysis were 5.09, 3.93 and
0.84 Q, respectively. The AgO—PVP electrode had
the lowest charge transfer resistance, indicating its
exceptional electrochemical performance.

To further validate these findings, the diffusion
coefficient for OH™ ions (Dom) was calculated
using Egs. (10) and (11) to assess its capacity for
diffusion within the material.

Z.,=R AR +ocw™"? (10)
R*T?
Pow =3 i, (0

In Eq. (10), o represents the Warburg factor,
which may be determined from the linear fitting
between w2 and Z. (Warburg impedance) at low
frequency, as shown in Fig. 5(f). The fitted values
of b for the AgO—N, AgO—PTFE and AgO—-PVP
electrodes were 1.90, 0.93 and 0.77, respectively.
The diffusion coefficient for OH™ ions in the three
cathodes was determined using Eq. (11), where R,
T, A, n, FF and C denote the molar gas constant,
temperature, electrode area, electron transfer
number of OH™ ions, Faraday constant, and
concentration of OH™ electrolyte, respectively. By
analyzing the o values obtained from Fig. 5(f), it
was determined that the OH™ diffusion coefficient of
AgO-PVP is significantly greater than that of
AgO—PTFE and AgO—N. The AgO—PVP electrode
had the highest rate of OH™ ion diffusion, providing
further evidence of its low diffusion resistance.

According to the CV and EIS analysis, it can
be concluded that the AgO—PVP structure provides
the electrode with rapid ion diffusion and effective
interfacial ion/electron transport capabilities.

3.5 Energy storage mechanism

To gain a deep understanding of the process of
energy storage, various characterizations were
conducted to highlight the operational mechanism
of the AgO—PVP electrode during the discharging
phase. Figure 6(a) depicts the discharge process of
the AgO—PVP electrode at a current density of
250 mA/cm?. The mechanism of the discharge
process was investigated by examining various
discharge states, which are represented by Points 4
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to 7 on the curve. To obtain a more comprehensive
understanding of the energy storage mechanism of
AgO—-PVP cathode materials, numerous ex-situ
XRD experiments were conducted to analyze the
structural evolution of the material across different
discharge states (Figs. 6(b,c)). At a charge of
1.02 V (B), the distinctive peaks (111), (002), (111)
and (202) of AgO (JCPDS#43-1038) were still
visible at angles of 32.2°, 34.2°, 37.2° and 39.4°,
respectively. The analysis also demonstrated the
gradual evolution of the distinctive peak (111) of
Ag O (JCPDS#41-1104) at an angle of 32.8°,
indicating the intercalation of OH™ ions into the
cathode interlayer. As the voltage was discharged
further to 0.92 V (C), the signal from AgO nearly
disappeared and the intensity of the distinct peak
(111) at 32.8° of Ag,O decreased. Moreover, the
formation of the final product silver (JCPDS#
04-6436) was observed upon additional discharge
of voltage to 0.72 V (D). The discharge state of £
and / was only observed in the case of silver,
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followed by a relatively rapid drop in discharge
voltage.

The chemical configurations of the AgO—PVP
cathode were examined using ex-situ XPS
spectroscopy in the pristine, discharged condition B,
and completely discharged state. Figure 6(d) displays
the complete XPS spectrum, revealing no
noticeable change in shape. The high-resolution
XPS spectrum for Ag3d displayed two distinct
peaks (Fig. 6(¢)) at energy levels of 367.88 and
373.58 eV. These peaks correspond to the Ag 3ds.
and Ag 3ds; states, respectively. The analysis of the
Ag 3ds, spectrum revealed the existence of two
distinct peaks at 366.98 and 368.12 ¢V, which
corresponded to the Ag” and Ag®" states, respectively.
Furthermore, the deconvoluted Ag 3ds» spectrum
displayed two distinct peaks at 372.78 and
374.18 eV, which can be attributed to Ag” and Ag*
ions, respectively. The presence of Ag®" species
was observed exclusively in the 4 and B states
(Fig. 6(e)). The Ag 3d;, peak shifted towards higher

(b) Discharge (C)
450 1:-028V
oo \ H:0.08V
< - ,;L A G012V D
E30r /P2 | e ey
E - ) . E082V| c \
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Fig. 6 Mechanistic study of discharge storage: (a) Discharge curves of AgO—PVP electrode at current density of
250 mA/cm?; (b) Evolution of ex-situ XRD patterns of AgO—PVP cathode during discharge process; (¢) Selected ex-situ
XRD patterns from (b) at scanning angles of 25°—40°; (d) Ex-situ XPS full survey spectra of AgO cathode in different
discharge states; (e) Ex-situ high-resolution XPS spectra of Ag 3d for AgO cathode in different discharge states
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binding energy and disappeared during full
discharge, suggesting an increase in Ag" species at
approximately 1.02 V due to the incorporation of
OH™ ions into the cathode during discharge. This
led to further reduction of Ag*" species to Ag™ and
ultimately to Ag, aligning with the findings of
ex-situ XRD.

Figure 7 depicts SEM images of the AgO—PVP
electrode at several discharge voltages. Compared
to the morphology of the original electrode shown
in Fig. 3(c), fine nanoparticles were found to be
attached to the flaky AgO particles when discharged
to 1.02V (Fig.7(a)), and the flaky particles
gradually disappeared when discharged to 0.92 and
0.12V (Figs. 7(b) and (c)), leaving only fine
nanoscale particles. The porosity of the electrode
surface increased even more when it was fully
discharged (Fig. 7(d)), as the binder was strongly
bound with the nanoparticles. During discharge, the
active component AgO underwent reduction to
Ag>0, which ultimately reduced to Ag. During the
reduction process, the volume of the surface
particles decreased due to the high density of Ag,
resulting in an increase in porosity at the end of
discharge.

The TEM image of the fully discharged state
of the AgO—PVP electrode is shown in Fig. 8. The

surface phase of the discharge result is evident as
flake nanoparticles, as depicted in Figs. 8(a) and (c).
The seclected area electron diffraction (SAED)
pattern (Fig. 8(b)) reveals distinct diffraction rings
that indicate the presence of phases corresponding
to the (111), (002), (022), and (222) planes of Ag.
The HRTEM image of the electrode in the fully
discharged state, as depicted in Fig. 8(d), reveals
lattice dimensions of 0.207 and 0.227 nm. These
dimensions correspond to the (200) and (111)
crystal lattice planes of the cubic Ag phase,
respectively. A silver layer of the discharged product
promotes the participation of unreacted AgO active
material in the electrochemical reaction due to its
higher conductivity. The exceptional performance
of the AgO—Al battery can be attributed to the
remarkable conductivity of AgO and its reduction
product of Ag.

The aforementioned ex-situ measurements and
analyses provide insight into the superior electro-
chemical performance of AgO—PVP electrodes. The
porous structure of the electrode surface facilitates
the diffusion and migration of ions. Due to the
semiconducting properties of AgO and the
insulating properties of the PVP binder, both AgO
and its resulting silver product serve as conductors
to establish electrical connections between the

Fig. 7 SEM images of AgO PVP electrode at different dlscharge voltages: (a) 1.02 V; (b) O 92 V (c) 0.12V; (d) Full

discharge
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Fig. 8 Characterization results of AgO—PVP cathode at fully discharged state: (a, ¢) TEM images; (b) SAED pattern;
(d) HRTEM image and corresponding FFT pattern (inset)

cathode particles and the cathode pellet. In
conclusion, the AgO—Al batteries made using the
AgO—PVP electrode show great potential for use in
energy storage systems.

4 Conclusions

(1) A systematic investigation of aqueous
AgO—Al batteries using several binders (none, PVP,
and PTFE) showed that the cathodes fabricated with
PVP binder exhibited superior -electrochemical
performance.

(2) The assembled aqueous AgO—Al battery
employing AgO—PVP cathode achieved a maximum
energy density of 665.65 W-h/kg, maximum power
density of 5236 W/kg, and exhibited excellent rate
capability (389.95 and 343.22 mA-h/g at 500
and 1000 mA/cm?, respectively). The mechanistic
studies reveal that the rapid diffusion of OH™ ions
and electron transport play a crucial role in
determining the overall capacity of the AgO—PVP
cathode material.

(3) According to the findings of CV and EIS
analysis, it can be concluded that the AgO—PVP
structure imparts rapid ion diffusion and effective

interfacial ion/electron transport capabilities to the
electrode. The study demonstrates the promising
application prospects of the AgO electrode when
combined with PVP as a binder. It also presents a
new strategy for investigating and developing
high-performance aqueous AgO—Al batteries.
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