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Abstract: The probability of phase formation was predicted using k-nearest neighbor algorithm (KNN) and artificial
neural network algorithm (ANN). Additionally, the composition ranges of Ti, Cu, Ni, and Hf in 40 unknown amorphous
alloy composites (AACs) were predicted using ANN. The predicted alloys were then experimentally verified through
X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The prediction accuracies of
the ANN for AM and IM phases are 93.12% and 85.16%, respectively, while the prediction accuracies of KNN for AM
and IM phases are 93% and 84%, respectively. It is observed that when the contents of Ti, Cu, Ni, and Hf fall within the
ranges of 32.7-34.5 at.%, 16.4—17.3 at.%, 30.9-32.7 at.%, and 17.3—18.3 at.%, respectively, it is more likely to form
AACs. Based on the results of XRD and HRTEM, the Ti34Cui7Niz136Hf17.64 and TizsCuisNizo 4sHf1656 alloys are
identified as good AACs, which are in closely consistent with the predicted amorphous alloy compositions.
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1 Introduction

Intelligent machine learning involves training
a flexible and highly nonlinear model based on
available data. It is particularly useful for handling
the complex relationship among the material
composition, phase structure, and performance,
which may be challenging to address using
traditional methods based on physical principles. As
a result, intelligent machine learning has emerged a
valuable tool for predicting material performance,
screening, and optimizing component design [1-5].

In the context of predicting phase selection in
multi-principal component alloys, ISLAM et al [6]
achieved a remarkable prediction accuracy of
99.2% using a neural network model. However, the
accuracy of phase prediction in alloys will vary
depending on the specific algorithms used. For
instance, HOU et al [7] integrated empirical
knowledge models into the prediction process,
leading to prediction accuracies exceeding 83.3%.
Among the 13 feature parameter selections,
different parameter combinations yield varying
accuracies in predicting the phases of high-entropy
alloys (HEAs). ZHOU et al [8] reported prediction
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accuracies of 98.9%, 95.6%, and 97.8% for AM,
IM, and SS phases, respectively, using an artificial
neural network (ANN) model. They also
emphasized the importance of feature parameters
based on potential-energy distribution function
(PEL) in phase prediction. Therefore, machine
learning exhibits high accuracy in phase selection
for multi-principal component alloys and HEAs.
However, when it comes to predicting the optimal
performance of the alloy components, LI et al [9]
proposed a data-driven approach to expedite the
design of magnetic HEAs that combine saturation
magnetization (M) and hardness (H). They
developed a multi-objective optimization algorithm
to search for the optimal alloy composition. The
support vector regression (SVR) model achieved
the smallest root mean square error (RMSE) of
13.9 A‘m%*kg for magnetization prediction, while
the LightGBM model attained the smallest RMSE
value of HV 57.6 for hardness prediction.

The selection of feature parameters is a crucial
aspect in both phase selection and performance
prediction of alloys. It is essential to strike a
balance between the number of selected feature
parameters, as a small number may result in
decreased prediction accuracy while too many can
make the prediction process cumbersome. LI
et al [10] proposed an effective approach for
reducing the number of feature parameter selection
without sacrificing accuracy. They employed five
models to predict magnetic performance (B;s) and
maximum critical size (Dmax). The XGBoost model
achieved an impressive R® value of 0.93 for
predicting Bs and 0.68 for predicting Dmax. The
results demonstrate that machine learning exhibits
excellent generalization performance in the field of
phase selection and performance prediction of
alloys.

Intelligent machine learning has been proven
to be highly effective in predicting the composition
and glass-forming ability of multi-principal
amorphous alloys (AMs) [11]. Additionally, it can
also predict key parameters that influence the larger
casting diameter of amorphous alloys [11], and
even facilitate the prediction and design ultra-
high strength multi-principal alloys [12]. This
demonstrates that intelligent machine learning is a
powerful method for predicting the composition,
structure, and performance of multi-principal alloys.
Several regression algorithms, including Gaussian

process regression [13], ANN [14] and support
vector machine (SVM) [15], are commonly
employed in this field. Among them, the ANN
model has shown high accuracy in predicting phase
selection for multi-principal alloys, with the atomic
size difference (o) playing a significant role in this
process [16—18]. To predict the phase selection of
AM, IM and SS phases, previous research showed
that a combination of three parameters, namely,
standard deviation of electronegativity (Ay), ideal
mixing entropy (Sia) and o, yields higher prediction
accuracy (P.) compared to a combination of four
parameters, including &, Ay, average enthalpy
change of mixing (AHm) and Siq [19]. Based on this
finding, the present study utilized the three-
parameter combination (0, Ay and Si¢) to predict the
phase selection in amorphous alloy composites
(AACs). By employing intelligent machine
techniques, this approach enables rapid exploration
and establishment of relationships between the
alloy components and phases. Consequently, it
offers valuable insights for the further development
of multi-principal AACs by providing predictions
regarding composition ranges and phase selections.

2 Data and models

2.1 Selected data

In Table S1 of Supplementary Materials, the
compositional phases (110 AM, 110 SS, and 110 IM
phases) and the values of three parameters (5, Ay
and Siq) for 330 alloys are listed [6]. For both the
KNN and ANN models, these 330 data points are
randomly divided into training and testing sets in an
8:2 ratio, meaning that 80% of the data is used for
training and 20% for testing.

2.2 KNN model

One simple approach to determine the
category of a sample is to directly compare its
similarity with the category of training samples and
classify it as the one with the highest similarity. The
KNN algorithm was first proposed by COVER and
HART in 1967 [20]. Its core idea is to select the &
sample attributes that are closest to those of the
experimental and training samples and consider
them as a set. Then, through voting, the category
with the highest number of attributes from this set is
determined as the final predicted category for the
sample. In the KNN algorithm, similarity is
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quantified using distance (d), which is typically
calculated using the Euclidean distance formula as
follows [21]:

dx) = S0 - 3P (1)

where x;and y; represent the known coordinates of
two points, respectively, and d(x, y) represents the
distance between these two points.

2.3 ANN model

Artificial neurons serve as the fundamental
units of information processing, existing between
different layers in a neural network. These layers
typically include an input layer, a hidden layer, and
an output layer. The hidden layer comprises
multiple layers, rather than just a single one. In this
study, the backpropagation (BP) ANN algorithm
is employed for data processing and prediction.
The BP neural network, originally proposed by
RUMELHART and MCCLELLAND [22] in 1987,
is a type of unidirectional, multi-layer feedforward
neural network. In the hierarchical structure of
multi-layer feedforward neural networks, each layer
of neurons establishes connections with the next
layer through complete interconnection. There are
no connections between different neurons in the
same layer, nor can a certain layer skip and make
cross-layer connections with the next layer. By
repeatedly fitting simple nonlinear functions
multiple times, the BP neural network can
approximate complex nonlinear functions. Thus, the
BP neural network performs a highly nonlinear
mapping process from the input to the output. In
this process, an artificial neuron consists of a linear
model and an activation function. The expression
for the linear model is as follows [23]:

y=f(@"x+b) )

where x refers to the input vector; @ represents the
weight vector, which generally reflects the
importance of input values to output categories (A
larger @ value indicates a greater proportion of
input parameters in output characteristics); T stands
for transpose matrix; b refers to the deviation term
vector. ANNSs establish connections between input
and output layers primarily through weights and
bias terms. When the hidden layer is multi-layer, the
output values from the previous layer are used as
new input values through the generalization effect

of the model to generate new output values. The @
and b reveal the fundamental principles of ANNs,
making them crucial parameters to consider in
machine learning.

The reason why ANN model can be connected
into a nonlinear model is the essential role played
by nonlinear activation functions. In BP neural
networks, a commonly used activation function is
represented by the sigmoid function o(x), which is
expressed as [16]

1

o(x)=—— (3)

The sigmoid function can transform an ANN
model into a nonlinear model by introducing
nonlinear elements. The expression of the sigmoid
function ensures that the output values of the
model are confined within the range of [0,1].
This characteristic allows the model to capture and
represent nonlinear relationships in the data.
Compared to linear models, nonlinear models have
better generalization performance.

The basic working principle of neural
networks can be roughly explained from two
aspects. Firstly, when the potential changes caused
by “excited” neurons exceed a specific “threshold”
the neurons will be activated. Secondly, according
to Eq. (2), each iteration multiplies the initial input
value by a certain @ and adds other input values to
the neuron queue. The processed neurons are then
adjusted using b and the output values are
uniformly normalized. By continuously adjusting @
and b through the same operation, the final output
value approaches the actual result. Normalization
processing is typically carried out as follows:

X—X

xr — min (4)

Xmax ~ ¥min

where x' is the normalized input value, x represents
the input value, xmin represents the minimum value
among the input values, and xm.x represents the
maximum value among the input values. The
purpose of normalization is to transform the input
values into a common range of [0,1].

2.4 Experimental procedure

The Ti—Cu—Ni—Zr-Hf and Ti—Cu—Ni—Hf
alloy ingots weigh 20 g each. Each raw material
alloy is in block shape and has a purity greater than
99.9%. The process begins by placing 20 g of alloy
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raw materials into a water-cooled copper crucible in
a vacuum melting furnace for melting. High-purity
argon is used as the protective gas during the
smelting process. Each alloy ingot is melted four
times to ensure uniformity in the chemical
composition of the alloy ingot. After melting, the
molten alloy is transferred to a suction casting
crucible and remelted. It is then cast into a
water-cooled copper mold to form cylindrical
rods with a diameter of 3 mm and a length of
50 mm. The phase composition of the alloys is
characterized using X-ray diffraction (XRD) with
Cu K, radiation at a voltage of 30 kV. To further
analyze the alloys, high-resolution images are
observed using a high-resolution transmission
electron microscope (HRTEM) with an operating
voltage of 200 kV and a JEM—2100F instrument.
Thin samples for HRTEM observation are prepared
using the electrolytic double-spray thinning method
in an electrolyte solution consisting of 25 vol.%
HNOs3 and 75 vol.% methanol at approximately
238 K.

3 Results and discussion

3.1 Phase-selection prediction using k-nearest

neighbor algorithm

Determining the value of parameter £ is crucial
in the KNN algorithm as it directly impacts the
fitting effect of the model on the data, thereby
influencing the prediction accuracy (P:). One
effective method to obtain the optimal k-value in
KNN is through k-fold cross-validation. The
process of k-fold cross-validation involves dividing
the dataset into & segments. Each segment is then
further divided into training and testing sets. The
KNN model is trained on each segment to calculate
the average P. for each model. By comparing the
average P. values, the k-value with the highest
average P. is selected as the optimal value. This
iterative process ensures that the selected k-value
leads to the best overall prediction accuracy. To
evaluate performance of different k-fold cross-
validation methods, the predictions of AM phase
and IM phase were performed on 330 data. Figure 1
illustrates the average P. of AM, IM, and SS phases
for the 15 predictions using various k values.
Additionally, it depicts the correlation coefficient
values (R) obtained from cross-validation with
different numbers of folds.

In Fig. 1(a), the prediction accuracy of three
types of alloy phases increases as the k values
change from 1 to 5. However, when the k values are
within the range from 5 to 10, the prediction
accuracy decreases with an increase in the & value.
In fact, a smaller value of k£ indicates a lower P.
value. This is due to the lack of training data,
leading to underfitting of the model. On the other
hand, a larger value of k results in lower prediction
accuracy. This is because samples that are farther
away from the target sample in the KNN model
contribute to prediction errors. Therefore, selecting
an appropriate value of k is crucial for achieving
higher prediction accuracy. When =5 is chosen,
the P.(AM) value is 92.9%. The highest values
for P(IM) and P¢(SS) are 84.1% and 89.2%
respectively. To assess the accuracy of the model, a
correlation coefficient R is used in conjunction with
statistical indicators.
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Fig. 1 Average prediction accuracies (P¢) (a) and correlation
coefficient (R) (b) for AM, IM, and SS phases predicted
under different & values in k-fold cross-validation of

KNN algorithm

In Fig. 1(b), both the correlation coefficient
and prediction accuracy exhibit the same trend of
change. Additionally, the R value of the AM phase
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is higher than that of the IM and SS phases, and the
prediction accuracy of the AM phase is also higher
compared to the IM and SS phases. When the R
value is larger, there is a corresponding increase in
the prediction accuracy, indicating that the current
KNN model accurately predicts the phase selection
of the three types of alloys under different & values.

When £ is equal to 5, Fig.2 displays the
prediction accuracies, mean squared error (MSE),
and R values of the KNN algorithm for the selection
of AM, IM, and SS phases. A smaller MSE value
indicates a larger P. value for phase selection. The
phase selection of AM phase exhibits a smaller
MSE value, while the phase selection of IM phase
shows a larger MSE value. These results suggest
that the current model achieves a higher P. value
for AM phase selection, but a lower P, value for IM
phase selection.
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Fig. 2 P., MSE, and R values of KNN algorithm (£=5)
for phase selection in AM, IM, and SS phase

In the KNN phase-selection regression
algorithm, the & training samples are selected and
the distances are calculated between these & points
and the sample points to be predicted. Finally,
the category is chosen to which most of the
neighboring training sample points belong to the
output category for predicting unknown sample
points. Therefore, the predicted output value for
phase selection of each alloy can only be 0 or 1,
representing negative or positive examples. In the
regression algorithm for phase selection in SVM,
the prediction accuracy for the AM and IM phases
is 94% and 85.4%, respectively. The predicted
output values for phase selection of each alloy are
also either 0 or 1 [24]. However, in the ANN
phase-selection regression algorithm, the output
values for AM phase selection in Ti—Cu—Ni—Zr
amorphous alloys are continuous values close

to 1 [19]. This is because in the ANN algorithm, the
predicted output values need to be normalized,
resulting in continuous values between 0 and 1. In
order to predict the phase selection of AACs,
machine learning algorithms should generate
continuous values close to 1 when selecting AM
and IM phases. Therefore, both the ANN and KNN
models can be utilized for predicting the phase
composition of AACs. However, in terms of
prediction accuracy P., R, and MSE values, the
ANN model exhibits more advantages compared to
the KNN model.

3.2 Phase selection prediction in AM and IM
phases using ANN algorithm

For the 110 AMs (amorphous high-entropy
alloys), 110 SSs (solid solution high-entropy alloys),
and 110 IMs (high-entropy alloys containing
intermetallic compounds), a well-performing ANN
model can be designed. The model consists of one
input layer, one hidden layer, and one output layer,
with 3 nodes in the input layer, 10 nodes in the
hidden layer, and 1 node in the output layer. Due to
the small size of the selected dataset (330 samples),
choosing an ANN with one hidden
demonstrates better prediction accuracy and
generalization performance compared to a
multi-layer deep neural network. This decision is
made considering the characteristics of the available
data and the complexity involved in training the
model [19]. Using a hidden layer in this work will
yield the improved prediction results. The number
of nodes in the hidden layer is also a crucial factor
to consider. Different numbers of nodes in the
hidden layer will lead to varying levels of
prediction accuracy, making it necessary to
determine the optimal number through testing.
According to the results of 15 tests of 30 AM alloys
presented in Table S2 in Supplementary Materials,
it was found that the prediction accuracy and
generalization performance are optimal when the
hidden layer contains 10 nodes.

Figure 3 illustrates the average P, R and MSE
values for the AM and IM phase selections. The
findings indicate that in the prediction of the AM
phase for 330 alloys, the average P. value for the 15
test sets using three parameter combinations of
O+ Ay + Sia is 93.12%. This value is slightly lower
than the average P. value (94.5%) reported in
Ref. [19] for the same three parameter combinations.

layer
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However, the current learning model still
demonstrates a high P, value for this dataset. On the
other hand, in the prediction of the IM phase
selection, the P. value for the test set of 330 alloys
is 85.16%. Therefore, the current model exhibits
higher P.(AM) values and lower P.(IM) values.
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Fig. 3 P., R and MSE values of 330 alloys in AM and IM
phase predictions using ANN model

In Fig. 3, the larger the R value, the higher the
P value. The R(AM) value is 0.826, while the R(IM)
value is 0.613, indicating that the P((AM) value is
greater than the P.(IM) value. A smaller MSE value
indicates that the predicted value is closer to the
true value, and also corresponds to a higher P.
value. The AM phase selection yields a predicted
MSE value of 0.069 for 330 alloys, which is smaller
than the MSE value obtained with IM phase
selection (0.148). This suggests that the model has a
higher P.(AM) value and a lower P,(IM) value.

In an ANN model, as the threshold of each
alloy unit approaches 1, the phase composition of
the alloy gets closer to the true value and the
neuronal activation level increases. Conversely,
when the threshold of each alloy unit approaches 0,
the true value of the alloy’s phase composition will
be suppressed. In the case of predicting phase
selection for the 330 alloys, only 15 predicted
values are obtained for phase selection, and the
specific threshold for each alloy unit is unknown.
When the threshold of an alloy unit approaches 1,
the predicted phase becomes closer to the actual
phase, indicating a higher P. value for the alloy’s
phase selection. During each prediction, an alloy
will have a threshold. By summing the absolute
values of the 15 predicted thresholds, the sum of
these 15 predicted values is obtained, as shown in
Fig. 4(a). When the predicted value is greater than
0.5, it indicates a positive example for the phase

selection of the alloy. Conversely, when the
predicted value is less than 0.5, it represents a
negative example. If the real category matches the
predicted category, it is represented as “true”; if
they are different, it is represented as “false”.
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Fig. 4 Sum of 15 predicted values for AM (a) and IM (b)
phases in 330 alloys

In the prediction of AM phase selection for
110 AM alloys, it was found that for 9 alloys, the
total of their 15 predicted values is less than 7.5.
This indicates that these 9 alloys are false negative
examples, meaning that their actual AM phase was
not correctly predicted. On the other hand, when the
sum of the 15 predicted values fluctuates around 15,
it suggests a higher degree of neural activation,
indicating a closer proximity of the predicted AM
phase to the real AM phase of the alloy. Regarding
the prediction of the AM phase for 110 SS and 110
IM alloys, only a small number of these alloys have
predicted values greater than 7.5. This suggests that
the phase prediction for these particular alloys is
prone to false positives, meaning that their
predicted AM phase does not align with the actual
phase of the alloy. False negative and false positive
examples have an impact on the P. value of phase
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selection in AM alloys. In Fig. 4(b), for the
prediction of IM phase selection, the sum of 15
predicted values for certain AM and SS phases
exceeds 7.5, resulting in more false positive
samples. Conversely, for some IM alloys, the sum
of 15 predicted values falls below 7.5, leading to
more false negative samples. The presence of a high
number of false positive and false negative
examples contributes to a lower P, value for phase
selection in IM alloys.

In Fig. 4(a), it is observed that 15 predicted
values of AM alloys, representing 18.2% of the
total, fall within the range of 7.5 to 13.0. Although
these predictions correctly identify the alloys as
positive examples, a notable discrepancy exists
between this range and the total number of
15 alloys. This suggests that the AM alloys within
the 18.2% group exhibit a weaker activation of
neurons in AM phase-selection prediction compared
to the AM alloys belonging to the 74.6% group.
Consequently, this indicates a lower probability of
these 21 AM alloys forming amorphous structures.
To further investigate these 21 alloys, their
respective 15 predicted values for AM and IM
phase selection are included in Table 1 and visually
represented in Fig. 5.

In Fig. 5, the aggregation of the 15 predicted
values for the 10 alloys in the IM phase prediction
surpasses the threshold of 7.5. This observation
suggests that these 10 alloys are falsely identified as
positive examples in the prediction of the IM phase.
Despite this, their high predicted values also
indicate a relatively high level
activation during the formation of the IM phase. In
essence, these 10 alloys display a noteworthy neural
activation when it comes to selecting both AM and
IM phases. This implies that these alloys have the
potential to form amorphous composites containing
a mixture of amorphous and crystalline structures.

In the context of model learning, the
aggregation of 15 predicted values for the
Zr7Ta;6Ti19Nb2,Si26 alloy, when considering both
the AM and IM phase selections, exceeds the
threshold of 7.5, reaching 10.47 and 10.08,
respectively. Notably, in the absence of the Si
element, the quaternary Zr—Ta—Ti—Nb alloy system
exhibits a propensity to form solid solution
alloys [25]. However, to favor the emergence of
amorphous structures, a significant quantity of Si
is incorporated into the alloy, aiming to establish a

of neuronal

Table 1 Sum of 15 predicted values for 21 AM alloys
(Pam and Pim) in AM and IM phase selection, and
experimental (Exp.) and predicted (Pre.) phases

Alloy Pin P Exp. Pre.
Zr17Ta16T119Nb22Sin6 10.47 10.08 AM AM+IM
NisoNbso 9.31 531 AM AM

SrCaYbMgZn 10.85 337 AM AM
SrCaYbMgZnCu 8.17 465 AM AM
SrCaYbLi0.55Mg0.45Zn 826 7.24 AM AM

ErTbDyNiAl 10.51 348 AM AM
Pdy5Sizs 7.76 0.11 AM AM
ZrHfTiCuNi 931 1141 AM AM+IM
ZrHfTiCuFe 946 1171 AM AM+IM
ZrHfTiCuCo 9.12 12.04 AM AM+IM

AIMoNbSiTaTiVZr 8.25 11.63 AM AM+IM
Pd4oCu30NiioP20 10.31 7.08 AM AM
Fe41Co7CrisMo14CisBsY2 8.26 4.06 AM  AM
Co43CrisMo14C1sBgEr, - 12.00 2.46 AM  AM

MggoNijoNdio 9.68 236 AM AM
Pd77Si;7Cus 7.88 8.17 AM AM+IM
Pd4oNisoP2o 12.52 5.01 AM AM

10.55 9.67 AM AM+IM
11.53 9.71 AM AM+IM
12.30 10.35 AM AM+IM

Ti4oCll32Pd1 gZI’] 0
Ti40CusePd14Zr 1o
Ti40CusoPdi0Zr10
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Fig. 5 Sum of 15 predicted values (Pam and Pim) for 21
AM alloys in AM and IM phase selection

eutectic structure alongside the other four
constituent elements. Numerous eutectic clusters
are present within the alloy solution, which
becomes advantageous for an amorphous structure
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to form at a particular cooling rate. In the context of
eutectic structures, the sharing of the Si element
plays a crucial role. When the eutectic solution
containing Si transforms into an amorphous
structure, the remaining elements tend to form a
solid solution, ultimately leading to the creation of
an amorphous alloy composite that incorporates
both amorphous and crystalline structures. Given
this complexity, the phase selection prediction for
the Zri7TaisTi1oNb2,Sizs alloy can indeed lead to
both true positive and false positive examples.

The learning model’s prediction of Zr—Hf—
Ti—Cu—Ni high-entropy amorphous alloy with an
equal atomic ratio in both the AM and IM phases
indicates that both have relatively high predicted
values of 9.31 and 11.41, respectively, which are
greater than the threshold of 7.5. This suggests
that both phases are likely to form in the alloy.
Regarding the composition of ZrHfTiCuNi
high-entropy amorphous alloy, Zr, Hf, and Ti are
known to have a strong tendency to form solid
solutions due to their similar atomic sizes and
electronic structures. When Zr, Hf, and Ti easily
form eutectic clusters with Cu and Ni elements, the
formation of amorphous alloys is facilitated during
the cooling process of the alloy solution. The
critical size for the formation ability of
Zr—Hf-Ti—Cu—Ni high-entropy amorphous alloy is
4 mm. When the cooling rate of the alloy solution is
lower than the critical cooling rate, the alloy
solution tends to form amorphous composites
containing crystals [26]. Therefore, ZrHfTiCuNi
alloy is prone to form amorphous composites with
crystal structures. In the context of learning
prediction, the predicted values of AM and IM
phase selection may show true positive or false
positive examples. As a result, both true positive
and false positive examples are necessary in the
phase selection prediction of the ANN model in
order to accurately predict amorphous composites.

3.3 Prediction of AM and IM phase selection in

amorphous alloy composites

To verify the accuracy of the learning model in
predicting phase selection for AACs, a training set
consisting of 330 alloys was used, while the test set
comprised 30 AACs listed in Table 2. The learning
model performed AM and IM phase selection
predictions on these 30 alloys. Table 2 presents the
three characteristic parameters of the 30 alloys and

the sum of the 15 predicted values for AM and IM
(Pam and Pim) phase selection predictions. In the
case of AM phase selection predictions for the 30
alloys, all Pam values were found to be not less than
11.53. This indicates that the phase predictions for
these 30 alloys are true positive examples, as
depicted in Fig. 6(a). For IM phase selection
prediction, 8 alloys had P, values below 7.5,
suggesting that these 8 alloys were true negative
examples. However, the remaining 22 alloys were
false positive examples, resulting in a precision of
73.3%. Therefore, the current learning model also
demonstrates a high P.(IM) value for the 30 AACs.

When the number of prediction times is
different, it is necessary to normalize the sum of
predicted values. The expressions for normalizing
the sum of predicted values selected by AM and IM
phases (Nam and Nim) are as follows:

N, =1—1213 (5a)
n-;
1 n

Ny =1-=P (5b)
n-;

where n represents the number of predictions, and
P; represents the predicted value for the selection of
phase i. When the values of Nym and Nim are closer
to 1, the activation of neural units for phase
selection is weaker, resulting smaller
probability for the alloy to form that particular
phase. When the normalization value is greater than
0.5, the prediction for phase selection is a true
negative or false negative example. On the other
hand, when the normalized value approaches 0, the
selected prediction is a true positive or false
positive Figure 6(b) illustrates the
normalized values of the sum of 15 predicted values
in AM and IM phase selection predictions for the 30
AACs. Among these, 8 alloys have normalized
values greater than 0.5, indicating that these alloys
represent true negative examples in the IM
phase-selection prediction. On the other hand,
the remaining 22 alloys demonstrate true positive
and false positive examples in the AM and IM
phase-selection predictions, respectively.

In Table 2, it is observed that the addition of
trace amounts of Nb element weakens the glass
forming ability of Cu—Hf-Ti—Nb quaternary
alloy, which is known for its good glass forming
ability [27]. This is evident from the decrease in Pam

in a

example.
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Table 2 Three characteristic parameters of 30 AACs, sum of 15 predicted values (Pam and Pin) in AM and IM phase
selection prediction, as well as normalized values (N.,m and Nim) of predicted values

Sid/(J'molil'Kil) Pam Nam Pim ]vim

Alloy 0 Ay
[(Coo.7F€0:3)0.75B0.2S10.05]96Nbg 14.97 0.09
[(Coo.9Fe0.1)0.75B0.2Si0.05]osNba 15.01 0.09
[(Coo.6Fe0.4)0.75B0.2Si0.05]osNb4 14.96 0.09
[(Coo.8Fe0.2)0.75B0.2Si0.05]osNb4 14.99 0.09

(Cuo.6Hfo.25T10.15)98Nb2 9.37 0.26
(Cuo.cHfo25T10.15)96sNb4 9.28 0.26
(Cuo.cHfo.25T10.15)94Nbe 9.19 0.25
(Cuo.cHfo.25Ti0.15)92Nbg 9.09 0.25
Fes6C036B19.2Si4.sNby 14.94 0.09
[(Feo.5C00.5)0.75B0.2Si0.05]osNb4 14.94 0.09
Fese.sB24C0142Nbs 16.53 0.12
[(Feo.6C00.4)0.75B0.2Si0.05]osNba 14.92 0.10
[(Feo.7C00.3)0.75B0.2Si0.05]osNba 14.90 0.10
Fe72B2oNbsSi4 15.11 0.10
Fess.sB24Co142Nbg 16.66 0.11
(Feo.75B0.15S10.1)9sNb2 12.94 0.08
(Feo.8C00.2)71B23Nbs 16.36 0.11
Fers.71B1429Si7.14Z12. 86 13.73 0.12
Fe73B2oNbsHf; 16.12 0.14
Fe7.sB16SisZrs 2 14.51 0.12
Zr43Be13CuisNijaNbg 13.74 0.24
Zr43Bez4CuioFesNbg 14.44 0.21
Fes7B22YsMos 19.89 0.19
(Feo.75Bo.15S10.1)99Nb; 12.84 0.08
NisZr20.5Ti20AlsCusSia s 10.80 0.24
NigpZiry sTieAlsCusSis 5 10.86 0.24
NisoZr20Ti16Sis 11.27 0.24
NisZr21.5Ti20AlsCusSi3 5 10.77 0.24
(Nig.75B0.2S10.05)96Nb4 14.84 0.08
[(Nio.9Feo.1)0.75B0.2S10.05 ]osNba 14.84 0.09

10.54 13.87 0.075 15.79 0.052
8.83 15.19 0.013 15.82 0.054
10.91 13.30 0.113 15.67 0.044
9.88 14.62 0.025 15.93 0.062
8.46 14.13 0.058 3.66 0.756
8.88 14.02 0.065 4.07 0.729
9.22 13.72 0.085 4.72 0.685
9.49 13.46 0.101 5.00 0.667
11.03 13.10 0.126 15.62 0.041
11.03 13.10 0.126 15.62 0.041
9.07 14.93 0.004 13.40 0.107
10.91 13.58 0.094 14.91 0.006
10.54 14.13 0.058 15.08 0.005
6.78 14.31 0.046 13.62 0.092
9.26 14.61 0.026 14.22 0.052
6.77 13.08 0.128 13.67 0.088
9.19 14.83 0.011 14.38 0.041
6.48 13.82 0.079 10.89 0.274
6.53 14.51 0.033 9.26 0.383
6.96 14.64 0.024 11.97 0.202
11.58 14.68 0.022 4.49 0.701
11.25 14.76 0.016 5.56 0.629
7.65 14.24 0.051 2.01 0.866
6.48 12.53 0.164 13.28 0.115
12.49 11.53 0.231 7.76 0.482
12.34 12.05 0.197 7.50 0.501
8.95 15.15 0.010 2.83 0.811
12.35 11.86 0.209 7.56 0.496
6.88 14.05 0.064 14.87 0.009
8.83 15.16 0.010 15.78 0.052

values from 14.13 to 13.46, and the corresponding
increase in N,m values from 0.058 to 0.101.
Additionally, although the Pi, values remain below
7.5, they increase with the increase in Nb content,
indicating a higher probability of IM phase
formation. Therefore, a higher Nb content leads
to a decrease in the content of amorphous structure
in AACs, and an increase in the content of
intermetallic compounds, which is consistent with

the experimental findings [27]. In fact, this also
provides a new method for machine learning to
predict the amorphous formation ability of alloys.
The enthalpy changes of mixing between Cu—Nb,
Hf-Nb, and Ti—Nb atomic pairs are 3, 4, and
2 kJ/mol, respectively [28]. When the enthalpy
change of mixing between atomic pairs is positive,
the formation of solid solution alloys is similar.
Therefore, with a higher Nb content, the probability
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of forming solid solution increases, inhibiting the
formation of amorphous structures in eutectic
clusters containing Cu—Hf and Cu—Ti atomic pairs.
As the Nb content increases, the glass formation
ability of the alloy decreases, while the probability
of crystal phase formation increases.

3.4 Prediction and experimental verification of
AM and IM phases in some unknown AACs
To predict the formation probability of
amorphous and crystalline phases in unknown
AACs, AM and IM phase-selection predictions
were conducted on 14 Ti—Cu—Ni—Zr—Hf alloys.
The training set consisted of 330 alloys, while the
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test set comprised the 14 Ti—Cu—Ni—Zr—Hf alloys
listed in Table3. Table3 presents the four
parameter values of the alloys, the sum of predicted
values (Pam and Pin), and the normalized values of
predicted values (Nam and Nim) for the AM and IM
phase selection. The element content of the alloy
influences the phase selection, which subsequently
affects the normalization value of the predicted
values.

To determine the relationship between the
content of each element and N,m and Nim, Fig. 7
illustrates the correlation between the molar
fractions of Ti, Cu, Ni, Zr and Hf and Nym and Nim.
In the prediction of AM phase selection, an increase
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Fig. 6 Sum of 15 predicted values (a) and normalized values (b) in AM and IM phase selection predictions for 30

amorphous alloy composites

Table 3 Four characteristic parameters of 14 Ti—Cu—Ni—Zr—Hf alloys, sum of 15 predicted values (Pam and Pin) in AM

and IM phase selection predictions, as well as normalized values (Nam and Nim) of predicted values

Alloy dJ/mm 0 Ay Sis/(Jmol K™ Py Nam Pin Nin

Tiz6.5Cus1.1Nis.4Zr7.6Hfs.4 <3 8.99 0.23 10.60 13.58  0.094 7.77 0.482
Ti27.48Cu49.64Ni6 88Z17.6Hfs 4 3 8.98 0.23 10.73 13.41 0.106 8.10 0.460
Tizs.46Cu4g.18Ni7.36Z17.6Hfs 4 3 8.97 0.23 10.85 13.23  0.118 8.39 0.440
Ti29.44Cuse.72Ni7.84Z17.6Hfs 4 3[29] 8.96 0.23 10.97 13.02  0.132 8.68 0.422
Ti30.42Cuss 26Nisg 32717 6Hfg 4 4[29] 8.95 0.23 11.07 12.83  0.145 8.90 0.406

Ti31.4Cu43 sNig sZr7.6Hfs 4 4[29] 8.94 0.23 11.17 12.62  0.159 9.12 0.392
Ti32.38Cu42.34Ni9 28717 6Hfg 4 4[29] 8.92 0.23 11.25 12.41 0.173 9.31 0.379
Ti33.36Cu40.88Nio76Z1r7.6Hfs 4 <3[29] 8.91 0.23 11.33 12.21 0.186 9.47 0.368
Ti34.34Cu39 42Nij0.24Z17 ¢Hfs 4 <3 8.89 0.23 11.40 11.99  0.201 9.63 0.358
Ti35.32Cu37.96Ni10.72Z17.6Hfs 4 <3 8.87 0.23 11.46 11.79  0.214 9.77 0.349

Ti363Cus6.5Ni1.2Zr7.6Hfs 4 <3 8.85 0.23 11.51 11.61 0.226 9.88 0.341
Ti37.28Cu3s5.04Ni11.68Zr7.6Hfs 4 <3 8.83 0.23 11.56 1142 0239 999 0.334
Ti3s.26Cu33.58Ni12.16Zr7.6Hfs 4 <3 8.81 0.23 11.59 11.27 0249 10.07 0.329
Ti39.24Cus2.12Ni12.64Z17 6Hfs 4 <3 8.78 0.23 11.62 1098  0.268 10.17  0.322
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Fig. 7 Relationship between normalized values and
element contents of 15 predicted values in AM (a) and
IM (b) selection phases for 14 Ti—Cu—Ni—Zr—Hf alloys

in Ni and Ti contents leads to an increase in Num
value, indicating a decrease in the probability of
AM phase formation. Conversely, an increase in Cu
content results in a decrease in Nam value, indicating
an increase in the probability of AM phase
formation. From Fig. 6 and Table 3, it can be
observed that when the Cu content exceeds
45.26 at.%, the critical sizes for the ability to form
amorphous structures in the alloys reduce from 4 to
3 mm. Furthermore, with further increase in Cu
content (>51.1 at.%), the critical sizes of the alloys
become smaller than 3 mm. This means that the
critical size of the amorphous forming ability of
Ti—Cu—Ni—Zr—Hf alloys does not increase with an
increase in Cu content. Moreover, the observed
trend of glass forming ability under experimental
conditions does not align with the predicted trend.
The reason for this discrepancy lies in the fact that
when the Cu content is high, the composition of the
alloy deviates from the eutectic alloy composition.
As a result, certain clusters containing Cu generate

competitive crystal phases during the cooling
process, which hampers the formation of the
amorphous phase in the alloy.

According to the research on the Ti—Cu—
Ni—Zr—Hf alloy system, there is a contradictory
relationship between the Cu and Ti contents and the
formation probability of the AM phase. To resolve
this contradiction, in Fig. 7(a), the intersection point
is identified where the contents of Cu and Ti atoms
are equal, corresponding to a content of 36 at.% for
both Cu and Ti. Similarly, the intersection point of
the contents of Ni and Zr atoms is identified, which
corresponds to a content of 7.56 at.% for both Ni
and Zr. A dashed line is drawn parallel to the
horizontal axis at these two intersection points.
When the value of Nam is between the two dashed
lines, that is, 0.125<N,m<0.226, the formation
probability of the AM phase is neither particularly
large nor particularly small. When the value of Nam
exceeds 0.226, indicating a Ti content greater than
36 at.%, the formation probability of the AM phase
decreases. Conversely, when the value of Num
exceeds 0.125, indicating a Ti content less than
28.8 at.%, the formation probability of the AM
phase increases. However, this contradicts the
experimental values, as lower Ti content causes the
alloy components to deviate from those of the
eutectic alloy, resulting in the presence of clusters
with lower Ti content in the alloy melt, which
inhibits the ability of the alloy to form the
amorphous phase during the cooling process.

To obtain amorphous alloy composites, it is
necessary to determine the Zr and Hf contents. In
the AM phase prediction, it is important to ensure
that the Ti content is greater than 28.8 at.% but less
than 36 at.%, the corresponding Cu content is
greater than 36 at.% but less than 47.6 at.%, and the
Ni content is greater than 7.56 at.% but less than
11.2 at.%. When the Ti, Cu, and Ni contents fall
within the respective ranges, the formation
probability of the AM phase is moderate, neither
particularly high nor particularly low. This balanced
probability favors the formation of both amorphous
and crystalline phases in the composite material.
Alloy melts are prone to form crystalline materials
with amorphous structures, known as amorphous
alloy composites. Figure 7(b) illustrates the
normalized relationship between 15 predicted
values and the element contents in the prediction of
the IM phase for 14 Ti—Cu-Ni—Zr-Hf alloys. In the
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prediction of IM phase selection, when the Nin
value is less than 0.341 (corresponding to Ti content
higher than 36.3 at.%), the likelihood of forming
the IM phase is enhanced, which aligns with the
XRD results shown in Fig. 8. Conversely, when
the Nim value exceeds 0.43, the probability of
IM phase formation diminishes. In the range of
0.341<Nin<0.43, the formation probability of the
IM phase neither significantly increases nor
decreases. This means that both amorphous and
crystalline phases coexist in the alloy structure,
with corresponding Ti contents in the range of
28.8 at.%—36 at.%. Therefore, by utilizing the
normalization of the predicted values selected for
AM and IM phases, it becomes possible to
determine the elemental composition of AACs.

M 3924a%Ti || 4

38 26 at.% Ti
D st st Pt PN ]
N TR

36.3 at.% Ti

” 34 34 at. % T
8.46 at.% Ti e

W&
27.4 at.% Ti
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200(°)
Fig. 8 XRD patterns of Ti—Cu—Ni—Zr—Hf alloys

3.5 Prediction and experimental validation of
AM and IM phase selection in novel
multiple-principal Ti—~Cu—Ni—Hf alloys
To predict the specific components of novel

multiple-principal Ti—Cu—Ni—Hf AACs, the AM

and IM phase selections for 40 alloy compositions
were predicted. Without using machine learning
models for prediction, determining the composition
of these 40 AACs would require extensive sample
preparation and phase testing. This would result in
significant labor and raw material costs. By

utilizing machine learning methods to predict a

smaller range of components, it is possible to save

labor and raw material costs, thereby reducing the
design time for new materials. The training set
consisted of 330 alloys, while the test set comprised

the 40 Ti—Cu—Ni—Hf alloys listed in Table 4.

Figure 9 illustrates the relationship between
the Nam and Nim values of 40 alloys and the contents

of alloy atoms. In the prediction of the AM phase,
as the contents of Ti and Cu increase, the
normalized value also increases, indicating a
weakened probability of amorphous formation but
an increased probability of crystal formation.
Conversely, when the Ni and Hf contents increase,
the normalized value decreases, suggesting an
increased probability of amorphous formation but a
decreased probability of crystal formation. Similar
trends are observed in the prediction of the IM
phase, which aligns with the findings from the AM
phase prediction.

To obtain a composition range where the
formation probability of amorphous or crystalline
materials is neither significantly large nor small, the
point of intersection between the Ti and Ni contents
is selected, which is 32.7 at.%. At this point, a
straight line parallel to the X-axis is drawn,
intersecting with the Cu and Hf contents, to
determine the contents of Cu and Hf (Cu: 16.4 at.%
and Hf: 18.3 at.%). Similarly, the intersection point
of Cu and Hf is selected, where the contents of Cu
and Hf are 17.3 at.%, and a straight line is drawn to
determine the contents of Ni and Hf (Ni: 30.9 at.%
and Ti: 34.5 at.%). In Fig. 9(b), by using the same
analytical method, one can obtain the range of
contents of Ti, Cu, Ni, and Hf. Therefore, when the
Ti content is between 32.7 at.% and 34.5 at.%, the
Cu content is between 16.4 at.% and 17.3 at.%, the
Ni content is between 30.9 at.% and 32.7 at.%, and
the Hf content is between 17.3 at.% and 18.3 at.%,
the probability of forming amorphous or crystalline
structures in the alloy is neither particularly large
nor small. Alloys within these ranges are more
prone to form amorphous alloy composites.

To validate the machine learning model for
predicting the amorphous and crystalline phases of
Ti—Cu—Ni—Hf alloys, the experimental verification
is conducted using four alloys: TizCuisNizzos-
Hfis72, Ti34Cui7Nizi36H 17,64, Ti36Cu1sNizg 44Hf 16 56,
and Ti3sCu9Niz7 50Hf1545. The XRD patterns of
these alloys with a diameter of 3 mm are shown in
Fig. 10. The TizCuieNizzsHfis72 and TizsCuio-
Niy7s2Hfis43 alloys consist of crystalline phases,
while the Ti34CL117Ni31_36Hf17_64 and Ti36CU18Ni29,44-
Hfies6 alloys consist of both crystalline and
amorphous phases. The composition of the four
elements in Ti3;CuieNiss2sHf 1572 and Ti33Cuyo-
Niy7soHfis4s  alloys falls within the predicted
composition range for crystalline phases. Therefore,
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Table 4 Three characteristic parameters of 40 Ti—Cu—Ni—Hf alloys, as well as normalized values (Nam and Nim) of sum
of 15 predicted values in AM and IM phase selection prediction

Alloy ) Ay Si/(J'mol 1-K1) Nam Nim

TiaoCuz0Nizs.cHf 144 8.83 0.23 10.94 0.1467 0.1553
Ti39.6Cu19.8Nizs 9s4Hf 14616 8.86 0.23 10.96 0.1449 0.1552
Ti39.2Cu19.6Nize 368Hf14.832 8.89 0.23 10.98 0.1431 0.1550
Ti33.8Cu19.4Nize.750Hf 15048 8.93 0.23 11 0.1400 0.1559
Ti33.4Cu192Ni27.136Hf15.264 8.96 0.23 11.02 0.1383 0.1559

Ti3sCu1oNiz7.50Hf15 45 8.99 0.23 11.03 0.1355 0.1574
Ti37.6Cu1s.8Ni27.904HTf 15606 9.02 0.23 11.05 0.1339 0.1576
Tiz7.2Cu18.6Nizg 288Hf15.912 9.06 0.23 11.06 0.1299 0.1602
Ti36.8Cu13.4Nizg 672Hfi16.128 9.09 0.23 11.07 0.1272 0.1618
Ti36.4Cu18.2Ni29.056HT16.344 9.12 0.23 11.08 0.1246 0.1636

Ti36Cu18Nizg 44Hf16.56 9.15 0.23 11.09 0.1220 0.1654
Tis5.6Cu17.8Nizg s24Hf16.776 9.19 0.24 11.1 0.1076 0.1702
Tis5.2Cu17.6Niz0.208Hf16.992 9.22 0.24 11.11 0.1054 0.1716
Ti34.8Cu17.4Ni30.502Hf17.208 9.25 0.24 11.11 0.1022 0.1747
Ti34.4Cu17.2Ni30.976HT17.424 9.28 0.24 11.12 0.1000 0.1763

Ti34Cu17Niz1 36Hf17.64 9.31 0.24 11.12 0.0970 0.1795
Ti33.6Cu16.8Ni31.744Hf17.856 9.34 0.24 11.12 0.0939 0.1828
Tis3.2Cu16.6Ni32.128Hf158.072 9.38 0.24 11.13 0.0910 0.1857
Ti32.8Cu164Nis2 512Hf15 288 9.41 0.24 11.13 0.0881 0.1892
Ti32.4Cu16.2Niz2 s96HE 15504 9.44 0.24 11.12 0.0843 0.1944

Ti32Cui6Nis3 28Hf18.72 9.47 0.24 11.12 0.0816 0.1980
Ti31.6Cuis sNis3 66aHE15.936 9.50 0.24 11.12 0.0789 0.2017
Ti31.2Cus.6Nizs 0asHE19.152 9.53 0.24 11.11 0.0753 0.2072
Ti30.8Cu15.4Ni34.432Hf19 368 9.56 0.24 11.11 0.0728 0.2111
Ti30.4Cu152Nis4.816HT19.584 9.59 0.24 11.1 0.0694 0.2168

Ti30Cu;sNizs 2Hf19. 9.62 0.25 11.09 0.0618 0.2419
Ti20.6Cu14.8Niss ssaHf20.016 9.65 0.25 11.08 0.0588 0.2479
Tiz9.2Cu14.6Ni35.968H120.232 9.68 0.25 11.07 0.0559 0.2540
Ti2s.8Cu14.4Nise350HF20 448 9.71 0.25 11.06 0.0531 0.2603
Ti28.4Cu142Ni36.736HT20.664 9.74 0.25 11.04 0.0495 0.2688

TizsCu14Niz7.12H20 88 9.77 0.25 11.03 0.0468 0.2753
Tiz7.6Cu13.8Ni37.504HT21.006 9.80 0.25 11.01 0.0435 0.2843
Ti272Cu13.6Niz7.88sH1 312 9.83 0.25 11 0.0409 0.2911
Tiz6.8Cu13.4Nisg 272HE21 528 9.86 0.25 10.98 0.0379 0.3003
Tiz6.4Cu132Nisg 656HT21.744 9.89 0.25 10.96 0.0347 0.3098

Tiz6Cu13Niz9.04Hf21.96 9.92 0.25 10.94 0.0318 0.3196
Tias 6Cui2.8Nizg 424Hf22 176 9.95 0.25 10.92 0.0289 0.3295
Tizs5.2Cu12.6Ni39.80sHT22.302 9.98 0.25 10.89 0.0255 0.3424
Ti24.8Cu12.4Ni40.192HT22.608 10.01 0.25 10.87 0.0228 0.3529

Ti24.4Cu12.2Ni40.576H22.824 10.04 0.26 10.84 0.0199 0.4148




1556

Lin WANG, et al/Trans. Nonferrous Met. Soc.

China 35(2025) 1543—1559

0.18 0.44
.(0) . N
0.16 - 0.40 -
0.14 036" HE Ti Ni
L] v [ ] A
0.12 03k ... vVv -.. A‘A
£ 0.10 . . b L .
2:\: 0 08 25 0.28 L “ ’ .I5 tf
| ol AT 4
0.06
0.04 0.20 F. 1640 18.3
0.02 0.16 - 173
0 1 L 1 1 1 L L 1 0.12 L 1 L L 1 1 1 1
12 16 20 24 28 32 36 40 12 16 20 24 28 32 36 40
Content/at.% Content/at.%
Fig. 9 Relationship between normalized values and element contents of 40 alloys in AM (a) and IM (b) phase selection
prediction
(@)
‘__,_,JJ N —~ A A
20 3b 4|0 Sb 6|0 7I0 8I0 90 20 3I0 4IO 5|0 6‘0 7I0 8I0 90
26/(°) 20/(°)
© (d)
20 3I0 4|0 5|0 6|0 7I0 8I0 90 20 3b 4|0 5|0 6‘0 7I0 8I0 90
26/(°) 260(°)

Fig. 10 XRD patterns of new multiple-principal Ti—Cu—Ni—Hf alloys with diameter of 3 mm: (a) Ti32CuisNiz328Hf1572;
(b) Ti34Cu17Nis136Hf17.64; (€) TizsCuigNizg.44Hf 16565 (d) TizsCuigNizz 5oHf 545 alloys

these alloys are classified as crystalline. On the
other hand, the composition of the four elements in
the TiCui7Nizi3sHf1764 alloy lies within the
predicted composition range for both amorphous
and crystalline phases, indicating a coexistence
of these two phases in the alloy. However, the
Ti36CuisNiag 44Hf6 56 alloy has a composition that is
close to the predicted composition range as shown
in Table 5. Consequently, the Ti3sCui7Nisi36Hf17.64

and Ti36CuisNizo 44Hfi656 alloys can be considered
as good amorphous and crystalline alloys, closely
resembling the predicted composition ranges.

To better illustrate the presence of amorphous
structures in the microstructure of TizyCuy7Ni3i 36-
Hfi764 and TizsCuigNizg 44Hfi6 56 alloys, Fig. 11
displays the HRTEM and corresponding Fourier
transform images of the mentioned alloys. In the
HRTEM images, a coexistence of amorphous and
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Table 5 Range of predicted molar fraction for amorphous and crystalline phases of 40 Ti—Cu—Ni—Hf alloys, and molar

fraction of four elements in four experimental alloys

Content/at.%
Range
Ti Ni Hf
R, (AM+IM) 32.7-34.5 16.4-17.3 30.9-32.7 17.3-18.3
R. (AM+IM) 34, 36 17,18 31.36,29.44 17.64, 16.56
R,(IM) <32.7,>34.5 <16.4,>17.3 <30.9, >32.7 <17.3,>18.3
R.(IM) 32,38 16, 19 27.52,33.28 15.48, 18.72

Ry is range of predicted values; Re is range of experimental values

:. 10 nm

Fig. 11 HRTEM (a, c) and Fourier transform (b, d) images of Ti34Cu7Ni3136Hf17.64 (a, b) and TizsCu1sNiz9 44Hf 1656 (¢, d)

crystalline structures can be observed. Fourier
transform was performed on the HRTEM images,
resulting in the appearance of halos representing
the amorphous structure and diffraction spots
representing the crystalline structure. Consequently,
the microstructure shown in the HRTEM images is
consistent with the results obtained from XRD.

4 Conclusions
(1) In terms of phase formation probability in

AACs, ANN outperforms the KNN model based on
prediction accuracies, R values, and MSE values.

Therefore, the ANN algorithm is suitable for
predicting the phase selection of amorphous alloy
composite materials.

(2) An expression is defined to normalize the
sum of predicted values selected by AM and IM
phases as N.m and Nim, respectively. When the
values of N.m and Nim approach 1, weaker activation
of neural units for phase selection will occur,
resulting in a lower probability for the alloy to form
that particular phase.

(3) In Ti—Cu—Ni—Zr—Hf alloys, when the
normalized Nim value is greater than 0.43, the
probability of IM phase formation will decrease.
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When 0.341<Nn<0.43, both amorphous and
crystalline phases will be present in the alloy
structure, with the corresponding Ti content ranging
from 28.8 at.% to 36 at.%.

(4) For the novel multi-principal Ti—Cu—
Ni—Hf alloys, when the Ti content ranges from
32.7 at.% to 34.5 at.%, Cu content ranges from
16.4 at.% to 17.3 at.%, Ni content ranges from
30.9 at.% to 32.7 at.%, and Hf content ranges from
17.3 at.% to 18.3 at.%, alloys within these ranges
will be prone to form amorphous alloy composites.

(5) Based on the results of XRD and HRTEM
analysis, the TisCui7Nizi36Hf1764 and TizeCuis-
Nizo44Hfi656 alloys exhibit good amorphous alloy
composites, which are consistent with the predicted
amorphous alloy composition.
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