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Abstract: The probability of phase formation was predicted using k-nearest neighbor algorithm (KNN) and artificial 
neural network algorithm (ANN). Additionally, the composition ranges of Ti, Cu, Ni, and Hf in 40 unknown amorphous 
alloy composites (AACs) were predicted using ANN. The predicted alloys were then experimentally verified through 
X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The prediction accuracies of 
the ANN for AM and IM phases are 93.12% and 85.16%, respectively, while the prediction accuracies of KNN for AM 
and IM phases are 93% and 84%, respectively. It is observed that when the contents of Ti, Cu, Ni, and Hf fall within the 
ranges of 32.7−34.5 at.%, 16.4−17.3 at.%, 30.9−32.7 at.%, and 17.3−18.3 at.%, respectively, it is more likely to form 
AACs. Based on the results of XRD and HRTEM, the Ti34Cu17Ni31.36Hf17.64 and Ti36Cu18Ni29.44Hf16.56 alloys are 
identified as good AACs, which are in closely consistent with the predicted amorphous alloy compositions. 
Key words: multiple-principal amorphous alloy composites; Ti−Cu−Ni−Hf alloy; phase selection; artificial neural 
network; machine learning 
                                                                                                             
 
 
1 Introduction 
 

Intelligent machine learning involves training 
a flexible and highly nonlinear model based on 
available data. It is particularly useful for handling 
the complex relationship among the material 
composition, phase structure, and performance, 
which may be challenging to address using 
traditional methods based on physical principles. As 
a result, intelligent machine learning has emerged a 
valuable tool for predicting material performance, 
screening, and optimizing component design [1−5]. 

In the context of predicting phase selection in 
multi-principal component alloys, ISLAM et al [6] 
achieved a remarkable prediction accuracy of   
99.2% using a neural network model. However, the 
accuracy of phase prediction in alloys will vary 
depending on the specific algorithms used. For 
instance, HOU et al [7] integrated empirical 
knowledge models into the prediction process, 
leading to prediction accuracies exceeding 83.3%. 

Among the 13 feature parameter selections, 
different parameter combinations yield varying 
accuracies in predicting the phases of high-entropy 
alloys (HEAs). ZHOU et al [8] reported prediction 
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accuracies of 98.9%, 95.6%, and 97.8% for AM, 
IM, and SS phases, respectively, using an artificial 
neural network (ANN) model. They also 
emphasized the importance of feature parameters 
based on potential−energy distribution function 
(PEL) in phase prediction. Therefore, machine 
learning exhibits high accuracy in phase selection 
for multi-principal component alloys and HEAs. 
However, when it comes to predicting the optimal 
performance of the alloy components, LI et al [9] 
proposed a data-driven approach to expedite the 
design of magnetic HEAs that combine saturation 
magnetization (Ms) and hardness (H). They 
developed a multi-objective optimization algorithm 
to search for the optimal alloy composition. The 
support vector regression (SVR) model achieved 
the smallest root mean square error (RMSE) of 
13.9 A·m2/kg for magnetization prediction, while 
the LightGBM model attained the smallest RMSE 
value of HV 57.6 for hardness prediction. 

The selection of feature parameters is a crucial 
aspect in both phase selection and performance 
prediction of alloys. It is essential to strike a 
balance between the number of selected feature 
parameters, as a small number may result in 
decreased prediction accuracy while too many can 
make the prediction process cumbersome. LI     
et al [10] proposed an effective approach for 
reducing the number of feature parameter selection 
without sacrificing accuracy. They employed five 
models to predict magnetic performance (Bs) and 
maximum critical size (Dmax). The XGBoost model 
achieved an impressive R2 value of 0.93 for 
predicting Bs and 0.68 for predicting Dmax. The 
results demonstrate that machine learning exhibits 
excellent generalization performance in the field of 
phase selection and performance prediction of 
alloys. 

Intelligent machine learning has been proven 
to be highly effective in predicting the composition 
and glass-forming ability of multi-principal 
amorphous alloys (AMs) [11]. Additionally, it can 
also predict key parameters that influence the larger 
casting diameter of amorphous alloys [11], and 
even facilitate the prediction and design ultra-  
high strength multi-principal alloys [12]. This 
demonstrates that intelligent machine learning is a 
powerful method for predicting the composition, 
structure, and performance of multi-principal alloys. 
Several regression algorithms, including Gaussian 

process regression [13], ANN [14] and support 
vector machine (SVM) [15], are commonly 
employed in this field. Among them, the ANN 
model has shown high accuracy in predicting phase 
selection for multi-principal alloys, with the atomic 
size difference (δ) playing a significant role in this 
process [16−18]. To predict the phase selection of 
AM, IM and SS phases, previous research showed 
that a combination of three parameters, namely, 
standard deviation of electronegativity (∆χ), ideal 
mixing entropy (Sid) and δ, yields higher prediction 
accuracy (Pc) compared to a combination of four 
parameters, including δ, ∆χ, average enthalpy 
change of mixing (∆Hm) and Sid [19]. Based on this 
finding, the present study utilized the three- 
parameter combination (δ, ∆χ and Sid) to predict the 
phase selection in amorphous alloy composites 
(AACs). By employing intelligent machine 
techniques, this approach enables rapid exploration 
and establishment of relationships between the 
alloy components and phases. Consequently, it 
offers valuable insights for the further development 
of multi-principal AACs by providing predictions 
regarding composition ranges and phase selections. 
 
2 Data and models 
 
2.1 Selected data 

In Table S1 of Supplementary Materials, the 
compositional phases (110 AM, 110 SS, and 110 IM 
phases) and the values of three parameters (δ, ∆χ 
and Sid) for 330 alloys are listed [6]. For both the 
KNN and ANN models, these 330 data points are 
randomly divided into training and testing sets in an 
8:2 ratio, meaning that 80% of the data is used for 
training and 20% for testing. 
 
2.2 KNN model 

One simple approach to determine the 
category of a sample is to directly compare its 
similarity with the category of training samples and 
classify it as the one with the highest similarity. The 
KNN algorithm was first proposed by COVER and 
HART in 1967 [20]. Its core idea is to select the k 
sample attributes that are closest to those of the 
experimental and training samples and consider 
them as a set. Then, through voting, the category 
with the highest number of attributes from this set is 
determined as the final predicted category for the 
sample. In the KNN algorithm, similarity is 
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quantified using distance (d), which is typically 
calculated using the Euclidean distance formula as 
follows [21]:  
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where xi and yi represent the known coordinates of 
two points, respectively, and d(x, y) represents the 
distance between these two points. 
 
2.3 ANN model 

Artificial neurons serve as the fundamental 
units of information processing, existing between 
different layers in a neural network. These layers 
typically include an input layer, a hidden layer, and 
an output layer. The hidden layer comprises 
multiple layers, rather than just a single one. In this 
study, the backpropagation (BP) ANN algorithm  
is employed for data processing and prediction.  
The BP neural network, originally proposed by 
RUMELHART and MCCLELLAND [22] in 1987, 
is a type of unidirectional, multi-layer feedforward 
neural network. In the hierarchical structure of 
multi-layer feedforward neural networks, each layer 
of neurons establishes connections with the next 
layer through complete interconnection. There are 
no connections between different neurons in the 
same layer, nor can a certain layer skip and make 
cross-layer connections with the next layer. By 
repeatedly fitting simple nonlinear functions 
multiple times, the BP neural network can 
approximate complex nonlinear functions. Thus, the 
BP neural network performs a highly nonlinear 
mapping process from the input to the output. In 
this process, an artificial neuron consists of a linear 
model and an activation function. The expression 
for the linear model is as follows [23]:  

T= ( )y f +ω x b                            (2) 
 
where x refers to the input vector; ω represents the 
weight vector, which generally reflects the 
importance of input values to output categories (A 
larger ω value indicates a greater proportion of 
input parameters in output characteristics); T stands 
for transpose matrix; b refers to the deviation term 
vector. ANNs establish connections between input 
and output layers primarily through weights and 
bias terms. When the hidden layer is multi-layer, the 
output values from the previous layer are used as 
new input values through the generalization effect 

of the model to generate new output values. The ω 
and b reveal the fundamental principles of ANNs, 
making them crucial parameters to consider in 
machine learning. 

The reason why ANN model can be connected 
into a nonlinear model is the essential role played 
by nonlinear activation functions. In BP neural 
networks, a commonly used activation function is 
represented by the sigmoid function σ(x), which is 
expressed as [16]  

1( )
1 e xxσ −=
+

                           (3) 
 

The sigmoid function can transform an ANN 
model into a nonlinear model by introducing 
nonlinear elements. The expression of the sigmoid 
function ensures that the output values of the  
model are confined within the range of [0,1].   
This characteristic allows the model to capture and 
represent nonlinear relationships in the data. 
Compared to linear models, nonlinear models have 
better generalization performance. 

The basic working principle of neural 
networks can be roughly explained from two 
aspects. Firstly, when the potential changes caused 
by “excited” neurons exceed a specific “threshold” 
the neurons will be activated. Secondly, according 
to Eq. (2), each iteration multiplies the initial input 
value by a certain ω and adds other input values to 
the neuron queue. The processed neurons are then 
adjusted using b and the output values are 
uniformly normalized. By continuously adjusting ω 
and b through the same operation, the final output 
value approaches the actual result. Normalization 
processing is typically carried out as follows: 
 

min

max min

x xx
x x

−′ =
−

                          (4) 

 
where x′ is the normalized input value, x represents 
the input value, xmin represents the minimum value 
among the input values, and xmax represents the 
maximum value among the input values. The 
purpose of normalization is to transform the input 
values into a common range of [0,1]. 
 
2.4 Experimental procedure 

The Ti−Cu−Ni−Zr−Hf and Ti−Cu−Ni−Hf 
alloy ingots weigh 20 g each. Each raw material 
alloy is in block shape and has a purity greater than 
99.9%. The process begins by placing 20 g of alloy 
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raw materials into a water-cooled copper crucible in 
a vacuum melting furnace for melting. High-purity 
argon is used as the protective gas during the 
smelting process. Each alloy ingot is melted four 
times to ensure uniformity in the chemical 
composition of the alloy ingot. After melting, the 
molten alloy is transferred to a suction casting 
crucible and remelted. It is then cast into a 
water-cooled copper mold to form cylindrical   
rods with a diameter of 3 mm and a length of  
50 mm. The phase composition of the alloys is 
characterized using X-ray diffraction (XRD) with 
Cu Kα radiation at a voltage of 30 kV. To further 
analyze the alloys, high-resolution images are 
observed using a high-resolution transmission 
electron microscope (HRTEM) with an operating 
voltage of 200 kV and a JEM−2100F instrument. 
Thin samples for HRTEM observation are prepared 
using the electrolytic double-spray thinning method 
in an electrolyte solution consisting of 25 vol.% 
HNO3 and 75 vol.% methanol at approximately 
238 K. 
 
3 Results and discussion 
 
3.1 Phase-selection prediction using k-nearest 

neighbor algorithm 
Determining the value of parameter k is crucial 

in the KNN algorithm as it directly impacts the 
fitting effect of the model on the data, thereby 
influencing the prediction accuracy (Pc). One 
effective method to obtain the optimal k-value in 
KNN is through k-fold cross-validation. The 
process of k-fold cross-validation involves dividing 
the dataset into k segments. Each segment is then 
further divided into training and testing sets. The 
KNN model is trained on each segment to calculate 
the average Pc for each model. By comparing the 
average Pc values, the k-value with the highest 
average Pc is selected as the optimal value. This 
iterative process ensures that the selected k-value 
leads to the best overall prediction accuracy. To 
evaluate performance of different k-fold cross- 
validation methods, the predictions of AM phase 
and IM phase were performed on 330 data. Figure 1 
illustrates the average Pc of AM, IM, and SS phases 
for the 15 predictions using various k values. 
Additionally, it depicts the correlation coefficient 
values (R) obtained from cross-validation with 
different numbers of folds. 

In Fig. 1(a), the prediction accuracy of three 
types of alloy phases increases as the k values 
change from 1 to 5. However, when the k values are 
within the range from 5 to 10, the prediction 
accuracy decreases with an increase in the k value. 
In fact, a smaller value of k indicates a lower Pc 
value. This is due to the lack of training data, 
leading to underfitting of the model. On the other 
hand, a larger value of k results in lower prediction 
accuracy. This is because samples that are farther 
away from the target sample in the KNN model 
contribute to prediction errors. Therefore, selecting 
an appropriate value of k is crucial for achieving 
higher prediction accuracy. When k=5 is chosen,  
the Pc(AM) value is 92.9%. The highest values  
for Pc(IM) and Pc(SS) are 84.1% and 89.2% 
respectively. To assess the accuracy of the model, a 
correlation coefficient R is used in conjunction with 
statistical indicators. 
 

 
Fig. 1 Average prediction accuracies (Pc) (a) and correlation 
coefficient (R) (b) for AM, IM, and SS phases predicted 
under different k values in k-fold cross-validation of 
KNN algorithm 
 

In Fig. 1(b), both the correlation coefficient 
and prediction accuracy exhibit the same trend of 
change. Additionally, the R value of the AM phase 
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is higher than that of the IM and SS phases, and the 
prediction accuracy of the AM phase is also higher 
compared to the IM and SS phases. When the R 
value is larger, there is a corresponding increase in 
the prediction accuracy, indicating that the current 
KNN model accurately predicts the phase selection 
of the three types of alloys under different k values. 

When k is equal to 5, Fig. 2 displays the 
prediction accuracies, mean squared error (MSE), 
and R values of the KNN algorithm for the selection 
of AM, IM, and SS phases. A smaller MSE value 
indicates a larger Pc value for phase selection. The 
phase selection of AM phase exhibits a smaller 
MSE value, while the phase selection of IM phase 
shows a larger MSE value. These results suggest 
that the current model achieves a higher Pc value 
for AM phase selection, but a lower Pc value for IM 
phase selection. 
 

 
Fig. 2 Pc, MSE, and R values of KNN algorithm (k=5) 
for phase selection in AM, IM, and SS phase 
 

In the KNN phase-selection regression 
algorithm, the k training samples are selected and 
the distances are calculated between these k points 
and the sample points to be predicted. Finally,   
the category is chosen to which most of the 
neighboring training sample points belong to the 
output category for predicting unknown sample 
points. Therefore, the predicted output value for 
phase selection of each alloy can only be 0 or 1, 
representing negative or positive examples. In the 
regression algorithm for phase selection in SVM, 
the prediction accuracy for the AM and IM phases 
is 94% and 85.4%, respectively. The predicted 
output values for phase selection of each alloy are 
also either 0 or 1 [24]. However, in the ANN 
phase-selection regression algorithm, the output 
values for AM phase selection in Ti−Cu−Ni−Zr 
amorphous alloys are continuous values close    

to 1 [19]. This is because in the ANN algorithm, the 
predicted output values need to be normalized, 
resulting in continuous values between 0 and 1. In 
order to predict the phase selection of AACs, 
machine learning algorithms should generate 
continuous values close to 1 when selecting AM 
and IM phases. Therefore, both the ANN and KNN 
models can be utilized for predicting the phase 
composition of AACs. However, in terms of 
prediction accuracy Pc, R, and MSE values, the 
ANN model exhibits more advantages compared to 
the KNN model. 
 
3.2 Phase selection prediction in AM and IM 

phases using ANN algorithm 
For the 110 AMs (amorphous high-entropy 

alloys), 110 SSs (solid solution high-entropy alloys), 
and 110 IMs (high-entropy alloys containing 
intermetallic compounds), a well-performing ANN 
model can be designed. The model consists of one 
input layer, one hidden layer, and one output layer, 
with 3 nodes in the input layer, 10 nodes in the 
hidden layer, and 1 node in the output layer. Due to 
the small size of the selected dataset (330 samples), 
choosing an ANN with one hidden layer 
demonstrates better prediction accuracy and 
generalization performance compared to a 
multi-layer deep neural network. This decision is 
made considering the characteristics of the available 
data and the complexity involved in training the 
model [19]. Using a hidden layer in this work will 
yield the improved prediction results. The number 
of nodes in the hidden layer is also a crucial factor 
to consider. Different numbers of nodes in the 
hidden layer will lead to varying levels of 
prediction accuracy, making it necessary to 
determine the optimal number through testing. 
According to the results of 15 tests of 30 AM alloys 
presented in Table S2 in Supplementary Materials, 
it was found that the prediction accuracy and 
generalization performance are optimal when the 
hidden layer contains 10 nodes. 

Figure 3 illustrates the average Pc, R and MSE 
values for the AM and IM phase selections. The 
findings indicate that in the prediction of the AM 
phase for 330 alloys, the average Pc value for the 15 
test sets using three parameter combinations of    
δ + ∆χ + Sid is 93.12%. This value is slightly lower 
than the average Pc value (94.5%) reported in 
Ref. [19] for the same three parameter combinations. 
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However, the current learning model still 
demonstrates a high Pc value for this dataset. On the 
other hand, in the prediction of the IM phase 
selection, the Pc value for the test set of 330 alloys 
is 85.16%. Therefore, the current model exhibits 
higher Pc(AM) values and lower Pc(IM) values. 
 

 
Fig. 3 Pc, R and MSE values of 330 alloys in AM and IM 
phase predictions using ANN model 
 

In Fig. 3, the larger the R value, the higher the 
Pc value. The R(AM) value is 0.826, while the R(IM) 
value is 0.613, indicating that the Pc(AM) value is 
greater than the Pc(IM) value. A smaller MSE value 
indicates that the predicted value is closer to the 
true value, and also corresponds to a higher Pc 
value. The AM phase selection yields a predicted 
MSE value of 0.069 for 330 alloys, which is smaller 
than the MSE value obtained with IM phase 
selection (0.148). This suggests that the model has a 
higher Pc(AM) value and a lower Pc(IM) value. 

In an ANN model, as the threshold of each 
alloy unit approaches 1, the phase composition of 
the alloy gets closer to the true value and the 
neuronal activation level increases. Conversely, 
when the threshold of each alloy unit approaches 0, 
the true value of the alloy’s phase composition will 
be suppressed. In the case of predicting phase 
selection for the 330 alloys, only 15 predicted 
values are obtained for phase selection, and the 
specific threshold for each alloy unit is unknown. 
When the threshold of an alloy unit approaches 1, 
the predicted phase becomes closer to the actual 
phase, indicating a higher Pc value for the alloy’s 
phase selection. During each prediction, an alloy 
will have a threshold. By summing the absolute 
values of the 15 predicted thresholds, the sum of 
these 15 predicted values is obtained, as shown in 
Fig. 4(a). When the predicted value is greater than 
0.5, it indicates a positive example for the phase 

selection of the alloy. Conversely, when the 
predicted value is less than 0.5, it represents a 
negative example. If the real category matches the 
predicted category, it is represented as “true”; if 
they are different, it is represented as “false”. 
 

 
Fig. 4 Sum of 15 predicted values for AM (a) and IM (b) 
phases in 330 alloys 
 

In the prediction of AM phase selection for 
110 AM alloys, it was found that for 9 alloys, the 
total of their 15 predicted values is less than 7.5. 
This indicates that these 9 alloys are false negative 
examples, meaning that their actual AM phase was 
not correctly predicted. On the other hand, when the 
sum of the 15 predicted values fluctuates around 15, 
it suggests a higher degree of neural activation, 
indicating a closer proximity of the predicted AM 
phase to the real AM phase of the alloy. Regarding 
the prediction of the AM phase for 110 SS and 110 
IM alloys, only a small number of these alloys have 
predicted values greater than 7.5. This suggests that 
the phase prediction for these particular alloys is 
prone to false positives, meaning that their 
predicted AM phase does not align with the actual 
phase of the alloy. False negative and false positive 
examples have an impact on the Pc value of phase 
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selection in AM alloys. In Fig. 4(b), for the 
prediction of IM phase selection, the sum of 15 
predicted values for certain AM and SS phases 
exceeds 7.5, resulting in more false positive 
samples. Conversely, for some IM alloys, the sum 
of 15 predicted values falls below 7.5, leading to 
more false negative samples. The presence of a high 
number of false positive and false negative 
examples contributes to a lower Pc value for phase 
selection in IM alloys. 

In Fig. 4(a), it is observed that 15 predicted 
values of AM alloys, representing 18.2% of the 
total, fall within the range of 7.5 to 13.0. Although 
these predictions correctly identify the alloys as 
positive examples, a notable discrepancy exists 
between this range and the total number of      
15 alloys. This suggests that the AM alloys within 
the 18.2% group exhibit a weaker activation of 
neurons in AM phase-selection prediction compared 
to the AM alloys belonging to the 74.6% group. 
Consequently, this indicates a lower probability of 
these 21 AM alloys forming amorphous structures. 
To further investigate these 21 alloys, their 
respective 15 predicted values for AM and IM 
phase selection are included in Table 1 and visually 
represented in Fig. 5. 

In Fig. 5, the aggregation of the 15 predicted 
values for the 10 alloys in the IM phase prediction 
surpasses the threshold of 7.5. This observation 
suggests that these 10 alloys are falsely identified as 
positive examples in the prediction of the IM phase. 
Despite this, their high predicted values also 
indicate a relatively high level of neuronal 
activation during the formation of the IM phase. In 
essence, these 10 alloys display a noteworthy neural 
activation when it comes to selecting both AM and 
IM phases. This implies that these alloys have the 
potential to form amorphous composites containing 
a mixture of amorphous and crystalline structures. 

In the context of model learning, the 
aggregation of 15 predicted values for the 
Zr17Ta16Ti19Nb22Si26 alloy, when considering both 
the AM and IM phase selections, exceeds the 
threshold of 7.5, reaching 10.47 and 10.08, 
respectively. Notably, in the absence of the Si 
element, the quaternary Zr−Ta−Ti−Nb alloy system 
exhibits a propensity to form solid solution   
alloys [25]. However, to favor the emergence of 
amorphous structures, a significant quantity of Si  
is incorporated into the alloy, aiming to establish a 

Table 1 Sum of 15 predicted values for 21 AM alloys 
(Pam and Pim) in AM and IM phase selection, and 
experimental (Exp.) and predicted (Pre.) phases 

Alloy Pam Pim Exp. Pre. 

Zr17Ta16Ti19Nb22Si26 10.47 10.08 AM AM+IM 

Ni50Nb50 9.31 5.31 AM AM 

SrCaYbMgZn 10.85 3.37 AM AM 

SrCaYbMgZnCu 8.17 4.65 AM AM 

SrCaYbLi0.55Mg0.45Zn 8.26 7.24 AM AM 

ErTbDyNiAl 10.51 3.48 AM AM 

Pd75Si25 7.76 0.11 AM AM 

ZrHfTiCuNi 9.31 11.41 AM AM+IM 

ZrHfTiCuFe 9.46 11.71 AM AM+IM 

ZrHfTiCuCo 9.12 12.04 AM AM+IM 

AlMoNbSiTaTiVZr 8.25 11.63 AM AM+IM 

Pd40Cu30Ni10P20 10.31 7.08 AM AM 

Fe41Co7Cr15Mo14C15B6Y2 8.26 4.06 AM AM 

Co48Cr15Mo14C15B6Er2 12.00 2.46 AM AM 

Mg80Ni10Nd10 9.68 2.36 AM AM 

Pd77Si17Cu6 7.88 8.17 AM AM+IM 

Pd40Ni40P20 12.52 5.01 AM AM 

Ti40Cu32Pd18Zr10 10.55 9.67 AM AM+IM 

Ti40Cu36Pd14Zr10 11.53 9.71 AM AM+IM 

Ti40Cu40Pd10Zr10 12.30 10.35 AM AM+IM 

Ti50Cu32Ni30Sn3 10.44 10.32 AM AM+IM 

 

 
Fig. 5 Sum of 15 predicted values (Pam and Pim) for 21 
AM alloys in AM and IM phase selection 
 
eutectic structure alongside the other four 
constituent elements. Numerous eutectic clusters 
are present within the alloy solution, which 
becomes advantageous for an amorphous structure 
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to form at a particular cooling rate. In the context of 
eutectic structures, the sharing of the Si element 
plays a crucial role. When the eutectic solution 
containing Si transforms into an amorphous 
structure, the remaining elements tend to form a 
solid solution, ultimately leading to the creation of 
an amorphous alloy composite that incorporates 
both amorphous and crystalline structures. Given 
this complexity, the phase selection prediction for 
the Zr17Ta16Ti19Nb22Si26 alloy can indeed lead to 
both true positive and false positive examples. 

The learning model’s prediction of Zr−Hf− 
Ti−Cu−Ni high-entropy amorphous alloy with an 
equal atomic ratio in both the AM and IM phases 
indicates that both have relatively high predicted 
values of 9.31 and 11.41, respectively, which are 
greater than the threshold of 7.5. This suggests  
that both phases are likely to form in the alloy. 
Regarding the composition of ZrHfTiCuNi 
high-entropy amorphous alloy, Zr, Hf, and Ti are 
known to have a strong tendency to form solid 
solutions due to their similar atomic sizes and 
electronic structures. When Zr, Hf, and Ti easily 
form eutectic clusters with Cu and Ni elements, the 
formation of amorphous alloys is facilitated during 
the cooling process of the alloy solution. The 
critical size for the formation ability of 
Zr−Hf−Ti−Cu−Ni high-entropy amorphous alloy is 
4 mm. When the cooling rate of the alloy solution is 
lower than the critical cooling rate, the alloy 
solution tends to form amorphous composites 
containing crystals [26]. Therefore, ZrHfTiCuNi 
alloy is prone to form amorphous composites with 
crystal structures. In the context of learning 
prediction, the predicted values of AM and IM 
phase selection may show true positive or false 
positive examples. As a result, both true positive 
and false positive examples are necessary in the 
phase selection prediction of the ANN model in 
order to accurately predict amorphous composites. 
 
3.3 Prediction of AM and IM phase selection in 

amorphous alloy composites 
To verify the accuracy of the learning model in 

predicting phase selection for AACs, a training set 
consisting of 330 alloys was used, while the test set 
comprised 30 AACs listed in Table 2. The learning 
model performed AM and IM phase selection 
predictions on these 30 alloys. Table 2 presents the 
three characteristic parameters of the 30 alloys and 

the sum of the 15 predicted values for AM and IM 
(Pam and Pim) phase selection predictions. In the 
case of AM phase selection predictions for the 30 
alloys, all Pam values were found to be not less than 
11.53. This indicates that the phase predictions for 
these 30 alloys are true positive examples, as 
depicted in Fig. 6(a). For IM phase selection 
prediction, 8 alloys had Pim values below 7.5, 
suggesting that these 8 alloys were true negative 
examples. However, the remaining 22 alloys were 
false positive examples, resulting in a precision of 
73.3%. Therefore, the current learning model also 
demonstrates a high Pc(IM) value for the 30 AACs. 

When the number of prediction times is 
different, it is necessary to normalize the sum of 
predicted values. The expressions for normalizing 
the sum of predicted values selected by AM and IM 
phases (Nam and Nim) are as follows:  

am
11

n

i
i

N P
n

= − ∑                         (5a) 
 

im
11

n

i
i

N P
n

= − ∑                          (5b) 
 
where n represents the number of predictions, and 
Pi represents the predicted value for the selection of 
phase i. When the values of Nam and Nim are closer 
to 1, the activation of neural units for phase 
selection is weaker, resulting in a smaller 
probability for the alloy to form that particular 
phase. When the normalization value is greater than 
0.5, the prediction for phase selection is a true 
negative or false negative example. On the other 
hand, when the normalized value approaches 0, the 
selected prediction is a true positive or false 
positive example. Figure 6(b) illustrates the 
normalized values of the sum of 15 predicted values 
in AM and IM phase selection predictions for the 30 
AACs. Among these, 8 alloys have normalized 
values greater than 0.5, indicating that these alloys 
represent true negative examples in the IM 
phase-selection prediction. On the other hand,   
the remaining 22 alloys demonstrate true positive 
and false positive examples in the AM and IM 
phase-selection predictions, respectively. 

In Table 2, it is observed that the addition of 
trace amounts of Nb element weakens the glass 
forming ability of Cu−Hf−Ti−Nb quaternary   
alloy, which is known for its good glass forming 
ability [27]. This is evident from the decrease in Pam  
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Table 2 Three characteristic parameters of 30 AACs, sum of 15 predicted values (Pam and Pim) in AM and IM phase 
selection prediction, as well as normalized values (Nam and Nim) of predicted values 

Alloy δ ∆χ Sid/(J·mol−1·K−1) Pam Nam Pim Nim 

[(Co0.7Fe0.3)0.75B0.2Si0.05]96Nb4 14.97 0.09 10.54 13.87 0.075 15.79 0.052 

[(Co0.9Fe0.1)0.75B0.2Si0.05]96Nb4 15.01 0.09 8.83 15.19 0.013 15.82 0.054 

[(Co0.6Fe0.4)0.75B0.2Si0.05]96Nb4 14.96 0.09 10.91 13.30 0.113 15.67 0.044 

[(Co0.8Fe0.2)0.75B0.2Si0.05]96Nb4 14.99 0.09 9.88 14.62 0.025 15.93 0.062 

(Cu0.6Hf0.25Ti0.15)98Nb2 9.37 0.26 8.46 14.13 0.058 3.66 0.756 

(Cu0.6Hf0.25Ti0.15)96Nb4 9.28 0.26 8.88 14.02 0.065 4.07 0.729 

(Cu0.6Hf0.25Ti0.15)94Nb6 9.19 0.25 9.22 13.72 0.085 4.72 0.685 

(Cu0.6Hf0.25Ti0.15)92Nb8 9.09 0.25 9.49 13.46 0.101 5.00 0.667 

Fe36Co36B19.2Si4.8Nb4 14.94 0.09 11.03 13.10 0.126 15.62 0.041 

[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4 14.94 0.09 11.03 13.10 0.126 15.62 0.041 

Fe56.8B24Co14.2Nb5 16.53 0.12 9.07 14.93 0.004 13.40 0.107 

[(Fe0.6Co0.4)0.75B0.2Si0.05]96Nb4 14.92 0.10 10.91 13.58 0.094 14.91 0.006 

[(Fe0.7Co0.3)0.75B0.2Si0.05]96Nb4 14.90 0.10 10.54 14.13 0.058 15.08 0.005 

Fe72B20Nb4Si4 15.11 0.10 6.78 14.31 0.046 13.62 0.092 

Fe55.8B24Co14.2Nb6 16.66 0.11 9.26 14.61 0.026 14.22 0.052 

(Fe0.75B0.15Si0.1)98Nb2 12.94 0.08 6.77 13.08 0.128 13.67 0.088 

(Fe0.8Co0.2)71B23Nb6 16.36 0.11 9.19 14.83 0.011 14.38 0.041 

Fe75.71B14.29Si7.14Zr2.86 13.73 0.12 6.48 13.82 0.079 10.89 0.274 

Fe73B20Nb4Hf3 16.12 0.14 6.53 14.51 0.033 9.26 0.383 

Fe72.8B16Si8Zr3.2 14.51 0.12 6.96 14.64 0.024 11.97 0.202 

Zr48Be18Cu14Ni12Nb8 13.74 0.24 11.58 14.68 0.022 4.49 0.701 

Zr48Be24Cu12Fe8Nb8 14.44 0.21 11.25 14.76 0.016 5.56 0.629 

Fe67B22Y6Mo5 19.89 0.19 7.65 14.24 0.051 2.01 0.866 

(Fe0.75B0.15Si0.1)99Nb1 12.84 0.08 6.48 12.53 0.164 13.28 0.115 

Ni42Zr20.5Ti20Al8Cu5Si4.5 10.80 0.24 12.49 11.53 0.231 7.76 0.482 

Ni42Zr22.5Ti19Al8Cu5Si3.5 10.86 0.24 12.34 12.05 0.197 7.50 0.501 

Ni59Zr20Ti16Si5 11.27 0.24 8.95 15.15 0.010 2.83 0.811 

Ni42Zr21.5Ti20Al8Cu5Si3.5 10.77 0.24 12.35 11.86 0.209 7.56 0.496 

(Ni0.75B0.2Si0.05)96Nb4 14.84 0.08 6.88 14.05 0.064 14.87 0.009 

[(Ni0.9Fe0.1)0.75B0.2Si0.05]96Nb4 14.84 0.09 8.83 15.16 0.010 15.78 0.052 

 
values from 14.13 to 13.46, and the corresponding 
increase in Nam values from 0.058 to 0.101. 
Additionally, although the Pim values remain below 
7.5, they increase with the increase in Nb content, 
indicating a higher probability of IM phase 
formation. Therefore, a higher Nb content leads   
to a decrease in the content of amorphous structure 
in AACs, and an increase in the content of 
intermetallic compounds, which is consistent with 

the experimental findings [27]. In fact, this also 
provides a new method for machine learning to 
predict the amorphous formation ability of alloys. 
The enthalpy changes of mixing between Cu−Nb, 
Hf−Nb, and Ti−Nb atomic pairs are 3, 4, and 
2 kJ/mol, respectively [28]. When the enthalpy 
change of mixing between atomic pairs is positive, 
the formation of solid solution alloys is similar. 
Therefore, with a higher Nb content, the probability 
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of forming solid solution increases, inhibiting the 
formation of amorphous structures in eutectic 
clusters containing Cu−Hf and Cu−Ti atomic pairs. 
As the Nb content increases, the glass formation 
ability of the alloy decreases, while the probability 
of crystal phase formation increases. 
 
3.4 Prediction and experimental verification of 

AM and IM phases in some unknown AACs 
To predict the formation probability of 

amorphous and crystalline phases in unknown 
AACs, AM and IM phase-selection predictions 
were conducted on 14 Ti−Cu−Ni−Zr−Hf alloys. 
The training set consisted of 330 alloys, while the 

test set comprised the 14 Ti−Cu−Ni−Zr−Hf alloys 
listed in Table 3. Table 3 presents the four 
parameter values of the alloys, the sum of predicted 
values (Pam and Pim), and the normalized values of 
predicted values (Nam and Nim) for the AM and IM 
phase selection. The element content of the alloy 
influences the phase selection, which subsequently 
affects the normalization value of the predicted 
values. 

To determine the relationship between the 
content of each element and Nam and Nim, Fig. 7 
illustrates the correlation between the molar 
fractions of Ti, Cu, Ni, Zr and Hf and Nam and Nim. 
In the prediction of AM phase selection, an increase 

 

 
Fig. 6 Sum of 15 predicted values (a) and normalized values (b) in AM and IM phase selection predictions for 30 
amorphous alloy composites 
 
Table 3 Four characteristic parameters of 14 Ti−Cu−Ni−Zr−Hf alloys, sum of 15 predicted values (Pam and Pim) in AM 
and IM phase selection predictions, as well as normalized values (Nam and Nim) of predicted values 

Alloy dc/mm δ ∆χ Sid/(J·mol−1·K−1) Pam Nam Pim Nim 

Ti26.5Cu51.1Ni6.4Zr7.6Hf8.4 <3 8.99 0.23 10.60 13.58 0.094 7.77 0.482 

Ti27.48Cu49.64Ni6.88Zr7.6Hf8.4 3 8.98 0.23 10.73 13.41 0.106 8.10 0.460 

Ti28.46Cu48.18Ni7.36Zr7.6Hf8.4 3 8.97 0.23 10.85 13.23 0.118 8.39 0.440 

Ti29.44Cu46.72Ni7.84Zr7.6Hf8.4 3[29] 8.96 0.23 10.97 13.02 0.132 8.68 0.422 

Ti30.42Cu45.26Ni8.32Zr7.6Hf8.4 4[29] 8.95 0.23 11.07 12.83 0.145 8.90 0.406 

Ti31.4Cu43.8Ni8.8Zr7.6Hf8.4 4[29] 8.94 0.23 11.17 12.62 0.159 9.12 0.392 

Ti32.38Cu42.34Ni9.28Zr7.6Hf8.4 4[29] 8.92 0.23 11.25 12.41 0.173 9.31 0.379 

Ti33.36Cu40.88Ni9.76Zr7.6Hf8.4 <3[29] 8.91 0.23 11.33 12.21 0.186 9.47 0.368 

Ti34.34Cu39.42Ni10.24Zr7.6Hf8.4 <3 8.89 0.23 11.40 11.99 0.201 9.63 0.358 

Ti35.32Cu37.96Ni10.72Zr7.6Hf8.4 <3 8.87 0.23 11.46 11.79 0.214 9.77 0.349 

Ti36.3Cu36.5Ni11.2Zr7.6Hf8.4 <3 8.85 0.23 11.51 11.61 0.226 9.88 0.341 

Ti37.28Cu35.04Ni11.68Zr7.6Hf8.4 <3 8.83 0.23 11.56 11.42 0.239 9.99 0.334 

Ti38.26Cu33.58Ni12.16Zr7.6Hf8.4 <3 8.81 0.23 11.59 11.27 0.249 10.07 0.329 

Ti39.24Cu32.12Ni12.64Zr7.6Hf8.4 <3 8.78 0.23 11.62 10.98 0.268 10.17 0.322 
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Fig. 7 Relationship between normalized values and 
element contents of 15 predicted values in AM (a) and 
IM (b) selection phases for 14 Ti−Cu−Ni−Zr−Hf alloys 
 
in Ni and Ti contents leads to an increase in Nam 
value, indicating a decrease in the probability of 
AM phase formation. Conversely, an increase in Cu 
content results in a decrease in Nam value, indicating 
an increase in the probability of AM phase 
formation. From Fig. 6 and Table 3, it can be 
observed that when the Cu content exceeds 
45.26 at.%, the critical sizes for the ability to form 
amorphous structures in the alloys reduce from 4 to 
3 mm. Furthermore, with further increase in Cu 
content (>51.1 at.%), the critical sizes of the alloys 
become smaller than 3 mm. This means that the 
critical size of the amorphous forming ability of 
Ti−Cu−Ni−Zr−Hf alloys does not increase with an 
increase in Cu content. Moreover, the observed 
trend of glass forming ability under experimental 
conditions does not align with the predicted trend. 
The reason for this discrepancy lies in the fact that 
when the Cu content is high, the composition of the 
alloy deviates from the eutectic alloy composition. 
As a result, certain clusters containing Cu generate 

competitive crystal phases during the cooling 
process, which hampers the formation of the 
amorphous phase in the alloy. 

According to the research on the Ti−Cu− 
Ni−Zr−Hf alloy system, there is a contradictory 
relationship between the Cu and Ti contents and the 
formation probability of the AM phase. To resolve 
this contradiction, in Fig. 7(a), the intersection point 
is identified where the contents of Cu and Ti atoms 
are equal, corresponding to a content of 36 at.% for 
both Cu and Ti. Similarly, the intersection point of 
the contents of Ni and Zr atoms is identified, which 
corresponds to a content of 7.56 at.% for both Ni 
and Zr. A dashed line is drawn parallel to the 
horizontal axis at these two intersection points. 
When the value of Nam is between the two dashed 
lines, that is, 0.125≤Nam≤0.226, the formation 
probability of the AM phase is neither particularly 
large nor particularly small. When the value of Nam 
exceeds 0.226, indicating a Ti content greater than 
36 at.%, the formation probability of the AM phase 
decreases. Conversely, when the value of Nam 
exceeds 0.125, indicating a Ti content less than 
28.8 at.%, the formation probability of the AM 
phase increases. However, this contradicts the 
experimental values, as lower Ti content causes the 
alloy components to deviate from those of the 
eutectic alloy, resulting in the presence of clusters 
with lower Ti content in the alloy melt, which 
inhibits the ability of the alloy to form the 
amorphous phase during the cooling process. 

To obtain amorphous alloy composites, it is 
necessary to determine the Zr and Hf contents. In 
the AM phase prediction, it is important to ensure 
that the Ti content is greater than 28.8 at.% but less 
than 36 at.%, the corresponding Cu content is 
greater than 36 at.% but less than 47.6 at.%, and the 
Ni content is greater than 7.56 at.% but less than 
11.2 at.%. When the Ti, Cu, and Ni contents fall 
within the respective ranges, the formation 
probability of the AM phase is moderate, neither 
particularly high nor particularly low. This balanced 
probability favors the formation of both amorphous 
and crystalline phases in the composite material. 
Alloy melts are prone to form crystalline materials 
with amorphous structures, known as amorphous 
alloy composites. Figure 7(b) illustrates the 
normalized relationship between 15 predicted 
values and the element contents in the prediction of 
the IM phase for 14 Ti−Cu−Ni−Zr−Hf alloys. In the 
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prediction of IM phase selection, when the Nim 
value is less than 0.341 (corresponding to Ti content 
higher than 36.3 at.%), the likelihood of forming 
the IM phase is enhanced, which aligns with the 
XRD results shown in Fig. 8. Conversely, when  
the Nim value exceeds 0.43, the probability of    
IM phase formation diminishes. In the range of 
0.341≤Nim≤0.43, the formation probability of the 
IM phase neither significantly increases nor 
decreases. This means that both amorphous and 
crystalline phases coexist in the alloy structure, 
with corresponding Ti contents in the range of 
28.8 at.%−36 at.%. Therefore, by utilizing the 
normalization of the predicted values selected for 
AM and IM phases, it becomes possible to 
determine the elemental composition of AACs. 
 

 
Fig. 8 XRD patterns of Ti−Cu−Ni−Zr−Hf alloys 
 
3.5 Prediction and experimental validation of 

AM and IM phase selection in novel 
multiple-principal Ti−Cu−Ni−Hf alloys 
To predict the specific components of novel 

multiple-principal Ti−Cu−Ni−Hf AACs, the AM 
and IM phase selections for 40 alloy compositions 
were predicted. Without using machine learning 
models for prediction, determining the composition 
of these 40 AACs would require extensive sample 
preparation and phase testing. This would result in 
significant labor and raw material costs. By 
utilizing machine learning methods to predict a 
smaller range of components, it is possible to save 
labor and raw material costs, thereby reducing the 
design time for new materials. The training set 
consisted of 330 alloys, while the test set comprised 
the 40 Ti−Cu−Ni−Hf alloys listed in Table 4. 

Figure 9 illustrates the relationship between 
the Nam and Nim values of 40 alloys and the contents 

of alloy atoms. In the prediction of the AM phase, 
as the contents of Ti and Cu increase, the 
normalized value also increases, indicating a 
weakened probability of amorphous formation but 
an increased probability of crystal formation. 
Conversely, when the Ni and Hf contents increase, 
the normalized value decreases, suggesting an 
increased probability of amorphous formation but a 
decreased probability of crystal formation. Similar 
trends are observed in the prediction of the IM 
phase, which aligns with the findings from the AM 
phase prediction. 

To obtain a composition range where the 
formation probability of amorphous or crystalline 
materials is neither significantly large nor small, the 
point of intersection between the Ti and Ni contents 
is selected, which is 32.7 at.%. At this point, a 
straight line parallel to the X-axis is drawn, 
intersecting with the Cu and Hf contents, to 
determine the contents of Cu and Hf (Cu: 16.4 at.% 
and Hf: 18.3 at.%). Similarly, the intersection point 
of Cu and Hf is selected, where the contents of Cu 
and Hf are 17.3 at.%, and a straight line is drawn to 
determine the contents of Ni and Hf (Ni: 30.9 at.% 
and Ti: 34.5 at.%). In Fig. 9(b), by using the same 
analytical method, one can obtain the range of 
contents of Ti, Cu, Ni, and Hf. Therefore, when the 
Ti content is between 32.7 at.% and 34.5 at.%, the 
Cu content is between 16.4 at.% and 17.3 at.%, the 
Ni content is between 30.9 at.% and 32.7 at.%, and 
the Hf content is between 17.3 at.% and 18.3 at.%, 
the probability of forming amorphous or crystalline 
structures in the alloy is neither particularly large 
nor small. Alloys within these ranges are more 
prone to form amorphous alloy composites. 

To validate the machine learning model for 
predicting the amorphous and crystalline phases of 
Ti−Cu−Ni−Hf alloys, the experimental verification 
is conducted using four alloys: Ti32Cu16Ni33.28- 
Hf18.72, Ti34Cu17Ni31.36Hf17.64, Ti36Cu18Ni29.44Hf16.56, 
and Ti38Cu19Ni27.52Hf15.48. The XRD patterns of 
these alloys with a diameter of 3 mm are shown in 
Fig. 10. The Ti32Cu16Ni33.28Hf18.72 and Ti38Cu19- 
Ni27.52Hf15.48 alloys consist of crystalline phases, 
while the Ti34Cu17Ni31.36Hf17.64 and Ti36Cu18Ni29.44- 
Hf16.56 alloys consist of both crystalline and 
amorphous phases. The composition of the four 
elements in Ti32Cu16Ni33.28Hf18.72 and Ti38Cu19- 
Ni27.52Hf15.48 alloys falls within the predicted 
composition range for crystalline phases. Therefore, 
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Table 4 Three characteristic parameters of 40 Ti−Cu−Ni−Hf alloys, as well as normalized values (Nam and Nim) of sum 
of 15 predicted values in AM and IM phase selection prediction 

Alloy δ ∆χ Sid/(J·mol−1·K−1) Nam Nim 

Ti40Cu20Ni25.6Hf14.4 8.83 0.23 10.94 0.1467 0.1553 
Ti39.6Cu19.8Ni25.984Hf14.616 8.86 0.23 10.96 0.1449 0.1552 
Ti39.2Cu19.6Ni26.368Hf14.832 8.89 0.23 10.98 0.1431 0.1550 
Ti38.8Cu19.4Ni26.752Hf15.048 8.93 0.23 11 0.1400 0.1559 
Ti38.4Cu19.2Ni27.136Hf15.264 8.96 0.23 11.02 0.1383 0.1559 

Ti38Cu19Ni27.52Hf15.48 8.99 0.23 11.03 0.1355 0.1574 
Ti37.6Cu18.8Ni27.904Hf15.696 9.02 0.23 11.05 0.1339 0.1576 
Ti37.2Cu18.6Ni28.288Hf15.912 9.06 0.23 11.06 0.1299 0.1602 
Ti36.8Cu18.4Ni28.672Hf16.128 9.09 0.23 11.07 0.1272 0.1618 
Ti36.4Cu18.2Ni29.056Hf16.344 9.12 0.23 11.08 0.1246 0.1636 

Ti36Cu18Ni29.44Hf16.56 9.15 0.23 11.09 0.1220 0.1654 
Ti35.6Cu17.8Ni29.824Hf16.776 9.19 0.24 11.1 0.1076 0.1702 
Ti35.2Cu17.6Ni30.208Hf16.992 9.22 0.24 11.11 0.1054 0.1716 
Ti34.8Cu17.4Ni30.592Hf17.208 9.25 0.24 11.11 0.1022 0.1747 
Ti34.4Cu17.2Ni30.976Hf17.424 9.28 0.24 11.12 0.1000 0.1763 

Ti34Cu17Ni31.36Hf17.64 9.31 0.24 11.12 0.0970 0.1795 
Ti33.6Cu16.8Ni31.744Hf17.856 9.34 0.24 11.12 0.0939 0.1828 
Ti33.2Cu16.6Ni32.128Hf18.072 9.38 0.24 11.13 0.0910 0.1857 
Ti32.8Cu16.4Ni32.512Hf18.288 9.41 0.24 11.13 0.0881 0.1892 
Ti32.4Cu16.2Ni32.896Hf18.504 9.44 0.24 11.12 0.0843 0.1944 

Ti32Cu16Ni33.28Hf18.72 9.47 0.24 11.12 0.0816 0.1980 
Ti31.6Cu15.8Ni33.664Hf18.936 9.50 0.24 11.12 0.0789 0.2017 
Ti31.2Cu15.6Ni34.048Hf19.152 9.53 0.24 11.11 0.0753 0.2072 
Ti30.8Cu15.4Ni34.432Hf19.368 9.56 0.24 11.11 0.0728 0.2111 
Ti30.4Cu15.2Ni34.816Hf19.584 9.59 0.24 11.1 0.0694 0.2168 

Ti30Cu15Ni35.2Hf19.8 9.62 0.25 11.09 0.0618 0.2419 
Ti29.6Cu14.8Ni35.584Hf20.016 9.65 0.25 11.08 0.0588 0.2479 
Ti29.2Cu14.6Ni35.968Hf20.232 9.68 0.25 11.07 0.0559 0.2540 
Ti28.8Cu14.4Ni36.352Hf20.448 9.71 0.25 11.06 0.0531 0.2603 
Ti28.4Cu14.2Ni36.736Hf20.664 9.74 0.25 11.04 0.0495 0.2688 

Ti28Cu14Ni37.12Hf20.88 9.77 0.25 11.03 0.0468 0.2753 
Ti27.6Cu13.8Ni37.504Hf21.096 9.80 0.25 11.01 0.0435 0.2843 
Ti27.2Cu13.6Ni37.888Hf21.312 9.83 0.25 11 0.0409 0.2911 
Ti26.8Cu13.4Ni38.272Hf21.528 9.86 0.25 10.98 0.0379 0.3003 
Ti26.4Cu13.2Ni38.656Hf21.744 9.89 0.25 10.96 0.0347 0.3098 

Ti26Cu13Ni39.04Hf21.96 9.92 0.25 10.94 0.0318 0.3196 
Ti25.6Cu12.8Ni39.424Hf22.176 9.95 0.25 10.92 0.0289 0.3295 
Ti25.2Cu12.6Ni39.808Hf22.392 9.98 0.25 10.89 0.0255 0.3424 
Ti24.8Cu12.4Ni40.192Hf22.608 10.01 0.25 10.87 0.0228 0.3529 
Ti24.4Cu12.2Ni40.576Hf22.824 10.04 0.26 10.84 0.0199 0.4148 
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Fig. 9 Relationship between normalized values and element contents of 40 alloys in AM (a) and IM (b) phase selection 
prediction  
 

 
Fig. 10 XRD patterns of new multiple-principal Ti−Cu−Ni−Hf alloys with diameter of 3 mm: (a) Ti32Cu16Ni33.28Hf18.72; 
(b) Ti34Cu17Ni31.36Hf17.64; (c) Ti36Cu18Ni29.44Hf16.56; (d) Ti38Cu19Ni27.52Hf15.48 alloys 
 
these alloys are classified as crystalline. On the 
other hand, the composition of the four elements in 
the Ti34Cu17Ni31.36Hf17.64 alloy lies within the 
predicted composition range for both amorphous 
and crystalline phases, indicating a coexistence   
of these two phases in the alloy. However, the 
Ti36Cu18Ni29.44Hf16.56 alloy has a composition that is 
close to the predicted composition range as shown 
in Table 5. Consequently, the Ti34Cu17Ni31.36Hf17.64 

and Ti36Cu18Ni29.44Hf16.56 alloys can be considered 
as good amorphous and crystalline alloys, closely 
resembling the predicted composition ranges. 

To better illustrate the presence of amorphous 
structures in the microstructure of Ti34Cu17Ni31.36- 
Hf17.64 and Ti36Cu18Ni29.44Hf16.56 alloys, Fig. 11 
displays the HRTEM and corresponding Fourier 
transform images of the mentioned alloys. In the 
HRTEM images, a coexistence of amorphous and  
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Table 5 Range of predicted molar fraction for amorphous and crystalline phases of 40 Ti−Cu−Ni−Hf alloys, and molar 
fraction of four elements in four experimental alloys 

Range 
Content/at.% 

Ti Cu Ni Hf 

Rp (AM+IM) 32.7−34.5 16.4−17.3 30.9−32.7 17.3−18.3 

Re (AM+IM) 34, 36 17, 18 31.36, 29.44 17.64, 16.56 

Rp (IM) <32.7, >34.5 <16.4, >17.3 <30.9, >32.7 <17.3, >18.3 

Re (IM) 32, 38 16, 19 27.52, 33.28 15.48, 18.72 
Rp is range of predicted values; Re is range of experimental values 
 

 
Fig. 11 HRTEM (a, c) and Fourier transform (b, d) images of Ti34Cu17Ni31.36Hf17.64 (a, b) and Ti36Cu18Ni29.44Hf16.56 (c, d) 
 
crystalline structures can be observed. Fourier 
transform was performed on the HRTEM images, 
resulting in the appearance of halos representing  
the amorphous structure and diffraction spots 
representing the crystalline structure. Consequently, 
the microstructure shown in the HRTEM images is 
consistent with the results obtained from XRD. 
 
4 Conclusions 
 

(1) In terms of phase formation probability in 
AACs, ANN outperforms the KNN model based on 
prediction accuracies, R values, and MSE values. 

Therefore, the ANN algorithm is suitable for 
predicting the phase selection of amorphous alloy 
composite materials. 

(2) An expression is defined to normalize the 
sum of predicted values selected by AM and IM 
phases as Nam and Nim, respectively. When the 
values of Nam and Nim approach 1, weaker activation 
of neural units for phase selection will occur, 
resulting in a lower probability for the alloy to form 
that particular phase. 

(3) In Ti−Cu−Ni−Zr−Hf alloys, when the 
normalized Nim value is greater than 0.43, the 
probability of IM phase formation will decrease. 
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When 0.341≤Nim≤0.43, both amorphous and 
crystalline phases will be present in the alloy 
structure, with the corresponding Ti content ranging 
from 28.8 at.% to 36 at.%. 

(4) For the novel multi-principal Ti−Cu− 
Ni−Hf alloys, when the Ti content ranges from 
32.7 at.% to 34.5 at.%, Cu content ranges from 
16.4 at.% to 17.3 at.%, Ni content ranges from 
30.9 at.% to 32.7 at.%, and Hf content ranges from 
17.3 at.% to 18.3 at.%, alloys within these ranges 
will be prone to form amorphous alloy composites. 

(5) Based on the results of XRD and HRTEM 
analysis, the Ti34Cu17Ni31.36Hf17.64 and Ti36Cu18- 
Ni29.44Hf16.56 alloys exhibit good amorphous alloy 
composites, which are consistent with the predicted 
amorphous alloy composition. 
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摘  要：用 k-近邻算法(KNN)和人工神经网络算法(ANN)对相形成概率进行预测，并用 ANN 模型预测未知的 40

种非晶合金复合材料(AACs)中 Ti、Cu、Ni 和 Hf 的组分范围。通过 X 射线衍射仪(XRD)和高分辨透射电镜(HRTEM)

对预测合金进行实验验证。ANN 模型对 AM 和 IM 相的预测精度分别为 93.12%和 85.16%；KNN 模型对 AM 相

和 IM相的预测精度分别为93%和84%。当Ti、Cu、Ni和Hf的含量分别为32.7%~34.5%、16.4%~17.3%、30.9%~32.7%

和 17.3%~18.3% (摩尔分数)时更易形成 AACs。根据 XRD 和 HRTEM 实验结果，Ti34Cu17Ni31.36Hf17.64 和 Ti36Cu18- 

Ni29.44Hf16.56 合金是较好的 AACs，与预测的非晶合金组分基本一致。 

关键词：多主元非晶合金复合材料；Ti−Cu−Ni−Hf；相选择；人工神经网络；机器学习 
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