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Abstract: The corrosion behavior of deposit-covered aluminum alloy 7075 (AA7075) caused by fungus Aspergillus
terreus (A. terreus) was thoroughly investigated in artificial seawater aiming to offer some new insights into the
under-deposit corrosion mechanism of aluminum alloys in marine environments containing fungi. Electrochemical
impedance spectroscopy, polarization curves, wire beam electrodes, and surface analysis were performed. Results
indicate that A. ferreus can survive beneath the deposit but the counts of sessile spores decline as the increase of deposit
thickness, suggesting a poor biological activity of 4. terreus beneath the deposit. Both the uniform corrosion and pitting
corrosion are accelerated by A. terreus, while the pitting corrosion of AA7075 alloys beneath the deposit derives from a
galvanic cell with a small anode and a large cathode. Deposits have a corrosion inhibition effect on AA7075. However,
the galvanic effect caused by the bare and deposit-covered AA specimens is obviously enhanced by A. terreus.
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1 Introduction

Aluminum alloys (AAs) have widely practical
applications in offshore structures owing to their
superior versatility of high strength, good machining
properties, and low density [1]. The mechanical and
anti-corrosion performances of AAs have been
quickly improved with the development of smelting,
forging, and welding processes, and they reach or
even surpass traditional metal materials, such as
carbon steels [2—4]. Nowadays, different types of
AAs are flexibly employed in specific areas
according to their actual demands, such as
superstructures, submarine pipelines, and offshore
operating platforms. However, AA easily suffers
from severe localized corrosion, especially in

highly corrosive marine environments, and pitting
corrosion [5], stress corrosion [6], and
microbiologically influenced corrosion (MIC) [7,8]
are primary.

MIC dominates a significant position in all
corrosion types, and more than 20% of economic
losses induced by corrosion are related to MIC
[9,10]. MIC is a complex electrochemical corrosion,
and many microorganisms, including bacteria and
fungi, can be involved in the whole corrosion
process [11—-14]. Microorganisms can directly or
indirectly accelerate metal corrosion, and the direct
way is related to the direct electron from metal to
microorganisms while the indirect way is attributed
to metabolic products secreted by microorganisms,
such as the extracellular polymeric substances
(EPS) [15,16]. Recently, most MIC studies have
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predominantly focused on bacteria, but fungi also
exhibit notable corrosive properties particularly on
AAs, resulting in severe localized corrosion. Fungal
spores are widely distributed in the natural
environment, and they can attach to metal surface
and survive well. Furthermore, fungi can easily
enhance the formation of defects in AA passive film
by modifying its structure [17,18]. However, the
fungal corrosion behavior and mechanism of AA,
particularly in marine environment, remain unclear
due to the limited studies.

It can be speculated that fungal corrosion
behavior will be complicated and changeable if
some deposits participate in the whole corrosion
process. Under natural conditions, some deposits,
such as soil and sand, can readily accumulate on
equipment materials, causing under-deposit
corrosion (UDC) [19]. UDC typically leads to
localized corrosion due to the formation of a
galvanic-couple cell triggered by the presence of
deposits [20]. The presence of microorganisms will
affect UDC. SUAREZ et al [21] found that
microbial consortium could deeply affect the
corrosion behavior of the sand-deposited and
sand-free metal, leading to higher corrosion rates. It
has been previously reported that a significant
UDC acceleration is derived from the enhancement
effect of sulfate-reducing bacteria (SRB) [22].
The previous investigation [23] demonstrated that
Pseudomonas stutzeri could inhibit the galvanic
corrosion between the bare and deposit-covered
steel specimens by decreasing their galvanic effect.
Furthermore, some studies proposed that some
specific deposits could hinder corrosion by
preventing the migration of corrosion ions and
dissolved oxygen from the solution to the
solid—liquid interface [24—26]. Hence, the corrosion
behavior and mechanism of AAs will undergo
significant changes when fungi coexist with
deposits. However, the related corrosion studies are
poor.

In this work, fungal corrosion of deposit-
covered AA7075 with different thicknesses in
artificial seawater containing fungus Aspergillus
terreus (A. terreus) was deeply investigated.
Surface analysis was performed to characterize the
morphology and composition of the corrosion
products. Electrochemical measurements were
conducted to analyze corrosion behavior and
mechanism. The galvanic corrosion between the

deposit-covered and bare AA7075 was also studied
based on galvanic current density and wire beam
electrode (WBE) to explore the influence of
A. terreus. This study aims to give a comprehensive
understanding of under-deposit corrosion of
AA7075 caused by fungi.

2 Experimental

2.1 Preparation of AA7075 specimens

AA7075 with a high-strength was selected in
this work, and its chemical composition (wt.%) was:
2.40 Mg, 6.00 Zn, 2.50 Cu, 0.40 Si, 0.50 Fe,
0.30 Mn, 0.18 Cr, 0.20 Ti, and Al balance. The
working electrodes had a size of 10 mm % 10 mm X
10 mm with a working face of 1 cm?. Specimens of
20 mm x 10 mm x 5 mm were applied to surface
analysis. All the specimens were mechanically
polished with grit silicon carbide papers of 4007,
6007, 800%, and 1200* in series. Subsequently, the
polished specimens were cleaned with deionized
water, acetone, and ethanol, respectively. Last, the
cleaned specimens were dried using N,. Before
tests, the specimens were sterilized by ultraviolet
radiation for over 30 min.

2.2 Fungal cultivation and inoculation

A. terreus, one of the typical fungi, was
isolated from the South China Sea [27]. 4. terreus
was cultured in a potato dextrose liquid medium
containing 30 g/l NaCl, 20 g/L dextrose, and
200 g/l potato infusion. Before inoculation, the
fresh medium was first sterilized at 121 °C for over
20 min. A. terreus was cultured at 37 °C after
inoculation. Both the planktonic and sessile spores
of A. terreus were quantitatively counted based on a
spread plate method.

2.3 Test solution and deposits

According to the standard of ASTMD 1141—
98, the test solution, i.e., artificial seawater, was
prepared, and its chemical composition could be
found in a previous study [27]. To improve the
biological activity of A. terreus, 10 wt.% culture
medium of A. terreus was added to the artificial
seawater. The test solution was also sterilized at
121 °C for more than 20 min. The deposits were
composed of sand and clay with a mass ratio of 5:1.
The sand has a small size of less than 0.4 mm. The
deposits were sterilized at 150 °C in a drying oven
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for 1 h. The deposit thicknesses covered on the
specimen surface were 0, 1, 3, and 6 mm,
respectively.

2.4 Characterization of corrosion product film

and biofilms

After corrosion tests of 14d in artificial
seawater, the specimens were first taken out.
Immediately, the deposits were slightly removed by
normal saline solution, and then the specimens were
placed in 2.5 wt.% glutaraldehyde solution to
fix biofilm with an immersion time of 4h.
Subsequently, the biofilm-covered specimens were
dehydrated by ethanol solution with the
concentrations of 50%, 70%, 80%, 90%, and 100%,
and each immersion was last for 10 min. Then,
the specimens were dried in an N, atmosphere.
Scanning electron microscopy (SEM, JSM-IT200,
Japan) from JEOL, energy dispersive X-ray
spectroscopy (EDS), and X-ray diffraction (XRD,
BrukerAXS, Germany) were conducted to
characterize the surface films. A Leica
three-dimensional microscope (DVM6, Germany)
was used to study the bare localized corrosion
morphologies of specimens under different test
conditions.

2.5 Electrochemical measurements

A Corrtest workstation (CS350H, Wuhan,
China) with a three-clectrode cell was used to do
electrochemical measurements, and the deposit-
covered specimens, saturated calomel -electrode
(SCE) and platinum plate corresponded to working
electrode, reference electrode, and counter electrode,
respectively. The electrochemical impedance
spectroscopy (EIS) data were measured in a
frequency range from 10° to 1072 Hz after a stable
open circuit potential (OCP). After 14 d of testing,
potentiodynamic polarization curves in a potential
range from —350 to 550 mV (vs OCP) were scanned,
and the sweep rate was 0.5 mV/s. The galvanic
current density between bare and deposit-covered
electrodes was performed with a Gammy
workstation (Reference 3000, USA). The WBE was
constructed with 100 pieces of AA7075, and the
single electrode had a diameter of 1 mm. The
current density distributions of WBE under various
test conditions were measured by Corrtest
electrochemical instrument (CST520, China). The
schematic diagrams of the galvanic current density

and WBE measurements are shown in Fig. 1. Each
test was repeated at least three times.

(a) |—’@ b
'y % - — R Artificial
| | seawater
Epoxy
J —DE  Deposit
< - AA7075

Fig. 1 Schematic diagrams of galvanic current density (a)
and WBE (b) measurements (WE: Working electrode;
RE: Reference electrode)

3 Results

3.1 Biological activities of 4. terreus

Figure 2(a) depicts the fungal growth curve in
artificial seawater. The initial A. terreus spore
concentration (N ereus) 18 5.4x10* spores/mL, and
then A. terreus grows fast during the initial 6 d, i.e.,
logarithmic phase. The spore concentration changes
a little from 6 to 12d corresponding to the
stationary phase. Subsequently, the spore counts
decline fast with time due to the consumption of
nutrients. The sessile A. ferreus for the specimens
covered with different deposit thicknesses are
presented in Fig. 2(b). The sessile spores of
A. terreus decline with the increase of deposit
thickness, i.e., the deposit adversely affects the
biological activity of sessile A. terreus. However,
A. terreus can survive beneath the deposits,
accelerating the corrosion of AA7075. The pH
values of the solution under various test conditions
on the 14th day are shown in Fig. 2(c). The pH values
tend to approach 7 under abiotic conditions, while
they are 4—5 in biotic conditions due to A. terreus.
The decrease in pH values is attributed to the
organic acids secreted by A. terreus.

3.2 Morphologies of surface films

Figures3 and 4 show SEM images of
corrosion product films and biofilms on the
deposit-covered  specimens  with  different
thicknesses in abiotic and biotic conditions after
14 d of testing. Meanwhile, the quantitative EDS
data are shown in Table S1 in Supplementary
Materials (SM). A large number of corrosion
products are distributed on the surface of the abiotic
bare specimen forming a compact film (Fig. 3(a)).
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Fig. 2 Growth curve of planktonic A. ferreus in artificial seawater (a), sessile spores of A. terreus after 14 d of testing
(b), pH values of test solution in the absence and presence of 4. ferreus initial and after 14 d of testing (c)
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Fig. 3 SEM images (a, c, e, g) and EDS analysis results (b, d, f, h) of corrosion product films on deposit-covered
specimens with different thicknesses after 14 d of testing in the absence of A. terreus: (a,b) 0 mm; (c,d) 1 mm;
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Fig. 4 SEM images (a, c, e, g) and EDS analysis results (b, d, f, h) of corrosion product films and biofilms on deposit-
covered specimens with different thicknesses after 14 d of testing in the presence of 4. terreus: (a, b) 0 mm; (c, d) 1 mm;

(e, ) 3 mm; (g, h) 6 mm
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Some bulges, cracks, and micropores can be
observed in Fig. 3(a). For 1 mm deposit-covered
specimen, some amounts of corrosion products can
also be observed (Fig. 3(c)). As the thickness of
deposits increases from 3 to 6 mm, the scratch line
can also be seen even though few corrosion
products cover on specimens (Figs. 3(e) and (g)).
The decrease of surface corrosion products suggests
a slight corrosion in the abiotic environment. The
EDS analysis results demonstrate that the dominant
elements in corrosion products are O, Al, and C,
suggesting the formation of AlOs or Al(OH)s.
Compared to the abiotic conditions, the
morphologies of surface films in the presence of
A. terreus show considerable variation. For the bare
specimen, large amounts of hyphae and spores
cover the specimen surface (Fig.4(a)), and high
contents of elements C and P can be found
correspondingly (Table S1 in SM). Therefore,
A. terreus can attach and grow well on the surface
of bare AA, forming a biofilm. When the deposits
with different thicknesses cover specimens,
compact films as well as some loose corrosion
products are formed (Figs. 4(c—h)). For the 6 mm
deposit-covered specimen, the surface film has
some cracks (Fig. 4(g)). From EDS analysis results,
it is seen that the contents of element C in the
surface film have a considerable decrease with the
increase of deposit thickness, but the contents of
element Al correspondingly increase on the whole
(Table S1 in SM). The decrease of C contents in the
surface film suggests that the organics in the surface
film decline due to the decrease of fungal biological
activity caused by deposits. The increase of Al
content can derive from the surface Al passive film,
also suggesting that the corrosion can be inhibited
by the deposits. Combined with the surface
morphologies, it can be speculated that A. ferreus
cannot grow well beneath the deposits, potentially
due to the presence of anoxic environment. As a
result, the actual influence of A. terreus on AA7075
corrosion exhibits a noticeable reduction with the
increase in deposit thickness. Consequently, the
chemical compositions of the surface films on
6 mm deposit-covered abiotic and biotic specimens
turn out to be similar.

3.3 XRD analysis results
Figure 5 presents XRD analysis results of
surface corrosion products on specimens covered

with different deposit thicknesses in the absence
and presence of A. terreus. In the abiotic and biotic
test environments, the species of corrosion products
are similar, i.e., AI(OH); and Al,O;, which are
consistent with EDS data (Table S1 in SM). The
peaks derived from corrosion products are weak
because the corrosion type of AA7075 is localized
corrosion, not uniform corrosion due to the rapidly
formed passive film. The presence of Al(OH)3
suggests the part damage of AA passive film.
Furthermore, AA passive film is easily destroyed in
biotic conditions [27].
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Fig. 5 XRD patterns of corrosion products on deposit-
covered specimens with different thicknesses after 14 d of
testing in the absence (a) and presence (b) of 4. terreus

3.4 Bare surface morphologies caused by corrosion

The bare surface morphologies of deposit-
covered specimens caused by corrosion after 14 d
of testing in the abiotic and biotic conditions are
presented in Fig. 6. In the absence of A. ferreus, a
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Fig. 6 3D bare surface morphologies of deposit-covered specimens with different thicknesses caused by corrosion after
14 d of testing in the absence of 4. terreus: (a, b) 0 mm; (c, d) 1 mm; (e, f) 3 mm; (g, h) 6 mm

small corrosion pit with a depth of about 22.62 um
can be observed for the bare specimen, and the
polish lines can also be identified, suggesting a
slight corrosion (Figs. 6(a, b)). Some tiny corrosion
pits are shown on specimens as the deposit thickness
increases, but the changes are inconspicuous
(Figs. 6(c, d)). Therefore, the presence of a deposit
on the specimen has an inhibition effect on AA
corrosion. In a conclusion, the abiotic corrosion of
the bare and deposit-covered specimens is not
severe. However, the corrosion can be considerably
enhanced by A. ferreus compared with abiotic
conditions. For the bare specimen, much more
serious pitting corrosion induced by A. ferreus is

presented in Figs. 7(a,b). Similarly, pitting
corrosion is also found for the deposit-covered
specimens of 1, 3, and 6 mm, but the pitting
corrosion is slight (Figs. 7(c—h)). Therefore, AA
corrosion induced by A. terreus is also inhibited by
deposits.

3.5 Open circuit potential analysis results
Time-dependent OCP vales of the control and
biotic deposit-covered specimens with different
thicknesses are monitored, which are shown in
Fig. 8. In the abiotic conditions, the deposits of 1
and 3 mm promote the negative shift of OCP, while
deposit of 6 mm causes a positive shift compared
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with the bare specimen (Fig. 8(a)). It is obvious that
the OCP values in the abiotic control conditions are
higher than these in the presence of A. ferreu, i.c.,
A. terreus can promote the shift of OCP in a
negative direction (Figs. 8(a, b)). Furthermore, the
OCP values of the deposit-covered specimens are
much more positive compared with the bare
specimen, and there is an OCP difference for
specimens beneath the deposits and the bare
specimens (Fig. 8(b)).

3.6 EIS data

Figures 9, 10 and S1, S2 (in SM) show the
effects of deposit thickness and test time on Nyquist
and Bode plots of specimens in the abiotic and
biotic environments. For the abiotic control
conditions, the impedances of bare specimen
decline steadily during the initial 10 d due to the
diameter compression of Nyquist plots, which can
derive from the slow damage of the passive film
caused by CI™ (Fig. 9(a)) [28—31]. However, the
visible increase of semi-circle in the following days
can be observed (Fig.9(a)). Compared with bare
specimen, the Nyquist plots of deposit-covered
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specimens have larger diameters, suggesting a
higher impedance. Furthermore, the broad phase
angles of deposit-covered specimens suggest that
the surface passive film of specimens is good due to
the influence of deposits, thus leading to a higher
impedance. In addition, AA7075 corrosion is
affected by the deposit thickness, and the thicker
the deposit, the lower the corrosion rate.

In the biotic artificial seawater, the impedance
values of the bare specimen decrease apparently
from the Nyquist plots during initial 7 d, suggesting
that A. ferreus can destroy AA7075 passive film
(Fig. 10(a)). Then, the diameters of Nyquist plots
gradually increase with the increase of time
(Fig. 10(a)). There is an additional phase angle
formed in the low-frequency region (Fig. S2(b) in
SM) demonstrating the formation of a biofilm on
specimen shown in Fig. 4(a). The variations of
Nyquist plots of 1 mm deposit-covered specimen
are close to those of the bare specimen but with
higher impedance values (Figs. 10(a, b)). For the
specimens with deposit thicknesses of 3 and
6 mm, the diameters of Nyquist plots decrease
continuously in the first 10 d and then increase
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Fig. 9 Effects of deposit thickness and test time on Nyquist plots of abiotic specimens: (a) 0 mm; (b) 1 mm; (c) 3 mm;

(d) 6 mm



1414
50
(a)
40 o1ld 7d
~ o2d <& 10d
* 4d 14 d
5 30} .
& Fitted line
=
S
N [m}
: go oo
10}
a
0 10 20 30 40 50
Z'[(kQ-cm?)
100
(©
80 o1d 7d
= o2d <& 10d
E ol % 4d 14d
a Fitted line
2
le 40 -
20
0 20 40 60 80 100
Z'[(kQ-+cm?)

Jia-ping WANG, et al/Trans. Nonferrous Met. Soc. China 35(2025) 1406—1423

50
(b)
401 o1d 7d
02d < 10d
30l * 44 14 d

Fitted line

50
100
(d)
80F o1d 7d
= o2d < 10d
g 601 * 4d . 1'4 d
a —Fitted line
2
i“ 40
100

Z'l(kQ+cm?)

Fig. 10 Effects of deposit thickness and test time on Nyquist plots of specimens with A. terreus: (a) 0 mm; (b) 1 mm;
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slightly (Figs. 10(c, d)). The broad phase angles of
the 3 and 6 mm deposit-covered specimens are
consistent with those of the abiotic control
conditions, demonstrating that even though
A. terreus can accelerate AA7075 corrosion, their
influence on corrosion turns out to be small for the
thicker deposit.

An equivalent circuit including two time-
constants (Fig. S3 in SM) is used to fit the above
EIS data, and the fitted results are presented in
Fig. 11. In the equivalent circuit, Rs, Ry, and R
are assigned to the solution resistance, surface
film resistance, and charge transfer resistance,
respectively, while Or and Qa correspond to
film capacitance and double layer capacitance,
respectively. A constant phase angle element (CPE)
is used considering the heterogeneous surface films
caused by corrosion, and it reflects the natural
corrosion process that deviates from the ideal
capacitance [32]. The fitted parameter of EIS, i.e.,
R,, is the sum of Rr and Rc. There is a significant
increase in R, values as the deposit reaches 6 mm
compared with the bare specimen whether in the

presence of A. terreus or not (Figs. 11(a, b)). The R,
values of the biotic specimens in the presence of
A. terreus are lower than those in abiotic conditions.
Therefore, fungus A. terreus can considerably
improve the corrosion rate of AA7075 but the
deposits effectively inhibit AA7075 corrosion.
Furthermore, the change trends of R, values have
a large difference in the abiotic and biotic
environments (Figs. 11(a, b)), and A. terreus can
cause a fast decrease of R, values during the initial
several days (Fig. 11(b)) but the presence of
deposits can decline the corrosion acceleration
effect induced by A. terreus.

3.7 Potentiodynamic polarization curves

The measured potentiodynamic polarization
curves of deposit-covered specimens on the 14th
day in abiotic and biotic environments are presented
in Fig. 12. The anodic dissolution of Al and the
cathodic oxygen reduction reactions are inhibited
by deposits in the abiotic control conditions
(Fig. 12(a)). The increase of deposit thickness
can cause a small corrosion current density. The
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presence of the deposit possibly inhibits the
diffusion of dissolved oxygen to the water—
electrode interface, thus causing a decrease in the
cathodic oxygen reduction reaction rate. In the
biotic seawater containing A. terreus, deposits
mainly inhibit the anodic dissolution of Al, but the
cathodic reaction changes little with the increase of
deposit thickness (Fig. 12(b)). Furthermore, it is
also observed that A. terreus promotes the positive
shift of the corrosion current density compared to
the control, i.e., A. terreus improves AA corrosion
rate. The fitted parameters of the polarization
curves are presented in Table S2 in SM. It is seen
from Table S2 in SM that the corrosion current
densities of specimens decrease with the increase of
deposit thickness whether in the biotic or abiotic
conditions. Furthermore, the corrosion current
densities of specimens in the presence of 4. terreus
are higher than those under the abiotic control,
suggesting the corrosion acceleration caused by
A. terreus (Table S2 in SM).

3.8 Galvanic current density distribution of

WBE

The deposit of 3 mm is used to study the
localized corrosion behavior of the specimen
beneath the deposits induced by 4. ferreus based on
WEB. Figures 13 and 14 show the changes in
abiotic and biotic galvanic density
distributions of 3 mm deposit-covered specimens
with time. For the abiotic control WBE, some small
anodes can be easily found, and some of these
anodes can change their position with time
suggesting that the formation of localized corrosion
is a dynamic process (Fig. 13). The appearance of
the small anodes also corresponds to the pitting
corrosion shown in Figs. 6(e, f). The anodic current
density of the single peak increases with the
increase of time, and it reaches a maximum value
on the 7th day, i.e., 9.3x1077 A/cm?, then it turns out
to be smaller. The small current density of these
anodic sites demonstrates slight pitting corrosion
(Figs. 6(e, )). In the biotic artificial seawater

current
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containing A. terreus, some small anodes are also
observed, but these anodes can be quickly formed
(Fig. 14). The maximum peak value of anodic
current density is 4.3x107° A/cm? obtained also on
the 7th day (Fig. 14(d)), which is considerably
higher than the abiotic control condition. The
anodic peak current density turns out to be smaller
after 7d of testing. Therefore, the localized
corrosion should be slight, which is consistent with
the bare corrosion morphologies (Figs. 7(e, f)).
However, the WBE analysis results further
demonstrate that A. ferreus has enhanced the
localized corrosion of the specimens beneath the
deposits.

3.9 Galvanic current density between bare and
deposited specimens
The driving force of galvanic corrosion can be

determined by the values of OCP difference.
Generally, a higher potential difference value can
accelerate the galvanic effects [33]. The time-
dependent OCP differences between the specimens
covered with and without 3 mm deposit in abiotic
and biotic environments are presented in Fig. S4 in
SM. In the abiotic conditions, the difference values
of OCP decrease with the increase of time, and the
galvanic effect is very low due to the small
difference values of OCP from the 4th to the 10th
day. The initially positive OCP difference values
and the latterly negative OCP difference values
demonstrate the polarity inversion in galvanic
coupling. However, the difference values of
OCP induced by A. terreus are larger than those in
abiotic conditions.

Figure 15 shows the time-dependent abiotic
and biotic galvanic current density between the bare
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containing A. ferreus: (a) 1 d; (b)2d;(c)4d;(d)7d; (e) 10d; (f) 14d

and 3 mm deposit-covered specimens in artificial
seawater. In the abiotic conditions, the bare
specimen is anode while the deposit-covered
specimen is cathode during initial 4d, and the
polarity inversion is formed after 7 d of testing due
to the appearance of negative galvanic current
density. In the biotic environment, the anode is the
bare specimen while the cathode corresponds to the
deposit-covered specimen. However, the values of
galvanic current density are not large both in the
abiotic and biotic environments. These indicate
that the galvanic corrosion effect of the specimens
covered with and without deposits is weak, which
is different from the previous reports of UDC
for steel [20,34,35]. But A. terreus can still
accelerate the galvanic corrosion of the bare and
deposit-covered specimens. Hence, the species of

microorganism and alloy types both can influence
the galvanic corrosion behavior derived from the
deposits.

4 Discussion

4.1 Abiotic corrosion of deposit-covered AA7075
Aluminum alloys usually have a high
corrosion resistance due to the surface passive film,
but they can also suffer serious localized corrosion,
especially in marine environments [36,37]. This
work also confirms the serious pitting corrosion of
AA7075 in artificial seawater (Figs. 6(a, b)). The
pitting corrosion is probably caused by Cl  due to
the part damage of the passive film. However, the
corrosion behavior and mechanism have changed
for the deposit-covered specimens compared with
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the bare specimens. Some previous studies
[26,38—40] found that the existence of deposits can
enhance the localized corrosion of carbon steel,
which is contrary to the experimental results in this
study. According to the experimental results, the
covered deposits can inhibit both uniform and
pitting corrosion (Figs. 6, 11 and 12). Furthermore,
the thicker deposits have a higher inhibition effect
against AA7075 corrosion (Fig. 11). A difference

between AA7075 and carbon steel is the passive
film. The existence of the passive film will cause a
change in the corrosion beneath the deposits.

The covered deposits on AA7075 have a
blocking effect on dissolved oxygen diffusion and
dissolved metal cations [24], i.e., the deposits can
effectively inhibit both the anodic and cathodic
reactions resulting in corrosion inhibition compared
to the bare AA7075. Because of the appearance of a
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passive film, AA7075 only can initiate corrosion
on the local weak area of the passive film with the
assistance of CI° [41]. Therefore, the total
dissolution rate of Al should be very slow.
Furthermore, the electron from the dissolution of Al
cannot be easily transferred to the cathodic oxygen
because of the poor electrical conductivity of
AA7075 passive film. Therefore, the formation of a
galvanic corrosion cell for AA7075 beneath the
deposits is difficult and its efficiency should be low
not like the situation of deposit-covered steel. As a
result, the pitting corrosion and uniform corrosion
of deposit-covered AA7075 are inhibited by the
deposits, and the thicker deposits have a higher
corrosion inhibition effect on AA7075 corrosion.
Even if the corrosion of deposit-covered AA7075
mitigates, pitting corrosion can also be found due to
the penetration of ClI” and the existence of small
amounts of O, beneath depositions. Therefore, a
slight pitting corrosion for the deposit-covered
specimens is observed from the bare surface
morphologies (Figs. 6 and 7). WBE results also
confirm the slight pitting corrosion due to the
formation of the small anode peaks with a weak
current density.

A weak galvanic corrosion effect of the
AA7075 specimens with and without deposits is
also found (Fig. S4 in SM and Fig. 15), which is
also different from the situations formed by the bare
and deposit-covered carbon steel. Moreover, the
galvanic current density (Jp) is calculated according
to the following equation [42]:

IBC ﬂa
ang=—+2 In(4,J,,.,)+ +‘ In(A4,J )+

al c2 al c2
Deor2 ~ Peorrl ( 1 )
/Bal + ﬁcZ

where gcor1 and geom2 are the corrosion potentials of
Electrodes 1 and 2, respectively; Jeor: and Jeom are
the corrosion current densities of Electrodes 1 and 2,
respectively; a1, Paz, and fc1, Seo are Tafel slopes of
the anodic and cathodic reactions for Electrodes 1
and 2, respectively.

The galvanic effect is determined by the
differences between ¢cor2 and @eom1 according to
Eq. (1). The small potential differences shown in
Fig. 14 in the abiotic conditions demonstrate a weak
galvanic effect. Furthermore, the polarity inversion
is found, which is probably caused by the corrosion

product film formed on AA7075 [43]. This
corrosion product film promotes the positive shift
of OCP of the bare AA7075.

4.2 Corrosion acceleration of deposit-covered

AA7075 induced by A. terreus

A. terreus can survive well and maintain good
biological activity in artificial seawater so that a
biofilm is easily formed on AA7075 (Figs. 2 and 3).
A. terreus possesses high corrosivity for AA, and
it can easily cause pitting corrosion [17,27,44].
Severe pitting corrosion of bare AA7075 resulting
from A. terreus is also observed in this work
(Figs. 7(a, b)). Fungi can directly or indirectly
accelerate AA7075 corrosion. The direct way is
related to the electron transfer directly from Al to
fungi through some electronic conductors, such as
hyphae. Because some fungi can directly use some
elements, including Fe, Zn, Cu, and Mg, from AA
as their nutrients to increase their metabolic activity
[45]. Furthermore, fungi can secret large amounts
of extracellular polymeric substances (EPS) which
are composed of proteins, polysaccharides, and
organic acids. The proteases and organic acids have
been verified to effectively increase corrosion rate
of AA [44,46,47]. The pH values in the presence of
A. terreus also have a considerable decrease after 14
d of testing (Fig. 2(c)), suggesting a biogenic acid
corrosion. Therefore, the corrosion acceleration of
the bare AA7075 is easily induced by A. terreus.

However, the corrosion behavior of deposit-
covered AA7075 caused by A. terreus will have a
high difference in comparison with the bare
specimens. Initially, 4. ferreus cannot survive well
beneath the deposits, and the count of sessile spores
has a fast decrease with the increase in deposit
thickness (Fig. 2(b)). The decrease of sessile spores
beneath the deposits is due to two respect reasons.
Initially, as discussed above, the existence of a
deposit can inhibit the diffusion of oxygen. The
anoxic environment is detrimental to the growth of
aerobic A. terreus. Secondly, A. terreus beneath
deposits cannot get the organic nutrients easily. The
sessile microorganisms are mainly responsible for
MIC [48]. This means that the direct corrosion
acceleration of 4. terreus for AA7075 is gradually
weakened with the increase of deposit thickness,
but the indirect actions of A. terreus such as organic
acids and extracellular proteases, can also
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accelerate the corrosion of deposit-covered AA7075.
WBE analysis results indicate that A. ferreus
accelerates the localized corrosion due to the
formation of some anodic peaks with a higher
current density than those in abiotic conditions
(Figs. 13 and 14). Therefore, A. terreus can promote
under-deposit  corrosion, but the corrosion
acceleration effect of A. ferreus will be weakened
with the increase in deposit thickness.

It is also found that A. terreus can accelerate
the galvanic corrosion between the specimen
beneath a 3 mm deposit and the bare specimen
(Fig. 9, Fig. S1 in SM and Fig. 15). As stated in
Eq. (1), the galvanic effect is determined by the
potential difference. 4. ferreus can deeply affect the
bare AA7075 corrosion and cause a negative shift
of OCP (Fig. 8). Thus, a large potential difference
between @corr1 and geor2 in the presence of A. terreus
is formed, leading to the enhancement of galvanic
effect of the bare and deposit-covered AA7075.
However, the biological activity of 4. terreus shows
a fast decrease during the later period which
can cause the decrease of galvanic effect [35].
Therefore, the galvanic current density decreases
gradually as time goes on so that the values of
anodic galvanic current density tend to be small
during the last 4 d (Fig. 15). As discussed above,
the galvanic effect for AA7075 is small whether in

Jia-ping WANG, et al/Trans. Nonferrous Met. Soc. China 35(2025) 1406—1423

abiotic and biotic conditions not like carbon steel.
The pitting corrosion mechanisms of the AA7075
under the bare and deposit-covered conditions in
the absence and presence of A4. terreus are proposed
and presented in Fig. 16. The formation of AA
passive film and the presence of A. ferreus both can
affect under-deposit corrosion [49].

5 Conclusions

(1) In abiotic conditions, a thin corrosion
product film is formed on AA7075, meanwhile, the
polish line can be recognized. Pitting corrosion of
the abiotic bare AA7075 with a depth of 22.62 pm
can be found. With the increase in deposit thickness,
both the pitting corrosion and uniform corrosion are
alleviated. Beneath the deposits, some small anodic
sites are found but with a small current density from
WBE results, suggesting a slight pitting corrosion.
There is weak galvanic corrosion derived from the
bare and 3 mm deposit-covered AA7075.

(2) In the biotic conditions, 4. ferreus survives
well and can maintain good biological activity, but
the sessile A. terreus declines apparently with the
increase of deposit thickness. For the bare AA7075,
there are large amounts of hyphae and spores, but
no recognized hyphae and spores can be found
beneath the deposits.
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Fig. 16 Schematic diagrams of pitting corrosion mechanism of bare and deposit-covered specimens in the absence (a, b)

and presence (c, d) of A. terreus in artificial seawater
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(3) Compared to abiotic control, A. terreus
apparently enhances the corrosion of AA7075. The
corrosion of AA7075 caused by A. terreus is also
inhibited by deposits. There is a good passive film
for the specimens covered with a thicker deposit.
The formation of small anodes and large cathodes
contributes to the pitting corrosion beneath the
deposits. A. terreus not only accelerates under-
deposit corrosion but also enhances the galvanic
corrosion induced by deposits.
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