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Abstract: MnO2-doped Ca0.97Bi2.03Nb2O9 ceramics with greatly improved piezoelectric performance were prepared via 
conventional solid state sintering method. The effects of MnO2 doping on the microstructure and electrical properties of 
Ca0.97Bi2.03Nb2O9 ceramics were studied. X-ray diffraction (XRD) analysis and Rietveld refinement revealed a reduction 
in orthorhombicity with MnO2 doping, which contributed to the enhancement of the piezoelectric properties. 
Furthermore, the introduction of MnO2 lowered the sintering temperature, thereby reducing the formation of oxygen 
vacancies in the ceramic. The optimal performance was achieved in the Ca0.97Bi2.03Nb2O9−0.3wt.%MnO2 sample, 
exhibiting a piezoelectric coefficient (d33) of 13.6 pC/N, a DC resistivity of 3×106 Ω·cm at 500 °C, and a Curie 
temperature of 965 °C. Additionally, all doped samples demonstrated excellent thermal stability over a wide 
temperature range, from room temperature to 900 °C. 
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1 Introduction 
 

There is an increasing demand for high 
temperature piezoelectric devices in various areas, 
including aerospace, aircraft, automotive and 
power-generating [1−5]. Piezoelectric materials for 
high-temperature applications are required to own a 
high Curie temperature (TC) to withstand the high 
working temperature and good piezoelectric 
coefficient (d33) to ensure sensitivity [6,7]. However, 
the temperature limit of conventional lead zirconate 
titanate (PZT) is around 380 °C, and the lead 
volatilization during the ceramic preparation 
process is harmful to the environment [8,9]. 

Therefore, research on lead-free piezoelectric 
materials for high temperature applications is of 
great importance [10]. 

Bismuth layer-structured ferroelectrics 
(BLSFs), also known as Aurivillius-phase materials, 
are considered as promising candidates for future 
high-temperature applications due to their high TC, 
good thermal depolarization performance and high 
resistivity [11−13]. The general formula of BLSFs 
presents as (Bi2O2)2+(Am−1BmO3m+1)2−, where m 
represents the number of octahedral layers between 
adjacent (Bi2O2)2+ layers [14]. CaBi2Nb2O9 (CBN) 
exhibits a rather high TC of 940 °C among the 
BLSFs family, which is an ideal material for high 
temperature usage [13]. However, it is difficult for 
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CBN to be polarized due to the restriction of 
spontaneous polarization in a−b plane, resulting in 
a high coercive field and thus a low piezoelectric 
performance [15,16]. The low d33 of ~5 pC/N 
largely hinders the practical application of CBN 
ceramics [17]. 

To enhance the piezoelectric properties of 
CaBi2Nb2O9 (CBN), researchers have focused 
extensively on chemical and structural 
modifications, including ion doping and grain 
orientation. Textured CBN ceramic through spark 
plasma sintering (SPS) method has been reported 
by YAN et al [13] to obtain a d33 value up to 19.5 
pC/N. Although a relatively high d33 can be realized, 
grain orientation technique is difficult to be applied 
in market due to the large cost of processing. Hence, 
chemical doping is a better choice for 
piezoelectricity enhancement of CBN. Many 
researches have been done in recent years, 
including A-site, B-site cation substitution, and 
AB-site co-doping, which can enhance the d33 to 
12−18 pC/N [18−23]. It has been revealed that the 
A-site doping would result in a distinct structural 
distortion, such as pseudo-tetragonal distortion and 
[NbO6] octahedron tilting, and thus lead to an 
improvement in piezoelectric constant while the 
B-site doping usually plays a role to enhance the 
thermal stability of BLSFs [9,24,25]. However, 
most studies on ion doping have reported an 
improvement in d33, accompanied by a 
simultaneous reduction in TC. Achieving high 
piezoelectric performance while maintaining a high 
TC is crucial for the practical application of CBN- 
based ceramics. 

The Bi element tends to volatilize during the 
sintering process of CBN, resulting in the formation 
of numerous oxygen vacancies and degrading the 
insulation resistance [26]. Therefore, reducing the 
bismuth volatilization is an effective method to 
promote the electrical properties of CBN [27]. 
Moreover, researchers have reported that sintering 
additives can hinder the volatilization of Bi element 
by lowering the sintering temperature [28,29]. As a 
multiple-valence oxide, MnO2 has been used to 
promote the electrical properties of piezoelectric 
materials [30−35]. In previous work, a simple Bi3+ 
self-doping showed the ability to construct pseudo- 
tetragonal phase boundary to enhance electrical 
properties of CBN ceramics [27]. 

In this study, different amounts of MnO2 were 
added to Ca0.97Bi2.03Nb2O9 ceramics. Excess Bi can 
compensate for the loss of Bi during the sintering 
process and help modulate structural distortion. 
Additionally, the MnO2 additive lowers the sintering 
temperature, further preventing Bi volatilization  
at high temperatures. The addition of MnO2 also 
induces distortion in the lattice structure of 
CBN-based ceramic. The effects of MnO2 on    
the phase structure, lattice distortion, defect 
concentration, and electrical properties are 
systematically investigated in this work. And it 
provides a new approach to fabricate CBN-based 
ceramics with ultra-high Curie temperature and 
good piezoelectric properties. 
 
2 Experimental 
 

Ceramic samples Ca0.97Bi2.03Nb2O9−xwt.%MnO2 
(x=0, 0.1, 0.2, 0.25, 0.3 and 0.4, abbreviated as 
CBN−xMn) were prepared by a conventional 
solid-state sintering method. At first, raw materials 
including CaCO3 (99.9%, Aladdin), Bi2O3 (99.9%, 
Macklin) and Nb2O5 (99.9%, Aladdin) were 
weighed according to the stoichiometric ratio of 
CBN and then ball milled with alcohol for 24 h. 
The mixed powder was pre-sintered at 850 °C for 
2 h after drying at 80 °C overnight. MnO2 (99.95%, 
Aladdin) was added to the CBN powders with the 
proportion of 0, 0.1, 0.2, 0.25, 0.3 and 0.4 wt.% 
followed by ball milling with alcohol for 24 h and 
drying overnight. Subsequently, the mixture was 
granulated using 5 wt.% polyvinyl alcohol (PVA) 
and pressed into discs with a diameter of 10 mm 
and thickness of about 1 mm. Finally, the discs 
were sintered at 1100 °C (doped samples) and 
1150 °C (undoped ones) for 4 h after burning off 
the binders at 550 °C. Here, the sintering 
temperature of undoped samples is higher because 
MnO2 can act as a sintering aid to lower the 
sintering temperature and improve sintering 
performance. For comparison, the undoped ceramic 
samples sintered at 1100 °C were also prepared and 
characterized, and the results are shown in Fig. S1 
in Supporting Information. 

The phase structure of the ceramic samples 
was tested by X-ray diffractometer (XRD, Smart 
lab, Japan) using Cu Kα radiation (λ=0.15406 nm) 
from 5 to 120 °C with a rate of 5 °C/min. The 



Meng-si WANG, et al/Trans. Nonferrous Met. Soc. China 35(2025) 552−562 

 

554 

microstructure of the samples was observed by the 
field-emission scanning electron microscopy (SEM, 
Nova Nano SEM230, FEI Electron Optics B.V, 
Czech Republic) after polishing and hot corrosion. 
X-ray photoelectron spectroscopy (XPS, Kratos 
AXIS SUPRA+, Japan) was applied to determining 
the chemical composition and valance states of the 
samples. The ferroelectric domain structure was 
observed via atomic force microscope (Nanoman 
TM VS, USA) in the piezoelectric response mode  
at room temperature. Ferroelectric properties 
including polarization−electric field (P−E) and 
current−electric field (I−E) hysteresis loops were 
obtained by the ferroelectric analyzer (aixACCT 
Analyzer TF3000) at a temperature of 150 °C. The 
DC resistivity data varying from room temperature 
to 800 °C was measured by a test system 
(RMS−1000P, Partulab, China). The temperature 
dependence of the permittivity and dielectric loss 
was measured by a TZDM system connected     
to program-controlled furnace. The frequency- 
dependent room-temperature permittivity of poled 
samples was tested by the LCR meter (Agilent 
4294A). Samples were poled in silicon oil at 180 °C 
for 1 h applying the electric field of 180 kV/cm and 
then the piezoelectric coefficient (d33) of these 
poled samples was measured by the quasi-static 

piezometer (ZJ-6, Institute of Acoustics, Chinese 
Academic of Science, Beijing, China) at room 
temperature. The poled samples were annealed at a 
series of temperatures for 2 h to evaluate the 
thermal stability of the ceramic samples. 
 
3 Results and discussion 
 
3.1 Phase and microstructure 

To investigate the structural variations of 
CBN-based ceramics with different MnO2 doping 
contents, the XRD data for the powder samples are 
shown in Fig. 1(a). The strongest reflection peak  
is shown at the (115) plane, which is in accordance 
with the fact that the most intense reflection plane 
of BLSFs is in (112m+1) [36,37]. No impurity 
phase was observed in the XRD data for all the 
samples, indicating that MnO2 additives have 
successfully been incorporated into the crystal 
lattice of CBN-based ceramic. The magnified 
(020)/(200) peaks are given in Fig. 1(a), it shows 
that the (020)/(200) reflection peaks have a trend to 
merge into one peak with a higher doping content 
of MnO2. It suggests a possible phase transition 
from orthorhombic to pseudo-tetragonal symmetry 
[38], which is further confirmed by the refined 
XRD data presented below. 

 

 
Fig. 1 XRD patterns and magnified (020)/(200) peaks of CBN-xMn ceramics (a), variations of cell parameters with 
MnO2 doping content (b), and average grain size and relative density (c) 
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To further identify the lattice structure 
distortion of the CBN-xMn samples, Rietveld 
refinement of powder XRD data was performed for 
all samples via Fullprof software using the A21am 
space group. The calculated values are in good 
agreement with the experimental data supported by 
the reasonable reliability factors including Rwp, Rp 
and χ2 as shown in the Fig. S2 in Supporting 
Information. And Fig. 1(b) displays the lattice 
parameters as a function of the doping levels. It can 
be observed that the lattice constant a increases 
when x increases from 0 to 0.1, and then declines as 
x further increases, while b decreases first and then 
gradually increases. The degree of structural 
distortion can be evaluated by the variation in the 
a/b ratio, as shown in Fig. 1(b). The value of a/b 
initially increases at a low doping level of x=0.1, 
then decreases with further increase in MnO2 
content. This suggests that an optimal level of 
MnO2 doping is required to induce pseudo- 
tetragonal lattice distortion in the CBN-based 
ceramics [39]. 

The SEM images of the ceramics are displayed 
in Fig. 2. It can be observed that the CBN-xMn 
ceramics possess plate-like grains and show strong 
anisotropy, which is due to the faster growth speed 
along a−b plane than other directions [40]. Based 

on the SEM images in Fig. 2, the average grain size 
was calculated using Nano Measurer. As shown in 
Fig. 1(c), the variations in average grain size and 
relative densities indicate that MnO2 doping leads 
to a reduction in grain size. It may be attributed to 
the suppression of oxygen vacancies in the ceramics 
due to the promotion of sintering process by MnO2 
additives [19]. It is known that the volatilization of 
Bi during the sintering process would generate the 
oxygen vacancies, which facilitates the diffusion 
process in the grains/grain boundaries and thus 
promoting the grain growth [41]. In this case, the 
addition of MnO2 lowered the sintering temperature 
of CBN-based ceramics and inhibited the 
generation of oxygen vacancies, leading to the 
decreased grain size in the doped samples. 
Meanwhile, all samples exhibit high densities over 
98% of the theoretical value owing to the dense 
microstructures of the samples shown in the SEM 
images. The domain structures of CBN-xMn 
ceramics were measured by PFM, as shown in 
Fig. S3 in Supporting Information, nano-size 
domains are formed in these samples and 
small-sized domain is conducive to facilitate the 
response to external electric field [21,42]. It was 
noted that the domain size shows no significant 
change with the MnO2 doping content. 

 

 
Fig. 2 Surface SEM images of CBN-xMn ceramics: (a) x=0; (b) x=0.1; (c) x=0.2; (d) x=0.25; (e) x=0.3; (f) x=0.4 
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3.2 Defect 
XPS measurements were performed to 

investigate the variation in oxygen vacancies in 
CBN-xMn ceramics. As shown in Fig. 3, two 
independent peaks were obtained by peak fitting 
operation of the O 1s spectra. It can be observed 
that the experimental data are well-fitted using two 
binding energy peaks, where the peak at 529.7 eV 
represents lattice oxygen (OL) in ceramics, and the 
peak located at 531.4 eV is the oxygen-deficient 
region (oxygen vacancy, VO) [43]. The ratio of the 
peak areas between VO and OL can be used to 
quantify the oxygen vacancy concentrations in the 
ceramics [44]. In Fig. 3, peak area ratio of VO/OL 
declines from 0.311 to 0.276 with increasing 
content of MnO2, which is in accordance with the 
declined grain size mentioned in Fig. 1(c). It reveals 
that MnO2 plays a role to prohibit the volatilization 
of Bi and decrease the formation of oxygen 
vacancies [35]. 

 
3.3 Ferroelectric properties 

Piezoelectric performance of ceramics is 
closely related to their ferroelectric behavior. To 
explore the piezoelectric properties, Figs. 4(a) and 
(b) show the P−E hysteresis loops and I−E curves at 

150 °C of the CBN-xMn ceramics under the same 
external electric field (190 kV/cm). It can be seen 
that all samples exhibit a typical open hysteresis 
loops and obvious switching current peaks. The 
remnant polarization (Pr), switching current peak 
(Imax) and coercive field (EImax) values of the samples 
with different MnO2 doping contents are displayed 
in Figs. 4(c) and (d), respectively. The Pr decreases 
firstly when x<0.2 compared with the pristine one, 
then it keeps rising to achieve the maximum of 
9.73 µC/cm2 at x=0.3 and declines with excessive 
MnO2 of 0.4 wt.%. Generally, the phase structure 
distortion plays an important role in the variation 
trend of Pr. The value of a/b shown in Fig. 1(b) 
increases when x=0.1, indicating an enhanced 
orthorhombicity and thus the decreased Imax and Pr. 
Furthermore, the increase of Pr and Imax can be seen 
when x increases from 0.1 to 0.3, which should be 
attributed to the easier polarization switching 
process due to the reduced orthorhombicity and 
enhanced pseudo-tetragonality. In Fig. 4(d), the 
variation of the EImax with different MnO2 doping 
contents shows a reverse trend with Pr and Imax. EImax 
can reflect the resistance to domain switching [45], 
thus a low EImax is conducive to domain switching, 
contributing to high Pr and Imax. 

 

 
Fig. 3 XPS O 1s spectra of CBN-xMn ceramics: (a) x=0; (b) x=0.1; (c) x=0.2; (d) x=0.25; (e) x=0.3; (f) x=0.4 
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3.4 Dielectric and piezoelectric properties 
It has been revealed that the factors related to 

the piezoelectric coefficient (d33) can be expressed 
as d33=Qε0εrPr [46], the frequency-dependent 
dielectric constant (εr) after poling and the εr 
varying with different MnO2 contents are shown in 
Fig. 5(a). The dielectric constant decreases firstly at 
x=0.1 and then increases when x rises, achieving the 

peak at x=0.3 (98.1). In general, higher Pr and εr 
values are beneficial to the enhancement of 
piezoelectric coefficient. Figure 5(b) depicts the d33 
of the CBN-xMn ceramics. Clearly, a rational 
doping of MnO2 can promote the piezoelectricity of 
CBN-based ceramics, with the maximum d33 of 
13.6 pC/N at x=0.3, which is consistent with the 
results of Pr and εr above. 

 

 
Fig. 4 P−E loops (a) and I−E loops (b) of CBN-xMn ceramics, and variation of Pr and Imax (c) and EImax (d) with different 
MnO2 doping contents 
 

 
Fig. 5 Frequency-dependent εr of CBN-xMn ceramics after poling (a) and d33 values of CBN-xMn ceramics (b) 
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3.5 High-temperature performance 
Figures 6(a, c) show the temperature- 

dependent dielectric constant and loss tangent of the 
CBN-xMn ceramics measured at 1 MHz. With the 
temperature increasing, a clear dielectric peak can 
be seen in all samples, and the temperature 
corresponding to the peak is the Curie temperature 
(TC), which is correlated to the phase transition 
from ferroelectric phase to paraelectric phase [47]. 
The variation trend of TC with different doping 
contents is exhibited in Fig. 6(b). It can be observed 
that all samples display a relatively high TC of over 
958 °C and the TC value shows an increasing trend 
after the doping of MnO2, with the maximum value 
of 966 °C when x=0.4. Meanwhile, as shown in 
Fig. 6(b), all doped CBN-based ceramics show 
lower loss tangents of 0.05 at 500 °C compared 
with the pristine one, which is correlated to the 
suppressed oxygen vacancy concentrations by the 
addition of MnO2 additives. In conclusion, the 
enhanced TC along with the decreased loss tan δ 
indicates that the CBN-based ceramics modified by 
MnO2 exhibit great potential in high temperature 
applications. In order to further detect the high 

temperature stability of the CBN-xMn ceramics, 
thermal depolarization test was applied from room 
temperature to 980 °C to obtain the variation of 
piezoelectric coefficient during the annealing 
process. In Fig. 6(d), a slight change of d33 can be 
observed in these samples, which may be resulted 
by the unstable defect dipoles and reversible 
non-180° domains [48,49]. In general, all samples 
maintain a relatively stable d33 under 900 °C, and 
then drop sharply at around 960 °C, which is related 
to their Curie temperatures. The excellent thermal 
stability is conducive to the high temperature 
applications of CBN-xMn ceramics. 

High temperature resistivity is vital in terms of 
the piezoelectric performance of BLSFs, and it is 
generally known that the resistivity would decrease 
with increasing temperature due to the enhancement 
in mobility of both defect ions and intrinsic carriers 
at higher temperatures [50]. The temperature- 
dependent DC resistivity ρdc of CBN-xMn ceramics 
is given in Fig. 7(a). The ρdc of MnO2 doped 
CBN-based ceramics is higher than the undoped 
one at 300 °C when x<0.4, and a slight decline can 
be observed as the temperature rising after doping. 

 

 

Fig. 6 (a, c) Temperature-dependent dielectric permittivity εr and dielectric loss tan δ of CBN-xMn ceramics, 
respectively; (b) Curie temperature TC and tan δ at 500 °C; (d) Temperature dependence of d33 values of CBN-xMn 
ceramics 



Meng-si WANG, et al/Trans. Nonferrous Met. Soc. China 35(2025) 552−562 559 

It should be noted that the high content of doping 
when x=0.4 is harmful to the electrical resistivity 
because excessive MnO2 may concentrate at the 
grain boundaries to cause defects. In conclusion, all 
the samples maintain a high resistivity over 
1×106 Ω·cm at 500 °C. 

 

 
Fig. 7 (a) Temperature-dependent DC resistivity of 
CBN-xMn ceramics; (b) Fitted relationship between DC 
resistivity and temperature by Arrhenius function 
 

To further study the mechanism of the 
variation of electrical resistivity, Arrhenius Law 
formula ρ=ρ0exp[−Ea/(kBT)] was applied to 
measuring the activation energy of the samples, 
where ρ0 is the pre-exponential factor, Ea is the 
conductive activation energy, kB is Boltzmann 
constant, and T is the absolute temperature [51]. 
The fitted plot of the DC resistivity as a function of 
the temperature is shown in Fig. 7(b), and the 
calculated activation energy results are listed in 
Table 1. It has been revealed that a high Ea value 
means a high electrical resistivity [52]. Bismuth 
layer-structured ceramics exhibit two different 
conductive mechanism, which are the extrinsic 
conduction and the intrinsic conduction respectively 

[53]. It can be observed that the fitting plots are 
divided into two temperature regions at 350 °C in 
Fig. 7(b). Theoretically, the extrinsic conduction in 
low temperature region (LT) ≤350 °C is dominated 
by the movement of defects ions (oxygen vacancies) 
and the intrinsic conduction in high temperature 
(HT) region ≥350 °C is dominated by electron-hole 
carriers in the ceramics [54]. The activation energy 
values are in the range of 1.13−1.38 eV at LT and 
1.36−1.66 eV at HT. In LT region, the conductive 
behavior primarily comes from the evaporation of 
bismuth during sintering process as shown in the 
following equations [55]:  

Bi O o 2 32Bi 3O 2V Bi OX X ⋅⋅+ → + ↑               (1) 
 

2 O O
1 O V O 2h
2

X⋅⋅ ⋅+ → +                     (2) 
 

Increased Ea values can be seen at LT, which is 
in agreement with the results of declined oxygen 
vacancies after MnO2 doping. However, the Ea 
value of the pristine CBN-based sample is higher 
than that of the doped samples at HT, which may be 
ascribed to the defect dipoles induced by the doping 
of MnO2. Generally, rational doping of MnO2 is 
conducive to the enhancement of DC resistivity of 
the CBN based ceramic. 
 
Table 1 Activation energy (Ea) of CBN- xMn ceramics at 
HT and LT 

x Ea (HT)/eV Ea (LT)/eV 

0 1.66 1.19 

0.1 1.57 1.38 

0.2 1.58 1.29 

0.25 1.55 1.28 

0.3 1.53 1.24 

0.4 1.49 1.21 

 
4 Conclusions 
 

(1) Decreased orthorhombicity after MnO2 
doping was demonstrated through the XRD 
observation and Rietveld refinement. Compact 
grain structure was obtained in the CBN-xMn 
ceramics and grain refinement was achieved with 
the addition of MnO2. 

(2) The Bi content was modulated to 
compensate the volatilization loss of Bi and the 
sintering temperature was lowered through the 
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doping of MnO2, contributing to decreased oxygen 
vacancies and greatly enhanced DC resistivity to 
3×106 Ω·cm at 500 °C. 

(3) Largely enhanced piezoelectric coefficient 
of 13.6 pC/N was achieved, which is twice higher 
than that of the pure CBN. The doping of MnO2 
leads to decreased orthorhombic lattice distortion 
and enhanced pseudo-tetragonality, which is the 
origin of a high Pr value and thus contributing to the 
enhancement of d33 value. 

(4) The increase of Curie temperature was 
discovered with the addition of MnO2 content, 
achieving the maximum value of 966.5 °C when the 
addition content is 0.4 wt.%, which is about 25 °C 
higher than the pure CBN. Meanwhile, good 
thermal stability of piezoelectric response in the 
temperature range of room temperature to 900 °C 
was achieved in all MnO2-doped samples. 
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摘  要：通过固相烧结法制备 MnO2 掺杂的 Ca0.97Bi2.03Nb2O9陶瓷，其压电性能得到了显著提升。研究 MnO2 掺杂

对 Ca0.97Bi2.03Nb2O9 陶瓷显微组织和电学性能的影响。X 射线衍射(XRD)分析及 Rietveld 精修结果表明，MnO2 的

掺杂降低了正交畸变程度，从而有助于提高压电性能。此外，MnO2 的引入降低了烧结温度，从而抑制了陶瓷中

氧空位的形成。性能最优的样品为 Ca0.97Bi2.03Nb2O9−0.3%MnO2(质量分数)，其压电系数(d33) 达到 13.6 pC/N，在

500 ℃时的直流电阻率为 3×10⁶ Ω·cm，居里温度为 965 ℃。另外，所有掺杂样品在室温至 900 ℃的宽温度范围内

均表现出优异的热稳定性 

关键词：铌酸铋钙陶瓷；MnO2掺杂；晶体结构；氧空位 
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