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Abstract: The influence of NaF on the microstructure, composition and corrosion performance of WE43 Mg alloy in
3.5 wt.% NaCl solution was systematically investigated by means of SEM, TEM, EPMA, XRD, XPS and
electrochemical measurements. It was proved that NaF is an effective inhibitor for WE43 Mg alloy and the highest
inhibition efficiency is 92.6% at its concentration of 40 mmol/L in neutral NaCl solution. The dissolution of WE43 alloy
is inhibited by formation and deposition of a dense and protective double-layered corrosion film by chemical reaction
between corrosion inhibitor and dissolved Mg?*. The microstructure and composition of this double-layered corrosion
film were investigated by FIB and TEM. The outer layer of the corrosion film is found to be composed of NaMgF3,
MgF, and MgO, while the inner layer mainly consists of MgO and MgF,.
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1 Introduction

Magnesium (Mg) has great potential as an
engineering material for applications in industries
due to its high specific strength [1-3]. Due to its
biocompatibility and low density, Mg is utilized in
the medical field [4—6]. In recent years, Mg has also
been employed in the field of aqueous and
secondary batteries due to the high conductivity and
low cost [7-9]. Nevertheless, Mg alloy suffers
severe corrosion attack due to its low standard
potential (—2.37 V (vs SHE)) [10—13]. It was found
that there is a large potential between the
intermetallic phase and Mg matrix, promoting the
micro-corrosion process [14,15]. Fe, Ni and other
impurities inevitably enter the matrix during the
smelting process, which further increase dissolution
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rate of the substrate [16—18]. Additionally, the
corrosion film is primarily composed of Mg(OH)s.
The hydroxide layer is porous and has a minimal
impact on limiting the corrosion process of the
substrate [19-22]. Besides surface treatment
processes, the introduction of corrosion inhibitors
has been proved to be one of the most effective
approaches to reduce the corrosion rate of Mg for
industrial application [23—26]. It was reported that
the adsorption of organic inhibitors onto the surface
of Mg can greatly reduce the contact area between
the matrix and electrolyte, leading to the enhanced
corrosion resistance [27-30]. LU et al [31,32]
found that sodium dodecyl sulfate (SDS) was
adsorbed on the surface of AZ91 Mg alloy, which
inhibited micro-galvanic corrosion and degradation
process of the substrate. The inhibition efficiency of
SDS on AZ91 Mg alloy was 88.8% after immersion
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for 48 h. YANG et al [33] studied the inhibition
mechanism of carboxylic acids (2,5-PDCA and
fumaric acid) on pure Mg. It was found that the
adsorption of 2,5-PDCA and fumaric acid reduced
the potential difference between the matrix and the
secondary phase, which inhibited the micro-galvanic
corrosion. XIAO et al [34] proved that sodium
lignosulfonate (SLS) had a good corrosion
inhibition effect on AZ31 Mg alloy and found that
the adsorption of inhibitor on the sample surface
was in line with Langmuir adsorption model.
DINODI and SHETTY [35] found that the
inhibition efficiency of 3 mmol/L stearate on ZE41
Mg alloy reached 88%. A compact and protective
corrosion film was formed due to precipitation of
adsorbed alkyl carboxylates on Mg alloy surface.

It was also found that inhibitors participate in
the deposition of protective corrosion film on
the sample surface by chemical reaction, which
effectively influence the degradation process
of the substrate [36—39]. POKHAREL et al [40]
studied the influence of glycine on the corrosion
performance of AZ31 Mg alloy in simulated body
fluids. It was proved that glycine chelated with Ca?*
and deposited on Mg alloy surface after long-term
immersion. KHARITONOV et al [41] found that
100 mmol/L NaMoOs had significant corrosion
inhibition effect on WE43 Mg alloy. MoO; leads to
the formation of MoO(OH);, which inhibits the
dissolution process. PRINCE et al [42] concluded
that passive film layer generated on AZ31 Mg alloy
in the presence of 50 mmol/L Na,CO;. After 7d
of immersion, 80% of inhibition efficiency was
achieved in this solution. HUANG et al [43] studied
the synergistic effect of Na;POs and sodium
dodecyl benzene-sulfonic acid (SDBS) on GW103
Mg alloy. The chemical reaction between NazPO4
and Mg matrix resulted in the deposition of large
amounts of Mgs(PO4), on the sample surface, which
greatly improved the protective ability of the
corrosion product layer. QIU et al [44] found that
94.1% of inhibition efficiency was achieved by
using NaF and DL-malic acid as inhibitor in NaCl
solution. In the presence of mixed inorganic and
organic inhibitor, large cubic NaMgF; particles
were transformed into smaller and refined
spheroidal particles, leading to superior corrosion
performance.

In this work, NaF was selected as corrosion
inhibitor to modify the degradation process and

improve the corrosion resistance of WE43 Mg alloy.
The inhibition mechanism of NaF on WE43 Mg
alloy was studied by means of analyzing the
composition and microstructure of the corrosion
film layer formed on the sample surface.

2 Experimental

2.1 Material and reagents

WE43 Mg alloy was used and cut (10 mm X
10 mm x 5 mm) as the substrate. The Mg alloy
samples were ground by emery papers before
performing  electrochemical  corrosion  tests.
Different concentrations of NaF solution (5, 40 and
80 mmol/L) were added into 3.5 wt.% NaCl
solution to study the influence of inhibitor on Mg
alloy. pH value of all electrolytes was adjusted
to 6.8—7.2 by dropping diluted NaOH solution.
The chemicals used in this study were provided
by Sinopharm Chemical Reagent Company in
analytical grade.

2.2 Electrochemical measurements

The electrochemical corrosion tests were
measured in conventional three-electrode cell by
using Princeton Instruments P4000 (Ametek, the
United States). 1 cm? of WE43 Mg alloy was used
as the working electrode, a saturated calomel
electrode was used as the reference electrode, and a
platinum sheet was used as the counter electrode.
The open circuit potential (OCP) was measured for
1h to achieve a steady state before corrosion
measurements. The polarization curves were
collected from —300mV (vs OCP) until anodic
current density reached 10 mA/cm? with a scanning
rate of 0.333 mV/s. The corrosion current density of
sample was calculated by Stern equation (Eq. (1)).
Jeorr 18 the corrosion current density, f. represents
anodic polarization slope, f. presents cathodic
polarization slope, and R, is the polarization
resistance.

J = ﬂa ﬂc L (1)
corr ﬂa+ﬂc Rp

Let Jeor and Jéor represent the corrosion
current density of the samples in the blank and
NaF-containing NaCl solutions, respectively. The
inhibition efficiency (7) was calculated based on
Eq. (1) as follows:
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_ Jcorr _ Jcorr %x100% (2)

corr

The electrochemical impedance spectroscopy
(EIS) measurement was performed with AC
amplitude 10mV sinusoidal perturbation in
frequency range from 1072 to 10°Hz. The obtained
EIS data were fitted using a ZsimpWin software.
All the measurements were repeated at least three
times to ensure reproducibility.

2.3 Microstructure and elemental composition

measurements

The surface and cross-sectional morphologies
of the corroded samples after immersion test for
72 h were studied by scanning electron microscope
(SEM, JSM-7001 F, JEOL, Japan). The phase
composition of corrosion products was determined
by using X-ray diffraction (Smartlab, Rigaku, Japan)
in 20 range from 15° to 80° with a scan rate
of 4 (°)/min. X-ray photoelectron spectroscopy
(Shimazu-Kratos Analytical, UK) was used to
investigate the chemical composition of the
corroded samples. Peak identification was
performed using XPSpeak41 software as reference
and the binding energy scale was calibrated to the
C Is peak (284.6 eV). The elemental composition
and distribution of the corroded samples were
investigated by electron probe microanalysis (EPMA,
JXA—-8530F JEOL, Japan). The microstructure and
composition of the corrosion product layer after
immersion for 72 h with addition of NaF were
obtained by transmission electron microscopy
(TEM, JEM-2100 F, Japan, 200 keV) to study the
inhibition mechanism of the inhibitors. The TEM
lamellae were milled from the corroded specimen
with focused ion beam (FIB, Zeiss Crossbeam 350,
Germany).

3 Results

3.1 Mass loss test

Mass loss test was carried out to study the
influence of NaF concentrations on the corrosion
behavior of Mg alloy in different solutions (Fig. 1).
The addition of different concentrations of NaF
reduces dissolution rate of the Mg alloy samples.
After introduction of 40 mmol/L NaF into the
electrolyte, the mass loss rate of the substrate is
reduced to the lowest value (0.013 mm/a, 1 a=
1 year). As a result, the highest inhibition efficiency

is found to be 87.37% after immersion for 72 h. It
can be inferred that addition of NaF might
contribute to deposition of corrosion product layer
with enhanced barrier property, which effectively
inhibits the degradation process of Mg alloy.
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Fig. 1 Corrosion rate and inhibition efficiency of WE43
Mg alloy after immersion in various solutions for 72 h

3.2 Electrochemical behavior
3.2.1 Electrochemical impedance spectroscopy
Figure 2 demonstrates the EIS data of sample
immersed in different electrolytes. WE43 Mg alloy
displays relatively low corrosion resistance during
the immersion in 3.5 wt.% NaCl solution. The
impedance of the sample starts to decrease after
immersion for 24 h and an inductive loop appears
since the beginning of the EIS measurement.
Obviously, the presence of different concentrations
of inhibitor significantly enhances the corrosion
performance of the substrate. The sample shows the
largest capacitive loop in the presence of
40 mmol/L NaF after soaking in the electrolyte for
72 h. The impedance value at low frequency
sharply increases from 611.2 Q-cm? (blank NaCl
solution) to 5091 Q-cm? (Table 1), suggesting that
the protective capability of the corrosion product
layer is greatly enhanced. As demonstrated in
Table 1 and Fig.3, R represents the solution
resistance; Rr and CPEs are related to the corrosion
resistance and capacitance of the corrosion film
formed on sample surface, respectively; R
corresponds to the charge transfer resistance, while
CPEg is the capacitance of double layer at
metal/electrolyte interface. The evolution of R,
(Rc+Ry) during immersion in different solutions is
depicted in Fig. 3(b). The impedance of the samples
immersed in 5 and 80 mmol/L NaF containing
electrolyte increases firstly and decreases after 48 h



Yun-tian YANG, et al/Trans. Nonferrous Met. Soc. China 35(2025) 460—473

1000
(a)
= 24h
® 48h
_ 130y A 72h
E . v 96h
: o . Fittin
S 500+ . ® ¢
= .
tl\l Ll . oo ® * .
2501 atte, " .
f‘ Sy o L
vaA . o
v4 »
0 L v
. - . .
0 500 1000 1500 2000 2500
Z'[(Q-cm?)
2000
(b))
= 24h
1500 | Lo
& ¥ 96h
g Fitting
& 1000 |
=~ (]
N -
[l\] « " " - - 9
500f AvvvIvve . =
qattthaL L
0 1 1 ° "l; 1
0 1000 2000 3000
Z'/(Q+cm?)
4000
(cy)
3000 -
-
& 2000 F Ay A A oA
i A A 74 -
| A ‘A'A‘ = 24 h
100f a7 "Tv .7 T, *48h
‘,.'ll'. -“:o 4 72h
-y ¥ 9 h
Fitting
0 1 1 1 1 1
0 2000 4000 6000 8000 10000
Z'/(Q+cm?)
3000
(dy)
s 24h
® 48h
2000 4 72h
s ¥ 9 h
S Fitting
& - ® .
Y .
N 1000 * s coes t®
| o ,AAMA, - o0 .
i A wnEw .
&"v'.i:'v.’~‘ - .
f : ‘
A
of AN .
0 2000 4000 6000
Z'[(Q-cm?)

|Z)/(€2+cm?)

|1Z2/(Q-cm?)

1Z/(Q-cm?)

|Z/(©2+cm?)

10*

(ay)
= 24h
Feoee, o ® 48h
el ®eoe A 72h
10° !‘00:'.!llxiiig. v 96h
F A‘ P
F Fitting
*l
.l
10% ‘\
&
1 - \.0
10" £ t
o Ty
102 10" 10 10" 107 100 10 10°
Frequency/Hz
10° ¢
;(bz)
. 'A = 24h
e, b
Feg YV VVyyyoh
i lnunuh;:‘ v 96h
103 ¢ L Fitting
p
t
10% £ t
3 ta,
A,
Ula
10! L BoAL,
z AL
1072 107" 10° 10" 10> 10° 10* 10°
Frequency/Hz
10
(c2)
= 24h
104 E‘u ® 48h
e 2
Bsaseeaiz s, ¥ 96 h
103 E “3‘ Fitting
-
4
10° £ t,
ia
A,
A
10" £ Baha
-t,“"
102 107" 10 10" 10> 10> 10* 10°
Frequency/Hz
10*
;:o.(.df),“. = 24h
g A
10° ;.Q’ v 96 h
e Fitting
8
]
i,
102 L lg'
L]
e
Xy
10 il
R
1072 107" 10° 10" 10> 10° 10* 10°
Frequency/Hz

463

Fig. 2 Electrochemical impedance spectra and fitting curves for WE43 Mg alloy immersed in 3.5 wt.% NaCl (a1, az),
3.5 wt.% NaCl + 5 mmol/L NaF (bi, bs), 3.5 wt.% NaCl + 40 mmol/L NaF (ci, c2), and 3.5 wt.% NaCl + 80 mmol/L

NaF (di, d>) solutions for different time
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Table 1 Fitted results of impedance spectra
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Solution Time/h RJ/(Q-cm?) CPE/(uS's™cm?2) n; Rf(Q-cm?) CPEa/(uS's™cm?) ny Re/(Q-cm?)

24 5.2 23.43 0.92 8388 2384 0.82 4379

1.5 W% NaCl 5.16 27.09 0.90  991.8 1869 0.74 8107
7.04 31.11 0.88  611.2 597.1 095  255.8

96 6.17 30.94 0.88  598.8 546.8 092 1887

24 5.84 12.74 092 1677 1851 0.61 3474

35 wt% NaCl+ 48 5.15 14.62 092 5952 406.8 051  934.8
5mmol/LNaF 73 5.78 16.92 090  817.2 2454 0.88  644.7
96 8.12 25.23 0.87 1300 250.9 0.90  700.8

24 5.98 13.18 0.89 1883 1890 0.74 2554

35 wt% NaCl+ 48 5.25 13.54 0.88 1952 1149 0.60 3543
40 mmol/L NaF 7 7.28 11.36 0.86 5091 548.5 0.70 6673
96 4.43 13.2 0.87 2791 638.1 0.53 5324

24 5.28 12.88 0.89 1907 1008 0.56 3734

35 wt% NaCl+ 48 5.11 17.66 0.81 3256 4315 043 4837
80 mmol/L NaF 73 6.65 21.86 0.77 2674 2295 091  724.1
96 7.05 35.29 0.69 1714 0.68 095 2556

n1 and n2 are indexes ranging from 0 to 1, determining whether CPEror CPEa behaves as resistance (71 or n2=0) or capacitance (11 or nx=1)
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Fig. 3 Equivalent circuit used to fit EIS data (a), evolution of R, during immersion

in various solutions (b), and

inhibition efficiency of different concentrations of NaF solutions (c)

immersion. In contrast, the addition of 40 mmol/L
NaF into the electrolyte demonstrates the highest
corrosion resistance during the entire corrosion test.
R, of the sample is found to be 11764 Q-cm? after
EIS test for 72 h, which is more than 10 times
compared to that in the blank electrolyte. The
evolution of the inhibition efficiency during EIS
measurement can be found in Fig. 3(c). It is clear
that the inhibition efficiency of NaF increases with
the increase of its concentration in the electrolyte.
3.2.2 Open circuit potential and polarization curves
The evolution of OCP and polarization curves
of Mg samples after immersion in various solutions
for different time is shown in Fig. 4. It is observable

that the OCP of the Mg alloy sample surface is
reduced when immersed in the electrolyte in the
presence of high concentration of inhibitor. This
might be related to the dissolution and precipitation
of corrosion products on the sample surface during
corrosion test. In terms of blank electrolyte, the
anodic branch of the polarized sample firstly moves
to the left direction after immersion for 24 h and
subsequently shifts to the right side until 96 h,
indicating that the substrate degrades continually
with the increase of immersion time. For samples
immersed in inhibitor-containing solution, the
anodic branch of the curves seems to show a
passivation region after certain immersion time,
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Fig. 4 Evolution of OCP of samples during immersion in different solutions (a), and polarization curves of Mg alloy
after immersion for different time in 3.5 wt.% NaCl (b), 3.5 wt.% NaCl + 5 mmol/L NaF (c), 3.5 wt.% NaCl +
40 mmol/L NaF (d), and 3.5 wt.% NaCl + 80 mmol/L NaF (e) solutions

indicating that the anodic dissolution Kkinetics
is suppressed in the presence of NaF. The corrosion
potential (¢corr) and corrosion current density (Jeorr)
of different samples were calculated from the
cathodic polarization branch, as shown in Table 2. It
can be found that higher concentration of inhibitor
in the electrolyte results in lower corrosion current

density and the sample after immersion in
40 mmol/L inhibitor-containing solution for 72 h
demonstrates the lowest Jeorr (8.49 pA/cm?). The
abovementioned results suggest that the presence of
NaF facilitates the formation of corrosion product
layer with enhanced barrier property on the sample
surface.
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Table 2 Corrosion performance of WE43 Mg alloy
immersed in different solutions

Solution  Time/h  @eor (Vs SCE)/V  Jeon/(A-cm™?)
1 -1.73 4.42x1075
24 ~1.67 1.41x10°3
3.5 wt.9
WE% g ~1.71 1.24x10°9
NaCl
72 -1.72 2.90x107°
96 —-1.70 1.44x1073
1 ~1.76 3.01x10°
3.5 wt% 24 -1.78 1.22x107
NaCl +
4 -1.71 2.25%107°
5 mmol/L s ’ 1o 5
NaF 72 -1.77 1.24x10
96 —-1.73 1.16x1073
1 -1.72 1.50x10°3
3.5 wt% 24 -1.75 1.57x107°
NaCl +
48 ~1.74 1.00x10°3
40 mmol/L 6
NaF 72 -1.73 8.49x10
96 -1.71 1.27x10°°
1 -1.79 2.83x107°
3.5 wt.% 24 -1.70 1.13x10°3
NaCl +
48 —-1.67 8.99x107¢
80 mmol/L ’ 5
NaF 72 —1.69 1.01x10
96 -1.70 1.23x1073

3.3 Characteristics of corroded samples
3.3.1 Surface and cross-section morphologies
According to the electrochemical corrosion
tests, the sample demonstrates superior corrosion
performance in the presence of 40 mmol/L NaF.
Therefore, the microstructure and composition of
such corroded sample are investigated to further
study the inhibition mechanism of NaF in NaCl
solution, as shown in Fig. 5. After being immersed
in 3.5 wt.% NaCl solution for 72h (Fig. 5(a)),
apparent corrosion products and large cracks can be
observed on the sample surface. In terms of the
cross-sectional morphology, the corrosion product
layer is non-uniform and porous. Large chunks of
corrosion products are found to be adjacent to the
intermetallic phase (Fig. 5(b)), indicating that the
matrix is preferentially dissolved due to micro-
galvanic corrosion effect. It can be inferred that
such a corrosion layer is not capable of providing
sufficient protection for the substrate. As for the
sample immersed in inhibitor-containing solution, a

Fig. 5 SEM images of Mg alloy after immersion in
3.5 wt.% NaCl (a, b) and 3.5 wt.% NaCl + 40 mmol/L
NaF (c, d) solutions for 72 h

thick and dense corrosion product layer can be
clearly visible on the Mg alloy surface (Figs. 5(c)
and (d)). In particular, large and irregular particles
are found on the sample surface, suggesting that
large amounts of corrosion products are formed and
deposited during immersion test.
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3.3.2 Composition of corroded samples Different colors are employed to present various

EPMA is wused to study the -elemental kinds of elements. Compared to dark places, the
distribution and composition of corroded samples bright places indicate high density for each element.
after being immersed in NaF-containing electrolyte. Figure 6(a) shows that the corrosion product layer

(b)

Fig. 6 EPMA mappings of surface (a) and cross-section (b) of corroded sample after immersion in 3.5 wt.% NaCl +
40 mmol/L NaF solution for 72 h
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is divided into two sub-layers. The main elements
of the corrosion products are O, Mg, F and Na. The
outer corrosion layer has large-sized and irregular
corrosion products, while the inner layer seems to
be denser with some cracks (Fig. 6(a)). In terms of
chemical composition, Mg, Na, F and O can be
detected in the outer corrosion product layer. As for
the inner corrosion layer, Na is not detectable and
the content of F is less than that in the outer layer.
The bright particles underneath are most likely
to be rare earth-containing secondary phase.
Figure 6(b) demonstrates the elemental composition
and distribution of the cross-section. A clear
boundary can be found between the inner and outer
corrosion layers. The distribution of the main
elements in the cross-section of the corroded
sample is consistent with the surface morphology.
In other words, the composition of the corrosion
products varies in the outer and inner corrosion
films. Moreover, the inner layer appears to be
denser and thinner in contrast with the outer
corrosion layer.

Figure 7 displays the XRD patterns of the
corroded samples. The main corrosion product of
samples is Mg(OH), after being immersed in the
blank solution. However, Mg(OH), phase is hardly

Yun-tian YANG, et al/Trans. Nonferrous Met. Soc. China 35(2025) 460—473

to be detected in samples with the addition of
corrosion inhibitor. It should be noticed that
NaMgF;, MgF, and small amount of MgO are
detected in the corrosion product layer after soaking
in NaF containing solution for 72 h, indicating that
the inhibitor is involved in the formation and
deposition of corrosion products.

The composition of the corroded sample is
also measured by using the X-ray photoelectron
spectroscopy (XPS), as shown in Fig. 8. In the XPS

- Mg
' * Mg(OH),
° NaMgF,
* & MgF,
v MgO

* *

L x ) A I A‘
o 3.5 wt.% NaCl
< *
OA * *
5 .

3.5 wt.% NaCl + 40 mmol/L NaF
. 1 |

20 30 40 50 60 70 80
20/(°)

g

Fig. 7 XRD patterns of corroded samples immersed in
3.5 wt.% NaCl (a) and 3.5 wt.% NaCl + 40 mmol/L NaF
(b) solutions
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Fig. 8 XPS (a) and high-resolution (b—e) spectra of sample after immersion in 3.5 wt.% NaCl + 40 mmol/L NaF

solution for 72 h
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spectra of Na ls and F ls, peaks at 1072.2 and
685.5 eV are related to Na—F and F—Mg bonds,
which can be associated with the presence of
NaMgF; and MgF,, respectively. O 1s spectrum at
538.1, 531.9 and 525.8 eV is related to MgO and
Y:03;. The Mg 2p spectrum can be fitted by two
peaks at 50.9 and 63.9 eV, which represents F—Mg
and MgO, respectively.

FIB and TEM tests are used to further
investigate the microstructure and composition of
the corrosion film with the addition of inhibitor.
The corrosion product on top of a-Mg is cut by
means of FIB (Fig. 9(a)). The corrosion product
layer is composed of two layers and a large crack is
observed between the outer and inner corrosion
layers. In addition, an ultrathin layer can be
detected at the interface between Mg substrate and

Outer layer

[nner layer

-

—
-
p——

o-Mg

= OQuter
layer

the inner corrosion layer, as shown in Fig. 9(b).
Figure 10 shows the SAED ring and diffraction
results of the selected regions in the corrosion
product layer. It is apparent that the addition of NaF
into the NaCl solution suppresses the formation and
deposition of Mg(OH),. The phase composition of
the outer corrosion layer has been identified to be
NaMgF;, MgF, and MgO. As for the inner
corrosion layer, it mainly consists of MgF, and
MgO. Additionally, MgO is found to be the main
composition at the interface between Mg substrate
and corrosion product layer.

4 Discussion

The corrosion behavior of WE43 Mg alloy
is greatly influenced after the addition of NaF into

Inner layer

Fig. 9 Overview TEM image of corrosion layer after FIB milling (a), and TEM images of corrosion product on top of

a-Mg (b—d)
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Fig. 10 SAED ring and diffraction results of corrosion products in different regions: (a) Interface layer in Fig. 9(b);

(b) Inner corrosion layer in Fig. 9(c); (c¢) Outer corrosion layer in Fig. 9(d)
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NaCl solution. On the one hand, the presence of
NaF can suppress the formation of Mg(OH),
compared to the blank NaCl solution, which will in
turn increase the densification of the corrosion film.
The effect of inhibitor on the corrosion products
is analyzed by using Hydra—Medusa software,
as demonstrated in Fig. 11. It is clear that the
formation and deposition of Mg(OH), are inhibited
in the presence of NaF. According to Fig. 11(b), the
final pH of the electrolyte after performing
corrosion test is 9.84, while formation of insoluble
Mg(OH), occurs when pH is 11.14. On the other
hand, the addition of inhibitor into the electrolyte
contributes to the deposition of a dense and thick
corrosion product layer, which becomes a barrier to
improve the corrosion resistance of the substrate.

2
(a) :
¢(Mg?")=0.13 mmol/L |
or ¢(Na")=600 mmol/L :
¢(CI")=600 mmol/L |
2 |
= Mg** Mg(OH),(s)
S —4F 1
g
3
-6t
-8t
_10 1 Il 1
2 4 6
2
(b) :
ol c(Mg?*)=5.35x1073 mmol/L1
¢(Na")=640 mmol/L :
_ ¢(CI")=600 mmol/L 1 NaMgF;(s)
g :
E | Mg(OH(s)
S —
= :
I
|
I
I
:l 1
10 12 14

Fig. 11 Thermodynamic calculation of equilibrium
composition of Mg alloy immersed in different
electrolytes: (a) 3.5 wt.% NaCl solution; (b) 3.5 wt.%
NaCl + 40 mmol/L NaF solution

As demonstrated by Figs. 6—11, the main
composition of the corrosion products consists of
NaMgF;, MgF, and MgO. The formation of MgF,
and NaMgF; can be explained by the following two

reactions:
Mg*+2F =MgFx(s) 3)
MgF(s)+F +Na"'=NaMgF;(s) 4)

Since the solubility of MgF, (K=5.16x10711,
25 °C) is significantly larger compared to that of
Mg(OH), (Ksy=5.61x107"'2, 25°C), the dissolved
Mg* ions preferentially react with F~, which deposit
directly on the Mg alloy surface. Afterwards, a large
amounts of F~ and Na™ in the electrolyte will further
take part in the formation and deposition of
corrosion product, as verified by the appearance of
NaMgF; in the outermost layer of the corroded
sample. Therefore, the presence of NaF facilitates
the formation and deposition of stable and dense
corrosion product layer on top of Mg alloy, and the
inhibition efficiency is mainly related to the
corrosion resistance of the inner barrier layer.

5 Conclusions

(1) NaF is an effective inhibitor for WE43 Mg
alloy in 3.5 wt.% NaCl solution. After immersion in
40 mmol/L NaF containing solution, the highest
inhibition efficiency of the inhibitor is found to be
92.6%.

(2) The formation and deposition of Mg(OH),
are suppressed after the addition of NaF, as the
inhibitor contributes to the deposition of a
double-layered corrosion product film on the
sample surface.

(3) The inner layer appears to be thinner but
denser compared to the outer corrosion layer. The
main composition of the inner corrosion layer is
MgO and MgF,, which plays a key role in
providing barrier property for the substrate.

(4) The outer corrosion layer consists of
NaMgF;, MgF, and MgO, which is porous and
thicker compared to the inner layer.
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