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Abstract: In order to develop a generic framework capable of designing novel amorphous alloys with selected target 
properties, a predictor−corrector inverse design scheme (PCIDS) consisting of a predictor module and a corrector 
module was presented. A high-precision forward prediction model based on deep neural networks was developed to 
implement these two parts. Of utmost importance, domain knowledge-guided inverse design networks (DKIDNs) and 
regular inverse design networks (RIDNs) were also developed. The forward prediction model possesses a coefficient of 
determination (R2) of 0.990 for the shear modulus and 0.986 for the bulk modulus on the testing set. Furthermore, the 
DKIDNs model exhibits superior performance compared to the RIDNs model. It is finally demonstrated that PCIDS can 
efficiently predict amorphous alloy compositions with the required target properties. 
Key words: amorphous alloys; machine learning; deep neural networks; inverse design; elastic modulus 
                                                                                                             
 
 
1 Introduction 
 

In 1960, KLEMENT et al [1] first discovered 
an Au−Si amorphous alloy. Amorphous alloys, also 
known as metallic glasses, have good mechanical, 
electrical, soft magnetic, and electrochemical 
properties compared to conventional alloys [2−4]. 
After decades of development, amorphous alloys 
have been widely used in aerospace, transformers 
and military fields [5−7]. Nevertheless, the lack of  
a theoretical basis for the correlation between 
composition and properties has greatly hindered  
the development of amorphous alloys. In the 
conventional design of amorphous alloys, the 
approach to achieving the target property index 
conventionally involves continuously adjusting the 
composition ratio of elements through extensive 
experimental verification [8−10]. This traditional 
“trial-and-error” approach is flawed because it 

requires a considerable time, manpower and 
material resources and does not always guarantee 
success. 

In recent years, with the development of 
computer technology, machine learning (ML) has 
been widely used in the field of alloys [11]. For 
instance, YANG et al [12] proposed a ML-based 
alloy design system (MADS) to facilitate the 
rational design of high-entropy alloys (HEAs). WU 
et al [13] established the density-fluctuation model 
of local structural instability in amorphous alloys 
via ML. And SAMAVATIAN et al [14] discovered 
novel quaternary bulk metallic glasses (BMGs)   
by using the ML technique. Furthermore, several 
studies have used the ML method to predict the 
glass-forming ability (GFA) of amorphous alloys 
and the predictions are in good agreement with 
experimental values [15−20]. 

The above studies have developed forward 
prediction models from material composition or 
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structure to target properties. However, forward 
prediction models are only applicable to problems 
with small composition spaces, and once the 
composition space is very large, it is not feasible to 
explore all possible combinations of composition 
with forward ML prediction models. The main 
reason is the lack of efficient methods for 
proactively designing promising candidate 
compositions, rather than exploring the entire 
composition space [21]. Therefore, an idea naturally 
arises: is a prediction path from material target 
properties to material composition properties 
feasible? This can be defined as an inverse design 
problem, where the target properties of the material 
are used as inputs for the inverse calculation of  
the material composition [22]. The inverse design 
approach avoids searching the entire composition 
space for candidate materials and enables the 
inverse design of material compositions based on 
user-specified material target properties. For 
example, POLLOK et al [23] used six different 
standard convolutional neural network (CNN) 
models to inversely predict the target properties 
(magnetization, size and location) of a single hard 
magnet in a specific 2-D magnetic field. JIANG  
et al [24] used conditional generative adversarial 
network (cGAN) to establish an inverse design 
scheme for the dispersion relation and near-optimal 
structure of elastic metamaterials. WANG et al [25] 
proposed machine learning design system (MLDS) 
for the performance-oriented compositional design 
of high-performance complex copper alloys. In 
summary, ML-based inverse design approaches or 
techniques present attractive prospects in rational 
material design. 

Currently, there are few studies on designing 
amorphous alloys using inverse design techniques. 
ZHOU et al [26] implemented inverse design based 
on a dataset of four systems of BMGs using a 
generative model of generative adversarial network 
(GAN). However, the above study used only four 
systems of BMGs and the new data generated were 
limited to this system. Moreover, for small datasets 
or when it is not possible to use data from the whole 
domain, the use of standard GAN models lacks 
robustness and has difficulty in reaching Nash 
equilibrium, and its generation results make it 
difficult to resist the effect of noise [27]. For this 
reason, in addition to the use of GAN models, it is 
crucial to develop new generative models for small 

data sets, which can be done by constructing 
appropriate loss functions [28]. Additionally, 
integrating domain knowledge into ML can 
significantly reduce data requirements and improve 
the reliability and robustness of ML [29,30]. For 
instance, WEI et al [31] found highly explanatory 
formulas describing the high-temperature oxidation 
behavior of FeCrAlCoNi-based HEAs based on 
domain knowledge-guided ML. LI et al [32] 
proposed a domain knowledge-based ML method  
to predict the saturated magnetization and critical 
diameter of soft magnetic amorphous alloys, and 
the results showed that the ML model outperformed 
the conventional prediction methods. 

This work presents a new method of predictor− 
corrector inverse design scheme (PCIDS), which 
consists of a predictor module and a corrector 
module, for guiding the inverse design of 
amorphous alloys. Figure 1 shows the framework 
diagram of this work. To demonstrate the 
universality of our constructed inverse design 
scheme, we conducted case tests on a BMGs dataset 
containing 28 different systems with 49 different 
elements (see Fig. 1(a)). The elastic moduli as the 
target property were successfully implemented by 
the developed inverse design algorithm. Especially, 
PCIDS is not only applicable to the elastic moduli 
as a target property but also to other properties, 
such as the critical casting diameter (Dmax) as an 
assessment of the GFA of amorphous alloys. 
Moreover, the PCIDS is also applicable to other 
material fields. It is conceivable that this research 
work will greatly accelerate the development of 
amorphous alloys. 
 
2 Methods 
 
2.1 Data collection 

The elastic modulus is a basic physical 
quantity that characterizes elasticity, which includes 
Young’s modulus (E), Poisson's ratio ( )ν , shear 
modulus (G) and bulk modulus (K). There is a 
correlation among these four elastic moduli, where 
E and ν can be expressed by K and G through the 
following equations [33,34]:  

9
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K G
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                             (1) 
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Fig. 1 Overall workflow for efficient design of amorphous alloys: (a) Collection and analysis of dataset; (b) Forward 
prediction model; (c) Inverse prediction model; (d) Workflow of PCIDS 
 

The ratio of G to K is closely related to the 
fracture toughness, intrinsic plasticity, and GFA of 
amorphous alloys [33]. And it can be known from 
the literature [35,36] that there is a strong linear 
relationship between yield shear stress and G, 

fracture tensile strength, hardness and E. This work 
therefore takes the target properties of G and     
K as an example to realize the inverse design of 
amorphous alloys. The 318 amorphous alloys 
containing K and G are collected from the reported 
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literature [33,37−39] and the dataset is listed in 
Table S1 of Supplementary Information. As  
shown in Fig. 1(a), the entire dataset contains 28 
different amorphous alloy systems, with the largest 
proportion of Zr-based alloys. The subplots in 
Fig. 1(a) exhibit the distribution of K and G and the 
distribution of the contained elements. 
 
2.2 Architecture design of forward prediction 

model 
Primarily, we establish the forward predictive 

mapping f from the structure to the elastic modulus 
via deep neural networks (DNNs). For a given set 
of structural data X of amorphous alloys, the K or G 
can be predicted by the mapping f:  
f (X)=K (or G)                            (3)  

Two key technical points are involved here: 
the selection of structural descriptors for amorphous 
alloys and the design of the DNN model structure. 
For the first point, from reference [37,38,40], we 
chose four structural descriptors as the input 
features X of the model, as given in Table 1. For the 
second point, Fig. 1(b) shows the structure of the 
forward model for predicting K or G. As with the 
usual configuration of fully connected neural 
networks, the model contains an input layer, hidden 
layers, and an output layer. However, for the output 
layer, we make a new design, i.e., the two results 
are output and then the average is taken to obtain 
the final prediction result ( ).f X  Since DNN 
models are prone to overfitting risk, the Dropout 
method is used to prevent overfitting [41]. The core 
of the method is to discard neurons randomly in  
the hidden layer with probability p (as shown in 
Fig. 1(b), the discarded neurons are indicated by the 
gray circles). 
 
Table 1 Four structural descriptors of amorphous alloys 

Description Equation 

Averaged valance electron 
1

VEC= VEC
n

i i
i

a
=
∑  

Averaged melting point m m( )
1

=
n

i i
i

T a T
=
∑  

Averaged electronegativity 
1

=
n

i i
i

aχ χ
=
∑  

Averaged atomic radius 
1

=
n

i i
i

r a r
=
∑  

ai, VECi, Tm(i), χi and ri are the atomic fraction, valance electron, 
melting point, electronegativity and atomic radius for each 
constituent element, respectively. 

2.3 Architecture design of inverse prediction 
model 
The purpose of the inverse design problem is 

to obtain a mapping f −1 based on the desired target 
properties of an amorphous alloy composed of 
several elements and to be able to predict the 
atomic fraction of these elements by  
f −1(Y)=A                               (4) 
 
where Y=(y, y1, y2,… , yn) represents a vector 
consisting of element types y1, y2,…, yn and the 
target properties y. In order to make the elements 
available for calculation, yi (i=1, 2, …, n) denotes 
the relative atomic mass of the i-th element. A=  
(a1, a2,… , an) represents the predicted atomic 
fraction of each element. 

In general, it is common to use the mean 
square error (MSE) as the loss function in 
regression problems [21,42]. Recently, deep 
learning based on physical information and 
theoretical guidance has been widely used in 
solving differential equations [43,44]. Apart from 
using MSE, physical constraints such as initial 
marginal value conditions or prior knowledge    
of the relevant differential equations are embedded 
in the loss functions to improve the performance  
of deep learning models. Thus, in this work, we 
provide a new loss function for the inverse design 
of amorphous alloys based on a combination of 
domain knowledge and MSE. It is known from 
domain knowledge that the sum of the atomic 
fractions of all elements in a given alloy 
composition is equal to 100%. Thus, the new loss 
function is given as follows: 
 

new 1 2Loss =Loss Lossα+                    (5) 
 

2
1 2

1

1Loss || ||
N

i i
iN =

= −∑ A A                    (6) 

2
2 1

1

1Loss = || || 100
N

i
iN =

−∑ Α                 (7) 
 
where α∈(0,1) is the weight value assigned, N 
represents the number of training samples, ||·||2 and 
||·||1 denote the L2 and L1 norm of the vector, 
respectively. i

A  and Ai are the experimental 
atomic fractions and the predicted atomic fractions 
of alloy composition, respectively. Figure 1(c) shows 
the overall framework flow of the inverse design. 
The use of Lossnew and MSE as loss functions   
are denoted as domain knowledge-guided inverse 
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design networks (DKIDNs) and regular inverse 
design networks (RIDNs), respectively. 
 
2.4 Model evaluation indexes 

The evaluation metrics used to evaluate the 
prediction performance of the model are the 
coefficient of determination (R2) and root mean 
square error (RMSE) as follows: 
 

( )

( )

2

2 1

2

1

( )
1

n

i i
i

n

i
i

y f X
R

y y

=

=

−
= −

−

∑

∑
                  (8) 

 

( )2

1

1RMSE ( )
n

i i
i

f X y
n=

= −∑                (9) 

 
where yi, fi(X) and y  are the measured, predicted 
and average values of K or G, respectively. Since 
the four input features have different ranges and 
scales, it is necessary to speed up the training and 
convergence of the model. The input features are 
preprocessed by the following equation: 
 

xx µ
σ
−′ =                              (10) 

 
where x' is the value after processing, μ and σ are 
the mean and standard deviation of x, respectively. 

For the inverse design evaluation index, we 
use the following formulations: 
 

2 2

1

1 N

i
i

R R
N =

= ∑                           (11) 
 

2
2

1
E |1MS |R

N

i i
iN =

= −∑ A A                (12) 

 
where 2

iR  denotes coefficient of determination of 
the atomic fraction of the i-th sample. 
 
3 Results and discussion 
 
3.1 Forward prediction results of elastic properties 

The 318 data samples collected are randomly 
divided into 80% as the training set and 20% as the 
test set. In DNNs, hyperparameters such as the 
number of neurons, the number of hidden layers, 
and the dropout rate (p) have a significant impact 
on the model performance. To obtain the optimal 
model, a five-fold cross-validation (CV) based on 
the training set is used to evaluate the model’s 
performance under different combinations of hyper- 

parameters. Figure 2 shows the entire prediction 
workflow. Throughout the model training phase, 
Adam is used as the optimizer and the ReLU 
function is employed as activation function [45]. 
Through several experiments, the effects of the 
values of various hyperparameters on the    
model performance are displayed in Fig. S1 of 
Supplementary Information. The optimal hyper- 
parameter combinations are listed in Table 2. The 
detailed structure of the optimal forward prediction 
model is shown in Fig. S2 of Supplementary 
Information. As shown in Fig. 3(a), the optimal 
forward prediction model for predicting K exhibits 
good generalization performance on the test set, 
with regression metrics R2 and RMSE of 0.986 and 
6.630, respectively. The colour scale shows that 
only three samples have large errors. Furthermore, 
the subplot illustrates the model’s performance on 
the training set, with R2 and RMSE values of 0.987 
and 6.219, respectively. Notably, only two samples 
exhibit substantial training errors. In addition, as 
depicted in Fig. 3(b), the optimal forward prediction 
model demonstrates even better generalization 
ability for predicting G on the test set, achieving 
impressive regression metrics with R2 and RMSE 
values of 0.990 and 2.164, respectively. It is 
interesting to note that only one sample exhibits 
significant errors. Moreover, the model also 
exhibits remarkable performance in the training  
set, with R2 and RMSE values of 0.992 and   
1.806, respectively. In conclusion, with just four 
descriptors as input, the optimal forward prediction 
model can achieve high-precision predictions for 
both K and G. 
 

 
Fig. 2 Flow chart of forward prediction model for K  
and G 
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Table 2 Hyperparameter combinations in optimal 
forward prediction models 

Model Optimal hyperparameter combination 

f(X)=G 
Number of hidden layers: 2, 

number of neurons in hidden layer: 450, 
p=1.0, learning rate: 0.007, and epoch: 2000 

f(X)=K 
Number of hidden layers: 2, 

Number of neurons in hidden layer: 600, 
p=0.1, learning rate: 0.009, and epoch: 2100 

 

 
Fig. 3 Comparison between measured and predicted 
values by optimal forward prediction model for K (a) and 
G (b) (Subplots represent the results of the training set) 
 

We compare the elastic forward prediction 
model based on DNNs in this work with other 
current ML models, as shown in Table 3. It can be 
found that the model developed in this work only 
needs four input descriptors to achieve the highest 
prediction accuracy. The forward prediction model 
has a better ability to extract feature information 
than the shallow ML model and analyzes the 
complex mapping relationship between input 
features and output results through the hidden layer. 

Next, to elucidate how the four features affect 
K and G, the SHapley Additive exPlanations 
(SHAP) method was introduced to explain the 
model, a new unified approach proposed by 
LUNDBERG and LEE in 2017 [47] for explaining 
ML prediction models with “black box” properties. 
The more influence a feature has on the prediction 

result, the more significance it holds. The average 
of the absolute SHAP values of a feature can be 
considered as the importance of that feature. The 
importance ranking of the four features affecting 
the prediction of K and G is shown in Fig. 4. The 
interesting finding is that the average atomic radius 
r plays the most important role in predicting both K 
and G. It can be seen that for prediction of K, the 
importance of features r, Tm, VEC and χ decreases 
sequentially. Additionally, for prediction of G, the 
importance of features r, VEC, χ and Tm decreases 
in order. 
 
Table 3 R2 values of developed models in this work and 
previously reported ML models 

No. Model Number of 
features Refs. G K 

1 SVR 5 [46] 0.961 0.975 

2 RF 4 [37] 0.967 0.968 

3 SR 4 [37] 0.908 0.956 

4 Lasso 35 [38] 0.986 0.984 

5 XGBoost 9 [38] 0.983 0.971 

6 DNNs 4 This work 0.990 0.986 

 

 
Fig. 4 Feature importance ranked by SHAP method for K 
and G 
 

It is well known that atomic radius is 
negatively correlated with atomic bonds. And in 
amorphous alloy systems, the modulus is closely 
related to the constituent elements and their  
atomic bonds [48,49]. As is evident from Fig. 4,  
the interesting finding is that the average atomic  
radius r is the most important factor among    
these four features for predicting K and G. To 
further understand how r affects K and G, Fig. 5 
demonstrates the relationship between r values  
and their SHAP values. It is very obvious that the 



Tao LONG, et al/Trans. Nonferrous Met. Soc. China 35(2025) 169−183 

 

175 

feature r shows a negative correlation with its 
SHAP value. In other words, it means that K    
and G are negatively correlated with the average 
atomic radius r. This result can also be directly or 
indirectly corroborated by a number of studies 
[50,51]. It is important to note that SHAP values 
greater than 0 positively affect K and G, while 
SHAP values less than 0 negatively affect them.  
In other words, r exerts a positive influence on K 
and G when r<147 pm, while r exerts a negative 
influence on K and G when r>147 pm. 
 

 

Fig. 5 SHAP value changes with r for K (a) and G (b) 
 
3.2 Inverse design scheme 

As a case demonstration, we use constructed 
inverse design framework to implement the inverse 
mapping of the target properties (K and G) to the 
corresponding atomic fractions of the elements and 
to evaluate quantitatively the model. 
3.2.1 Modelling process for inverse design 

Firstly, the collected 318 data samples are 
randomly divided into 80% training set and 20% 
test set. Figure 6 shows the distribution of 318 
amorphous alloys containing 2, 3, 4, 5, 6 and 7 
elements. It is observed that the amorphous alloys 

in the dataset contain at most 7 elements, so n=7. 
That is to say, for mapping f 

 −1, the input feature is 
Y=(G, K, y1, y2, …, y7) and the output result is 
A=(a1, a2, … , a7). For convenience of model 
building and training, when the element content   
in the amorphous alloys is below 7, its remaining 
input features are replaced with 0. For example, the 
input feature is Y=(26.8, 102.2, 91.224, 26.982, 
58.643, 63.564, 0, 0, 0) for alloy Zr68Al8Ni8Cu16. 
Therefore, depending on this characteristic of the 
input features, we can actively constrain the output 
results during the training process of the model.  
For input features containing 0, the corresponding 
positions of the corresponding output results    
can be adjusted to be 0. For example, for alloy 
Zr68Al8Ni8Cu16, if the output result is A=(a1, a2, a3, 
a4, a5, a6, a7), then the result can be adjusted to be 
A=(a1, a2, a3, a4,0, 0, 0). Figure 7 visualizes the 
detailed flow of the specific implementation of  
the DKIDNs (or RIDNs) model, and Algorithm 1 
represents the process of the proposed DKIDNs (or 
RIDNs) algorithm in pseudo-code. 
 

 
Fig. 6 Number of amorphous alloys containing 2, 3, 4, 5, 
6 and 7 elements 
 
Algorithm 1: DKIDNs (or RIDNs) model with 
constraints 
Input: Input features Y=(G, K, y1, y2, …, y7) and the 
related hyperparameters; 
Output: Predicted results A=(a1, a2, …, a7); 
1. The dataset is divided into 80% training set and 20% 
test set; 
2. Mtrain ← Training set features Ytrain, Mtest ← Test set 
features Ytest; 
3. Btrain ← Counting the number of zero elements in 
Mtrain; 
4. Btest ← Counting the number of zero elements in Mtest; 
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5. Htrain ← Counting the number of samples in Mtrain; 
6. Htest ← Counting the number of samples in Mtest; 
7. Standardize Ytrain, and Ytest using the Eq. (10); 
8. for epoch ← 0 to max epoch do 
9. APredicted ← Prediction results are obtained based on 
the current sample; 
10. for i ← 0 to Htrain do 

11. APredicted[i,7−Btrain[i]:] ← 0; 

12. end 
13. Calculate the error based on the Eq. (5) (or MSE); 
14. Update the weights and biases in the DNNs; 
15. end 
16. Save the trained model; 

17. Loading Models; 
18. for i ← 0 to Htest do 
19. APredicted[i,7−Btest[i]:] ← 0; 
20. end 
21. return result 

 
3.2.2 Hyperparameter selection of model 

In order to obtain the optimal model, we divide 
10% of the data from the training set as the 
validation set to adjust the hyperparameters. To 
observe the prediction performance of the DKIDNs 
and RIDNs models for the validation set with 
different hyperparameters, the dropout rate p is set 
to be 0.2 and the learning rate to be 0.01. Figure 8 
shows the prediction performance of the DKIDNs  

and RIDNs models in the validation set. From 
Fig. 8(a), it can be found that for models DKIDNs 
and RIDNs, the best prediction performance is 
obtained when the number of hidden layers is     
3 and 4, respectively. However, as the number    
of hidden layers increases, the 2R  score decreases 
substantially, which indicates that both models are 
in an overfitting state. From Fig. 8(b), it can be 
observed that for the DKIDNs model, the best 2R  
score is 0.932 when the hidden layer contains 210 
neurons, and for the RIDNs model the best 2R  
score is 0.920 when the hidden layer contains 310 
neurons. Figure 9 shows the prediction accuracy  
of DKIDNs model for different values of α. The 
DKIDNs model has the best prediction performance 
when α is 0.2. In summary, the hyperparameter 
values of the best model are summarized in Table 4. 
And the detailed structure of the optimal DKIDNs 
and RIDNs models is shown in Fig. S3 of 
Supplementary Information. 
3.2.3 Prediction results of DKIDNs and RIDNs 

models 
After finding the optimal hyperparameters, we 

aim to evaluate the generalization ability of the 
proposed inverse design model in the test set. 
Firstly, we evaluate the prediction performance   
of the model from a global viewpoint. Since the  
test set contains 64 alloys, each alloy contains up  
to 7 elements, i.e., the predicted values can be 
summarized as a 64×7 matrix. In order to visualize  

 

 
Fig. 7 Detailed flow of specific implementation of DKIDNs (or RIDNs) model 
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Fig. 8 Prediction results on validation set by DKIDNs and RIDNs models with different numbers of hidden layers (a) 
and different numbers of neurons in hidden layer (b) 
 

 

Fig. 9 Prediction results on validation set by DKIDNs 
model with different values of α 
 
Table 4 Hyperparameter combinations in optimal 
prediction models 

Model Optimal hyperparameter combination 

DKIDNs 

Number of hidden layers: 3, 
number of neurons in hidden layer: 210, 

p=0.2, learning rate: 0.01, 
α=0.2, and epoch: 2800 

RIDNs 

Number of hidden layers: 4, 
number of neurons in hidden layer: 310, 

p=0.2, learning rate: 0.01, 
and epoch: 2800 

 
the prediction results so as to intuitively observe  
the prediction performance of the DKIDNs and 
RIDNs models, we plot the prediction results into  
a two-dimensional cloud plot, as shown in Fig. 10. 
Intuitively, the two-dimensional cloud plots drawn 
from the data predicted by the DKIDNs and RIDNs 
models are roughly similar to the two-dimensional  

 

Fig. 10 Data for plotting two-dimensional cloud plot:  
(a) Experimental value; (b) Predicted value through 
DKIDNs model; (c) Predicted value through RIDNs model 
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cloud plot drawn from the experimental-value data. 
In order to quantify the similarity between the 
images, we calculate the Wasserstein distance 
between Figs. 10(a) and 10(b), as well as between 
Figs. 10(a) and 10(c), with the results being 0.422 
and 0.572, respectively. The smaller Wasserstein 
distance indicates that the two images are more 
similar. Thus, it is shown that the predicted   
values of the DKIDNs model are closer to the 
experimental values as compared to the RIDNs 
model. In addition, we plot a heat map of the 
absolute errors of the predicted and experimental 
values, as shown in Fig. 11. It can be seen from 
Fig. 11 that both the DKIDNs and RIDNs models 
show excellent predictive ability, and most of their 
absolute errors are concentrated between 0 and 5. 
However, the prediction accuracy of the DKIDNs 
model is significantly better than that of the RIDNs 
model for some of the samples (see the red circle 
mark in Fig. 11). Table 5 summarizes the two 
evaluation indexes of the DKIDNs and RIDNs 
models of training set and the unseen test sets. The 
results suggest that both the DKIDNs and RIDNs 
show good training ability in the training set,    
but the DKIDNs model shows more excellent 
generalization ability in the test set. 

Next, we evaluate the performance of the 
DKIDNs and RIDNs from a local perspective. 
From Figs. 12(a−h), it can be clearly observed that 
the majority of data points are closely clustered 
around the central black dashed line, and the 
generalization ability of the DKIDNs model is 
significantly superior to that of RIDNs model.   
For instance, in the samples of binary, ternary, 
quaternary, and quinary alloys (comprising a total 
of 50 samples), the R2 values increase by 1.04%, 
9.51%, 0.94%, and 2.55%, respectively. However, 
as shown in Figs. 12(i−l), the generalization ability 
of the DKIDNs model is slightly lower than that of 
the RIDNs model in the datasets of six-component 
and seven-component alloys (totaling 14 samples). 
Specifically, the R2 values decrease by 1.57% and 
0.41%, respectively. 

In conclusion, the case test with elastic moduli 
as the target property shows that the two types of 
inverse design models constructed are able to 
predict the atomic fractions of the corresponding 
elements very well. This changes the working mode 
of the traditional trial-and-error method and forward 
prediction models, significantly improving their 

optimization efficiency. In addition, the DKIDNs 
model has better prediction accuracy and robustness. 
 

 

Fig. 11 Absolute error between experimental values and 
predicted values by DKIDNs (a) and RIDNs (b) models 
 
Table 5 Consolidated results of DKIDNs and RIDNs 
models 

Model 
Training set  Test set 

RMSE  2R   RMSE  2R  
DKIDNs 4.624 0.926  9.071 0.907 

RIDNs 4.624 0.918  10.341 0.860 
 

3.3 Predictor−corrector inverse design scheme 
After successfully constructing the forward 

prediction model and inverse prediction model,  
we use these two prediction models to design a 
predictor−corrector inverse design scheme (PCIDS), 
which provides theoretical guidance for the efficient 
development of novel amorphous alloys. 

The PCIDS that can efficiently predict the 
atomic fractions of the corresponding elements 
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Fig. 12 Comparison of experimental and predicted values by DKIDNs and RIDNs models: (a, b) Binary alloys;     
(c, d) Ternary alloys; (e, f) Quaternary alloys; (g, h) Quinary alloys; (i, j) Six-component alloys; (k, l) Seven-component 
alloys (N represents the number of samples) 
 
based on the user-specified element type and target 
property value is shown in Fig. 13. PCIDS consists 
of two parts, including the predictor module: (1) 
Input the specified element type and target 
properties values into the inverse prediction model; 

(2) Obtain the initial predicted value A by the 
inverse design model; (3) Input the initial predicted 
value A into the forward prediction model;      
(4) Determine whether the set target properties 
values are met based on the forward model 
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prediction results; (5) If satisfied, determine 
whether this alloy composition is capable of 
forming a BMGs via the GFA module; If not, using 
the corrector module; (6) Input the initial predicted 
value A to the corrector module; (7) Determine 
whether this alloy composition is capable of 
forming a BMGs via  the GFA module; (8) If not, 
continue to use the corrector module; (9) If yes, 
output result. Note that the pseudo-code for the 
corrector module is shown in Algorithm 2. The GFA 
module is obtained by modifying our previous 
research work on the prediction of GFA for BMGs 
[20], details of  which can be found in Note 1 of 
the Supplementary Information. 
 

 
Fig. 13 Flow chart of PCIDS 
 
Algorithm 2: Corrector Module 

Input: Predicted value A=(a1, a2, …, an) and the set 
target attribute value Y; 
Output: The optimal result after correction 

1 2( ,  ,  ,  )na a a= 
  A ; 

1. Set calibration size E and step size h; 

2. ia ← ai+E is the maximum value, ai−E is the 
minimum value, and the step size is h, to obtain the 
compositions space; 
3. 



A ← Get the possible combinations of 
( )1 2,  ,  ,  na a a

  

; 

4. 


A ←Retain all combinations that satisfy condition 

1
100

n

i
i

a
=

=∑  and 0ia > ; 

5. Y ←Input 


A  to the forward prediction model to 
obtain the target property prediction value Y ; 
6. A ← Get the combination of compositions 
corresponding to |Y− Y |min; 
7. Return result. 

To further demonstrate the program process 
and illustrate its effectiveness, a case study is used 
to demo and validate. Suppose an alloy is specified 
to contain four elements, Ti, Zr, Be and Fe, and the 
target properties G=36 GPa and K=105 GPa need  
to be achieved. Notably, the Ti−Zr−Be−Fe alloy 
system does not appear in the original training set. 
To begin with, the predictor module results in a 
predicted composition of Ti44Zr22Be30Fe4, with 
predicted values of 38.18 GPa and 105.62 GPa for 
G and K, respectively. It can be calculated that the 
errors of the predicted values of G and K with 
respect to the set target values are 2.18 and 0.62, 
respectively. The error of the displayed G differs 
from our expected value. For this purpose, we   
use the corrector module to calibrate the alloy 
Ti44Zr22Be30Fe4. 

According to Algorithm 2, we set the 
correction size E=5 and the step size h=1. Thus,   
we can obtain the ranges [39, 40, …, 49] for Ti,  
[17, 18, …, 27] for Zr, [25, 26, …, 35] for Be  
and [−1, 1, … , 9] for Fe. Next, we keep the 
combinations that satisfy the conditions among 
possible combinations used according to Steps 3 
and 4 of the Algorithm 2 to obtain A containing  
750 combinations. Figure 14 shows the parallel 
coordinates of the atomic fractions of Ti, Zr, Be  
and Fe. The redder the color, the larger the error 
between the predicted and set values of G for that 
composition combination, and vice versa, the bluer 
the color, the smaller the error. Finally, the best 
combination of Ti42Zr27Be27Fe4 is obtained. We 
input Ti42Zr27Be27Fe4 alloy into the forward 
prediction model, and the predicted values of G and 
K are 36.0006 GPa and 105.266 GPa, respectively, 
with errors of 0.0006 and 0.266 from the set target 
values. Finally, alloy Ti42Zr27Be27Fe4 is known to be 
 

 
Fig. 14 Parallel coordinates of atomic fraction of Ti, Zr, 
Be and Fe 
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predicted by the GFA module to have a Dmax greater 
than 2 mm. 

To verify the accuracy of the conclusions, we 
collected relevant experimental data from the 
literature [52] for the Ti−Zr−Be−Fe alloy system 
and found that the reported G for alloy 
Ti41Zr25Be28Fe6 was 36.525 GPa. Since its K value 
was not reported directly, we calculated K as 
approximately 108.77 GPa by using Eq. (2) through 
the reported Poisson’s ratio of v=0.349 and 
G=36.525 GPa. Figure 15 shows a comparison of 
the Ti41Zr25Be28Fe6 alloy with the alloys predicted. 
A high correlation can be seen between the 
predicted alloy composition and the experimental 
composition. This confirms that the inverse design 
scheme based on our development plays an 
effective role in designing amorphous alloys with 
the specified properties. 
 

 
Fig. 15 Atomic fractions of two predicted alloy 
compositions compared with those of Ti41Zr25Be28Fe6 
alloy reported in literature [52] (Note that Ti44Zr22Be30Fe4 
alloy is only predicted by the predictor module and 
Ti42Zr27Be27Fe4 alloy is predicted by PCIDS) 
 
4 Conclusions 
 

(1) Highly accurate forward prediction models 
for bulk modulus K and shear modulus G based on 
DNNs have been developed. 

(2) The SHAP analysis showed that the 
average atomic radius r exhibits a positive influence 
on both K and G when r is less than 147 pm. 
However, when the value of r exceeds 147 pm, it 
exerts a negative impact on K and G. 

(3) The performance of the DKIDNs model, 
utilizing domain knowledge and fused with MSE  
as the loss function, surpasses that of the RIDNs 

model, which solely employs MSE as the loss 
function. 

(4) PCIDS can expedite and effectively design 
amorphous alloy compositions with predetermined 
target properties. Moreover, PCIDS has broad 
applicability beyond amorphous alloys, offering 
innovative viewpoints for the advancement and 
design of other material fields. 
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摘  要：为了开发一种通用框架，使其能够设计出具有所需目标性能的新型非晶合金，提出了一种由预测模块   

和校正模块组成的预估−校正逆向设计方案(PCIDS)。为实现这两个部分，开发了基于深度神经网络的高精度正  

向预测模型。最重要的是，还开发了领域知识引导的逆向设计网络(DKIDNs)和常规逆向设计网络(RIDNs)。在    

测试集上，正向预测模型关于剪切模量和体积模量的决定系数(R2)分别为 0.990 和 0.986。此外，与 RIDNs 模型相

比，DKIDNs 模型表现出更优越的预测性能。最终，证明 PCIDS 可以高效预测出所需目标性能的非晶合金成分。 

关键词：非晶合金；机器学习；深度神经网络；逆向设计；弹性模量 
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