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Abstract: In order to develop a generic framework capable of designing novel amorphous alloys with selected target
properties, a predictor—corrector inverse design scheme (PCIDS) consisting of a predictor module and a corrector
module was presented. A high-precision forward prediction model based on deep neural networks was developed to
implement these two parts. Of utmost importance, domain knowledge-guided inverse design networks (DKIDNs) and
regular inverse design networks (RIDNs) were also developed. The forward prediction model possesses a coefficient of
determination (R?) of 0.990 for the shear modulus and 0.986 for the bulk modulus on the testing set. Furthermore, the
DKIDNs model exhibits superior performance compared to the RIDNs model. It is finally demonstrated that PCIDS can
efficiently predict amorphous alloy compositions with the required target properties.
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1 Introduction

In 1960, KLEMENT et al [1] first discovered
an Au—Si amorphous alloy. Amorphous alloys, also
known as metallic glasses, have good mechanical,
electrical, soft magnetic, and electrochemical
properties compared to conventional alloys [2—4].
After decades of development, amorphous alloys
have been widely used in aerospace, transformers
and military fields [5—7]. Nevertheless, the lack of
a theoretical basis for the correlation between
composition and properties has greatly hindered
the development of amorphous alloys. In the
conventional design of amorphous alloys, the
approach to achieving the target property index
conventionally involves continuously adjusting the
composition ratio of elements through extensive
experimental verification [8—10]. This traditional
“trial-and-error” approach is flawed because it

requires a considerable time, manpower and
material resources and does not always guarantee
Success.

In recent years, with the development of
computer technology, machine learning (ML) has
been widely used in the field of alloys [11]. For
instance, YANG et al [12] proposed a ML-based
alloy design system (MADS) to facilitate the
rational design of high-entropy alloys (HEAs). WU
et al [13] established the density-fluctuation model
of local structural instability in amorphous alloys
via ML. And SAMAVATIAN et al [14] discovered
novel quaternary bulk metallic glasses (BMGs)
by using the ML technique. Furthermore, several
studies have used the ML method to predict the
glass-forming ability (GFA) of amorphous alloys
and the predictions are in good agreement with
experimental values [15—20].

The above studies have developed forward
prediction models from material composition or
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structure to target properties. However, forward
prediction models are only applicable to problems
with small composition spaces, and once the
composition space is very large, it is not feasible to
explore all possible combinations of composition
with forward ML prediction models. The main
reason is the lack of efficient methods for
proactively  designing  promising  candidate
compositions, rather than exploring the entire
composition space [21]. Therefore, an idea naturally
arises: is a prediction path from material target
properties to material composition properties
feasible? This can be defined as an inverse design
problem, where the target properties of the material
are used as inputs for the inverse calculation of
the material composition [22]. The inverse design
approach avoids searching the entire composition
space for candidate materials and enables the
inverse design of material compositions based on
user-specified material target properties. For
example, POLLOK et al [23] used six different
standard convolutional neural network (CNN)
models to inversely predict the target properties
(magnetization, size and location) of a single hard
magnet in a specific 2-D magnetic field. JIANG
et al [24] used conditional generative adversarial
network (cGAN) to establish an inverse design
scheme for the dispersion relation and near-optimal
structure of elastic metamaterials. WANG et al [25]
proposed machine learning design system (MLDS)
for the performance-oriented compositional design
of high-performance complex copper alloys. In
summary, ML-based inverse design approaches or
techniques present attractive prospects in rational
material design.

Currently, there are few studies on designing
amorphous alloys using inverse design techniques.
ZHOU et al [26] implemented inverse design based
on a dataset of four systems of BMGs using a
generative model of generative adversarial network
(GAN). However, the above study used only four
systems of BMGs and the new data generated were
limited to this system. Moreover, for small datasets
or when it is not possible to use data from the whole
domain, the use of standard GAN models lacks
robustness and has difficulty in reaching Nash
equilibrium, and its generation results make it
difficult to resist the effect of noise [27]. For this
reason, in addition to the use of GAN models, it is
crucial to develop new generative models for small

data sets, which can be done by constructing
appropriate loss functions [28]. Additionally,
integrating domain knowledge into ML can
significantly reduce data requirements and improve
the reliability and robustness of ML [29,30]. For
instance, WEI et al [31] found highly explanatory
formulas describing the high-temperature oxidation
behavior of FeCrAlCoNi-based HEAs based on
domain knowledge-guided ML. LI et al [32]
proposed a domain knowledge-based ML method
to predict the saturated magnetization and critical
diameter of soft magnetic amorphous alloys, and
the results showed that the ML model outperformed
the conventional prediction methods.

This work presents a new method of predictor—
corrector inverse design scheme (PCIDS), which
consists of a predictor module and a corrector
module, for guiding the inverse design of
amorphous alloys. Figure 1 shows the framework
diagram of this work. To demonstrate the
universality of our constructed inverse design
scheme, we conducted case tests on a BMGs dataset
containing 28 different systems with 49 different
elements (see Fig. 1(a)). The elastic moduli as the
target property were successfully implemented by
the developed inverse design algorithm. Especially,
PCIDS is not only applicable to the elastic moduli
as a target property but also to other properties,
such as the critical casting diameter (Dmax) as an
assessment of the GFA of amorphous alloys.
Moreover, the PCIDS is also applicable to other
material fields. It is conceivable that this research
work will greatly accelerate the development of
amorphous alloys.

2 Methods

2.1 Data collection

The elastic modulus is a basic physical
quantity that characterizes elasticity, which includes
Young’s modulus (F), Poisson's ratio (v), shear
modulus (G) and bulk modulus (K). There is a
correlation among these four elastic moduli, where
E and v can be expressed by K and G through the
following equations [33,34]:

9KG
E=3k+o M
y= %(3[( ~2G)/ (3K +G) )
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Fig. 1 Overall workflow for efficient design of amorphous alloys: (a2) Collection and analysis of dataset; (b) Forward

prediction model; (c) Inverse prediction model; (d) Workflow of PCIDS

The ratio of G to K is closely related to the
fracture toughness, intrinsic plasticity, and GFA of
amorphous alloys [33]. And it can be known from
the literature [35,36] that there is a strong linear
relationship between yield shear stress and G,

fracture tensile strength, hardness and £. This work
therefore takes the target properties of G and
K as an example to realize the inverse design of
amorphous alloys. The 318 amorphous alloys
containing K and G are collected from the reported



172 Tao LONG, et al/Trans. Nonferrous Met. Soc. China 35(2025) 169—183

literature [33,37-39] and the dataset is listed in
Table S1 of Supplementary Information. As
shown in Fig. 1(a), the entire dataset contains 28
different amorphous alloy systems, with the largest
proportion of Zr-based alloys. The subplots in
Fig. 1(a) exhibit the distribution of K and G and the
distribution of the contained elements.

2.2 Architecture design of forward prediction
model
Primarily, we establish the forward predictive
mapping f from the structure to the elastic modulus
via deep neural networks (DNNs). For a given set
of structural data X of amorphous alloys, the K or G
can be predicted by the mapping f:

SX)=K (or G) 3)

Two key technical points are involved here:
the selection of structural descriptors for amorphous
alloys and the design of the DNN model structure.
For the first point, from reference [37,38,40], we
chose four structural descriptors as the input
features X of the model, as given in Table 1. For the
second point, Fig. 1(b) shows the structure of the
forward model for predicting K or G. As with the
usual configuration of fully connected neural
networks, the model contains an input layer, hidden
layers, and an output layer. However, for the output
layer, we make a new design, i.e., the two results
are output and then the average is taken to obtain
the final prediction result f (X). Since DNN
models are prone to overfitting risk, the Dropout
method is used to prevent overfitting [41]. The core
of the method is to discard neurons randomly in
the hidden layer with probability p (as shown in
Fig. 1(b), the discarded neurons are indicated by the
gray circles).

Table 1 Four structural descriptors of amorphous alloys

Description Equation
Averaged valance electron VEC=Z a;VEC,;
i=1
n
Averaged melting point T, :Z a; T
i=1

Averaged electronegativity X :Z a; xi
i=I

n
r :Z a1
i=1

ai, VECi, Tm@), xi and r; are the atomic fraction, valance electron,
melting point, electronegativity and atomic radius for each
constituent element, respectively.

Averaged atomic radius

2.3 Architecture design of inverse prediction
model
The purpose of the inverse design problem is
to obtain a mapping /! based on the desired target
properties of an amorphous alloy composed of
several elements and to be able to predict the
atomic fraction of these elements by

S(Y)=4 “4)

where Y=(y, y1, »2,***, ya) represents a vector
consisting of element types yi, y2,°*, y» and the
target properties y. In order to make the elements
available for calculation, y; (i=1, 2, -, n) denotes
the relative atomic mass of the i-th element. 4=
(a1, az,+**, a,) represents the predicted atomic
fraction of each element.

In general, it is common to use the mean
square error (MSE) as the loss function in
regression problems [21,42]. Recently, deep
learning based on physical information and
theoretical guidance has been widely used in
solving differential equations [43,44]. Apart from
using MSE, physical constraints such as initial
marginal value conditions or prior knowledge
of the relevant differential equations are embedded
in the loss functions to improve the performance
of deep learning models. Thus, in this work, we
provide a new loss function for the inverse design
of amorphous alloys based on a combination of
domain knowledge and MSE. It is known from
domain knowledge that the sum of the atomic
fractions of all elements
composition is equal to 100%. Thus, the new loss
function is given as follows:

in a given alloy

Loss, ., =Loss, +aLoss, (5)
1 >
LOSSI ZWZHAI- _Ai ||2 (6)
i=1
1 ¥ 2
Loss2=WZ||| A, |, -100] (7
i=1

where o€ (0,1) is the weight value assigned, N
represents the number of training samples, ||||. and
[I-lli denote the L2 and L1 norm of the vector,
respectively. ;li and A4; are the experimental
atomic fractions and the predicted atomic fractions
of alloy composition, respectively. Figure 1(c) shows
the overall framework flow of the inverse design.
The use of Lossnew and MSE as loss functions
are denoted as domain knowledge-guided inverse
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design networks (DKIDNs) and regular inverse
design networks (RIDNs), respectively.

2.4 Model evaluation indexes

The evaluation metrics used to evaluate the
prediction performance of the model are the
coefficient of determination (R*) and root mean
square error (RMSE) as follows:

> (- £(0)
i=1

)

RMSE=JZ (0 =2) ©
i=1

where y;, f(X) and y are the measured, predicted
and average values of K or G, respectively. Since
the four input features have different ranges and
scales, it is necessary to speed up the training and
convergence of the model. The input features are
preprocessed by the following equation:

S | =

X =2"F (10)
o

where x' is the value after processing, ¢ and o are
the mean and standard deviation of x, respectively.

For the inverse design evaluation index, we
use the following formulations:

R’ =i§:R.2 (11)
Ni:l l

[ N
RMSE:\/%Z|Ai—Ai 5 (12)
i=1

where R denotes coefficient of determination of
the atomic fraction of the i-th sample.

3 Results and discussion

3.1 Forward prediction results of elastic properties

The 318 data samples collected are randomly
divided into 80% as the training set and 20% as the
test set. In DNNSs, hyperparameters such as the
number of neurons, the number of hidden layers,
and the dropout rate (p) have a significant impact
on the model performance. To obtain the optimal
model, a five-fold cross-validation (CV) based on
the training set is used to evaluate the model’s
performance under different combinations of hyper-

parameters. Figure 2 shows the entire prediction
workflow. Throughout the model training phase,
Adam is used as the optimizer and the ReLU
function is employed as activation function [45].
Through several experiments, the effects of the
values of various hyperparameters on the
model performance are displayed in Fig. S1 of
Supplementary Information. The optimal hyper-
parameter combinations are listed in Table 2. The
detailed structure of the optimal forward prediction
model is shown in Fig. S2 of Supplementary
Information. As shown in Fig. 3(a), the optimal
forward prediction model for predicting K exhibits
good generalization performance on the test set,
with regression metrics R> and RMSE of 0.986 and
6.630, respectively. The colour scale shows that
only three samples have large errors. Furthermore,
the subplot illustrates the model’s performance on
the training set, with R* and RMSE values of 0.987
and 6.219, respectively. Notably, only two samples
exhibit substantial training errors. In addition, as
depicted in Fig. 3(b), the optimal forward prediction
model demonstrates even better generalization
ability for predicting G on the test set, achieving
impressive regression metrics with R?> and RMSE
values of 0.990 and 2.164, respectively. It is
interesting to note that only one sample exhibits
significant errors. Moreover, the model also
exhibits remarkable performance in the training
set, with R*> and RMSE values of 0.992 and
1.806, respectively. In conclusion, with just four
descriptors as input, the optimal forward prediction
model can achieve high-precision predictions for
both K and G.

] Forward prediciton
80% | model
training g
set 5-fold CV
N~
o]
N
~— L. Training
20% optimal model
test set @l
L] Optimal forward
prediction model

®
Predicted
results

Fig. 2 Flow chart of forward prediction model for K
and G
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Table 2 Hyperparameter combinations in optimal

forward prediction models

Model Optimal hyperparameter combination
Number of hidden layers: 2,
fX)=G number of neurons in hidden layer: 450,
p=1.0, learning rate: 0.007, and epoch: 2000
Number of hidden layers: 2,
fX)=K Number of neurons in hidden layer: 600,
p=0.1, learning rate: 0.009, and epoch: 2100
B #| Absolute error
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Fig. 3 Comparison between measured and predicted

values by optimal forward prediction model for K (a) and
G (b) (Subplots represent the results of the training set)

We compare the elastic forward prediction
model based on DNNs in this work with other
current ML models, as shown in Table 3. It can be
found that the model developed in this work only
needs four input descriptors to achieve the highest
prediction accuracy. The forward prediction model
has a better ability to extract feature information
than the shallow ML model and analyzes the
complex mapping relationship between input
features and output results through the hidden layer.

Next, to elucidate how the four features affect
K and G, the SHapley Additive exPlanations
(SHAP) method was introduced to explain the
model, a new unified approach proposed by
LUNDBERG and LEE in 2017 [47] for explaining
ML prediction models with “black box” properties.
The more influence a feature has on the prediction

result, the more significance it holds. The average
of the absolute SHAP values of a feature can be
considered as the importance of that feature. The
importance ranking of the four features affecting
the prediction of K and G is shown in Fig. 4. The
interesting finding is that the average atomic radius
7 plays the most important role in predicting both K
and G. It can be seen that for prediction of K, the
importance of features r, T, VEC and y decreases
sequentially. Additionally, for prediction of G, the
importance of features r, VEC, y and Tn decreases
in order.

Table 3 R? values of developed models in this work and
previously reported ML models

No. Model Number of Refs. G K
features
1 SVR 5 [46] 0961 0.975
2 RF 4 [37] 0.967 0.968
3 SR 4 [37] 0.908 0.956
4 Lasso 35 [38] 0.986 0.984
5 XGBoost 9 [38] 0.983 0.971
6 DNNs 4 This work 0.990 0.986
100 25
~— K
G— {20
[} [}
[=} =]
15
I

rr T,VEC VEC X X T,
Feature
Fig. 4 Feature importance ranked by SHAP method for K

and G

It is well known that atomic radius is
negatively correlated with atomic bonds. And in
amorphous alloy systems, the modulus is closely
related to the constituent elements and their
atomic bonds [48,49]. As is evident from Fig. 4,
the interesting finding is that the average atomic
radius » is the most important factor among
these four features for predicting K and G. To
further understand how r affects K and G, Fig. 5
demonstrates the relationship between r values
and their SHAP values. It is very obvious that the
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feature » shows a negative correlation with its
SHAP value. In other words, it means that K
and G are negatively correlated with the average
atomic radius ». This result can also be directly or
indirectly corroborated by a number of studies
[50,51]. It is important to note that SHAP values
greater than 0 positively affect K and G, while
SHAP values less than 0 negatively affect them.
In other words, » exerts a positive influence on K
and G when <147 pm, while » exerts a negative
influence on K and G when »>147 pm.

300 | v V¥ SHAP value>0
SHAP value<0

200 [

o W

SHAP value for »
)
|

=100 | r<147 pm !

=200 : :
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SHAP value for »
=)
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Fig. 5 SHAP value changes with r for K (a) and G (b)

3.2 Inverse design scheme

As a case demonstration, we use constructed
inverse design framework to implement the inverse
mapping of the target properties (K and G) to the
corresponding atomic fractions of the elements and
to evaluate quantitatively the model.
3.2.1 Modelling process for inverse design

Firstly, the collected 318 data samples are
randomly divided into 80% training set and 20%
test set. Figure 6 shows the distribution of 318
amorphous alloys containing 2, 3, 4, 5, 6 and 7
elements. It is observed that the amorphous alloys

in the dataset contain at most 7 elements, so n=7.
That is to say, for mapping /', the input feature is
Y=(G, K, yi1, y2, ***, y7) and the output result is
A=(a1, a», ***, a7). For convenience of model
building and training, when the element content
in the amorphous alloys is below 7, its remaining
input features are replaced with 0. For example, the
input feature is ¥=(26.8, 102.2, 91.224, 26.982,
58.643, 63.564, 0, 0, 0) for alloy ZresAlgNisCuis.
Therefore, depending on this characteristic of the
input features, we can actively constrain the output
results during the training process of the model.
For input features containing 0, the corresponding
positions of the corresponding output results
can be adjusted to be 0. For example, for alloy
ZresAlgNisCuyg, if the output result is A=(a1, a2, as,
as, as, ds, a7), then the result can be adjusted to be
A=(ai1, a2, a3, as,0, 0, 0). Figure 7 visualizes the
detailed flow of the specific implementation of
the DKIDNs (or RIDNs) model, and Algorithm 1
represents the process of the proposed DKIDNs (or
RIDNS5) algorithm in pseudo-code.

120
23 I Test set

. [ Training set

_.

o0 =

=) S
.

o

Number of amorphous alloys
N
S

10
40 86
58 61
0f L =
= 13
o =
2 3 4 5 6 7

Number of elements contained
Fig. 6 Number of amorphous alloys containing 2, 3, 4, 5,
6 and 7 elements
Algorithm 1: DKIDNs
constraints

(or RIDNs) model with
Input: Input features Y=(G, K, yi, y2, ***, ¥7) and the
related hyperparameters;

Output: Predicted results A=(ai, a2, ***, a7);

1. The dataset is divided into 80% training set and 20%
test set;

2. Miin < Training set features Yirain, Miest < Test set
features Yiest;

3. Buain < Counting the number of zero elements in
Misain;

4. Biest < Counting the number of zero elements in Mies;
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5. I_Itrain -
6. Hiest < Counting the number of samples in Mies;
7. Standardize Yirain, and Yies using the Eq. (10);

8. for epoch ~— 0 to max epoch do

Counting the number of samples in Mirain;

9. Apredicted < Prediction results are obtained based on
the current sample;

10. for i < 0 to Hixindo

11. Apredicted[i,7—Birain[i]:] <~ 0;

12.
13. Calculate the error based on the Eq. (5) (or MSE);
14. Update the weights and biases in the DNNs;

15. end

16.

end

Save the trained model;
17. Loading Models;

18. for i < 0 to Hiecdo

19. Apredicted[i,7—Bres[i]:] < 0
20.
21.

end

return result

3.2.2 Hyperparameter selection of model

In order to obtain the optimal model, we divide
10% of the data from the training set as the
validation set to adjust the hyperparameters. To
observe the prediction performance of the DKIDNs
and RIDNs models for the validation set with
different hyperparameters, the dropout rate p is set
to be 0.2 and the learning rate to be 0.01. Figure 8
shows the prediction performance of the DKIDNs

73 176 55.845 58.9332 95.95 12.011 10.811 167.259 0
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and RIDNs models in the validation set. From
Fig. 8(a), it can be found that for models DKIDNs
and RIDNs, the best prediction performance is
obtained when the number of hidden layers is
3 and 4, respectively. However, as the number
of hidden layers increases, the R score decreases
substantially, which indicates that both models are
in an overfitting state. From Fig. 8(b), it can be
observed that for the DKIDNs model, the best R
score is 0.932 when the hidden layer contains 210
neurons, and for the RIDNs model the best R >
score is 0.920 when the hidden layer contains 310
neurons. Figure 9 shows the prediction accuracy
of DKIDNs model for different values of a. The
DKIDNSs model has the best prediction performance
when o is 0.2. In summary, the hyperparameter
values of the best model are summarized in Table 4.
And the detailed structure of the optimal DKIDNs
and RIDNs models is shown in Fig. S3 of
Supplementary Information.
3.2.3 Prediction results of DKIDNs and RIDNs

models

After finding the optimal hyperparameters, we
aim to evaluate the generalization ability of the
proposed inverse design model in the test set.
Firstly, we evaluate the prediction performance
of the model from a global viewpoint. Since the
test set contains 64 alloys, each alloy contains up
to 7 elements, i.e., the predicted values can be
summarized as a 64x7 matrix. In order to visualize

Input
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Table 4 Hyperparameter combinations in optimal
prediction models

Model

Optimal hyperparameter combination

Number of hidden layers: 3,
number of neurons in hidden layer: 210,
p=0.2, learning rate: 0.01,
0=0.2, and epoch: 2800

DKIDNs

Number of hidden layers: 4,
number of neurons in hidden layer: 310,
p=0.2, learning rate: 0.01,
and epoch: 2800

RIDNs

the prediction results so as to intuitively observe
the prediction performance of the DKIDNs and
RIDNs models, we plot the prediction results into
a two-dimensional cloud plot, as shown in Fig. 10.
Intuitively, the two-dimensional cloud plots drawn
from the data predicted by the DKIDNs and RIDNs
models are roughly similar to the two-dimensional

Atomic fraction/%
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Sample in test set

a) ap as ay ds

Experimental value

dg  ag

Atomic fraction/%
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59.7
49.8
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. 0
dg ar

Sample in test set

ay ay as ay ds

Predicted value

Atomic fraction/%
80

Sample in test set

ap

as ay 253 dg as

Predicted value
Fig. 10 Data for plotting two-dimensional cloud plot:
(a) Experimental value; (b) Predicted value through
DKIDNSs model; (c) Predicted value through RIDNs model
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cloud plot drawn from the experimental-value data.
In order to quantify the similarity between the
images, we calculate the Wasserstein distance
between Figs. 10(a) and 10(b), as well as between
Figs. 10(a) and 10(c), with the results being 0.422
and 0.572, respectively. The smaller Wasserstein
distance indicates that the two images are more
similar. Thus, it is shown that the predicted
values of the DKIDNs model are closer to the
experimental values as compared to the RIDNs
model. In addition, we plot a heat map of the
absolute errors of the predicted and experimental
values, as shown in Fig. 11. It can be seen from
Fig. 11 that both the DKIDNs and RIDNs models
show excellent predictive ability, and most of their
absolute errors are concentrated between 0 and 5.
However, the prediction accuracy of the DKIDNs
model is significantly better than that of the RIDNs
model for some of the samples (see the red circle
mark in Fig. 11). Table 5 summarizes the two
evaluation indexes of the DKIDNs and RIDNs
models of training set and the unseen test sets. The
results suggest that both the DKIDNs and RIDNs
show good training ability in the training set,
but the DKIDNs model shows more excellent
generalization ability in the test set.

Next, we evaluate the performance of the
DKIDNs and RIDNs from a local perspective.
From Figs. 12(a—h), it can be clearly observed that
the majority of data points are closely clustered
around the central black dashed line, and the
generalization ability of the DKIDNs model is
significantly superior to that of RIDNs model.
For instance, in the samples of binary, ternary,
quaternary, and quinary alloys (comprising a total
of 50 samples), the R? values increase by 1.04%,
9.51%, 0.94%, and 2.55%, respectively. However,
as shown in Figs. 12(i—1), the generalization ability
of the DKIDNSs model is slightly lower than that of
the RIDNs model in the datasets of six-component
and seven-component alloys (totaling 14 samples).
Specifically, the R* values decrease by 1.57% and
0.41%, respectively.

In conclusion, the case test with elastic moduli
as the target property shows that the two types of
inverse design models constructed are able to
predict the atomic fractions of the corresponding
elements very well. This changes the working mode
of the traditional trial-and-error method and forward
prediction models, significantly improving their

optimization efficiency. In addition, the DKIDNs
model has better prediction accuracy and robustness.
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Fig. 11 Absolute error between experimental values and

predicted values by DKIDNSs (a) and RIDNs (b) models

Table 5 Consolidated results of DKIDNs and RIDNs
models

Training set Test set
Model — — _
RMSE R? RMSE R?
DKIDNSs 4.624 0.926 9.071 0.907
RIDNs 4.624 0.918 10.341 0.860

3.3 Predictor—corrector inverse design scheme

After successfully constructing the forward
prediction model and inverse prediction model,
we use these two prediction models to design a
predictor—corrector inverse design scheme (PCIDS),
which provides theoretical guidance for the efficient
development of novel amorphous alloys.

The PCIDS that can efficiently predict the
atomic fractions of the corresponding elements
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models: (a, b) Binary alloys;

(c, d) Ternary alloys; (e, f) Quaternary alloys; (g, h) Quinary alloys; (i, j) Six-component alloys; (k, 1) Seven-component

alloys (N represents the number of samples)

based on the user-specified element type and target (2) Obtain the initial predicted value A4 by the
property value is shown in Fig. 13. PCIDS consists inverse design model; (3) Input the initial predicted
of two parts, including the predictor module: (1) value A into the forward prediction model;
Input the specified element type and target (4) Determine whether the set target properties
properties values into the inverse prediction model; values are met based on the forward model
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prediction results; (5) If satisfied, determine
whether this alloy composition is capable of
forming a BMGs via the GFA module; If not, using
the corrector module; (6) Input the initial predicted
value 4 to the corrector module; (7) Determine
whether this alloy composition is capable of
forming a BMGs via the GFA module; (8) If not,
continue to use the corrector module; (9) If yes,
output result. Note that the pseudo-code for the
corrector module is shown in Algorithm 2. The GFA
module is obtained by modifying our previous
research work on the prediction of GFA for BMGs
[20], details of which can be found in Note 1 of
the Supplementary Information.

Specify element
type and target
properties values Corrector module
7
Inverse
prediction Nﬂ
model forecast GFA
2) target is met?, module
Predicted
value A 9)|Yes
3) Forward
prediction Results
model

Fig. 13 Flow chart of PCIDS

Algorithm 2: Corrector Module

Input: Predicted value A=(ai, a», ***, an) and the set
target attribute value ¥;
Output: The optimal
121:(&1’ &2’ ) &n);
1. Set calibration size £ and step size 4;

result after correction

2. ﬁl» < gq+E is the maximum value, a—F is the
minimum value, and the step size is /4, to obtain the
compositions space;

3. A <« Get the

(ala az: ) C_i,,);

possible combinations  of

4. A <Retain all combinations that satisfy condition

> a;=100 and @, >0;

i=1

5. ¥ <Input A to the forward prediction model to
obtain the target property prediction value Y ;

6. A <« Get the
corresponding to |Y—I7 |min;

combination of compositions

7. Return result.

To further demonstrate the program process
and illustrate its effectiveness, a case study is used
to demo and validate. Suppose an alloy is specified
to contain four elements, Ti, Zr, Be and Fe, and the
target properties G=36 GPa and K=105 GPa need
to be achieved. Notably, the Ti—Zr—Be—Fe alloy
system does not appear in the original training set.
To begin with, the predictor module results in a
predicted composition of TiwuZr2BesFes, with
predicted values of 38.18 GPa and 105.62 GPa for
G and K, respectively. It can be calculated that the
errors of the predicted values of G and K with
respect to the set target values are 2.18 and 0.62,
respectively. The error of the displayed G differs
from our expected value. For this purpose, we
use the corrector module to calibrate the alloy
Ti44Zr22Be3oFe4.

According to Algorithm 2, we set the
correction size E=5 and the step size A=1. Thus,
we can obtain the ranges [39, 40, ---, 49] for Ti,
[17, 18, -, 27] for Zr, [25, 26, -+, 35] for Be
and [-1, 1, ==+, 9] for Fe. Next, we keep the
combinations that satisfy the conditions among
possible combinations used according to Steps 3
and 4 of the Algorithm 2 to obtain 4 containing
750 combinations. Figure 14 shows the parallel
coordinates of the atomic fractions of Ti, Zr, Be
and Fe. The redder the color, the larger the error
between the predicted and set values of G for that
composition combination, and vice versa, the bluer
the color, the smaller the error. Finally, the best
combination of TipZr7BessFes is obtained. We
input TisZry7BexsFes alloy into the forward
prediction model, and the predicted values of G and
K are 36.0006 GPa and 105.266 GPa, respectively,
with errors of 0.0006 and 0.266 from the set target
values. Finally, alloy TisxZr7Bes7Fes is known to be

49~ ﬁ27 35 9
48 ﬂlﬁ 4 g  Error/GPa
47 » 3 9.700
7 8.488
46 2 7.275
45 < 1 6 6.063
4.850
4 i 0 5 3638
43 21 9 2.425
4
o .y < D 1213
-f L >3 0.000
41 9 272N
40 18 S 2
394 11 5 —
Ti Zr Be Fe

Fig. 14 Parallel coordinates of atomic fraction of Ti, Zr,
Be and Fe
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predicted by the GFA module to have a Dmax greater
than 2 mm.

To verify the accuracy of the conclusions, we
collected relevant experimental data from the
literature [52] for the Ti—Zr—Be—Fe alloy system
and found that the reported G for alloy
Tis1Zr2sBexsFes was 36.525 GPa. Since its K value
was not reported directly, we calculated K as
approximately 108.77 GPa by using Eq. (2) through
the reported Poisson’s ratio of v=0.349 and
G=36.525 GPa. Figure 15 shows a comparison of
the Tis1ZrysBexsFes alloy with the alloys predicted.
A high correlation can be seen between the
predicted alloy composition and the experimental
composition. This confirms that the inverse design
scheme based on our development plays an
effective role in designing amorphous alloys with
the specified properties.

45

40l @ TinZryBeyFe, 9
(PCIDS, R?=0.984) ‘
. 35¢F TiyZr,,Bes Fe,
= 30 (Predictor module,
< JUr 2 -
5 R>=0.958) 9.0
= 25F .
>
T 20¢
5
3 I5r
~ 10t
57 @
0 5 10 15 20 25 30 35 40 45

Experimental value/at.%
Fig. 15 Atomic fractions of two predicted alloy
compositions compared with those of TisZr:sBexsFes
alloy reported in literature [52] (Note that TisZr»BesoFes
alloy is only predicted by the predictor module and
TisxZ127Ber7Fes alloy is predicted by PCIDS)

4 Conclusions

(1) Highly accurate forward prediction models
for bulk modulus K and shear modulus G based on
DNNs have been developed.

(2) The SHAP analysis showed that the
average atomic radius » exhibits a positive influence
on both K and G when r is less than 147 pm.
However, when the value of r exceeds 147 pm, it
exerts a negative impact on K and G.

(3) The performance of the DKIDNs model,
utilizing domain knowledge and fused with MSE
as the loss function, surpasses that of the RIDNs

model, which solely employs MSE as the loss
function.

(4) PCIDS can expedite and effectively design
amorphous alloy compositions with predetermined
target properties. Moreover, PCIDS has broad
applicability beyond amorphous alloys, offering
innovative viewpoints for the advancement and
design of other material fields.
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