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Abstract: The effects of leaching temperature (60—105 °C), NH4Cl concentration (3—7 mol/L), liquid/solid ratio
(4:1-12:1 mL/g), stirring speed (150—750 r/min), and leaching time (5—90 min) on the leaching rates of Zn and Pb were
investigated. The leaching kinetics of Zn- and Pb-rich fuming dust with a NH4Cl solution was also studied. The
leaching rates of Zn and Pb respectively reached 98.2% and 75.6% at leaching temperature of 100 °C, an NH4Cl
concentration of 7.0 mol/L, a liquid/solid ratio of 10:1 mL/g, a stirring speed of 450 r/min and leaching time of 60 min.
The kinetics results indicate that the leaching of Zn and Pb conforms to the shrinking unreacted core model and is
controlled by the internal diffusion of NH4Cl through the reacted fuming dust layer and external diffusion of NH4Cl
through the leaching solution boundary layer, respectively. The apparent activation energies of Zn and Pb are 23.922
and 19.139 kJ/mol, respectively. This study demonstrates that the use of NH4Cl solution, without ammonia, is an
environmentally friendly method for simultaneous extracting Zn and Pb from the fuming dust of lead blast furnace slag.
Key words: lead blast furnace slag; fuming dust; ammonium chloride; simultaneous leaching; kinetics; shrinking

unreacted core model

1 Introduction

With the gradual depletion of zinc and lead
ores, increasing attention has been paid to various
secondary zinc—lead materials [1-5]. As a typical
secondary zinc—lead material, fuming dust of lead
blast furnace slag mainly contains zinc and lead
oxides [6—8]. Sulfuric acid is the main acid leaching
solvent used to treat secondary zinc—lead materials,
and more than 90% of the lead and zinc contained
in the materials can be recycled [9—12]. However,
most impurity elements are dissolved in the solution
together with lead and zinc, leading to difficulties
in the subsequent purification process. Over 74%
of zinc can be leached using sodium hydroxide
solution to leach electric arc furnace dust (EAFD)
and other waste smelting slags from zinc—lead

smelting plants, but lead contained in them cannot be
recycled [13—17]. In addition, ammonia—ammonium
salt solutions, such as NHz;—(NH4).CO; [18,19],
NH;—-NH4HCO; [20], NH3—(NH4).SO4 [21], and
NH;—NH4Cl [22,23], are adopted to leach
secondary zinc—lead-bearing materials. The highest
zinc leaching rate achieved is 96.7%, whereas
impurity leaching is minimal, which indicates that
ammonia—ammonium salt solutions have good
selectivity for leaching zinc-bearing materials.
However, ammonia—ammonium salt leaching
method still suffers from ammonia volatilization,
which degrades the operating environment.

To fully exploit the selective ability of
ammonia and chloride with lead and zinc to
form complexes [24—26] and solve the problem of
ammonia volatilization, researchers have used
ammonium chloride solution without ammonia to
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efficiently treat materials containing zinc produced
in metallurgical processes [27,28]. For example,
the “Engitec Zinc Extraction” (EZINEX®)
process [29-31] developed by Italy Engitec
Impianti S.p.A was used to leach zinc from electric
arc furnace dust using ammonium chloride solution
at 75 °C, then the leaching solution was purified
and electro-deposited to obtain metal zinc. JU
et al [32] reported that 91.2% of zinc in smithsonite
ores was extracted using pure ammonium chloride
at 90 °C.

Although a large number of studies have been
carried out on the efficient leaching of zinc with
ammonium chloride solution, there are few studies
on the simultaneous extraction of lead and zinc and
their kinetics from secondary resources. In this
study, the effects of the ammonium chloride
concentration, temperature, liquid/solid ratio (L/S),
leaching time, and stirring speed on the leaching
rates of zinc and lead were studied. The kinetics
was also investigated to determine the control
model and apparent activation energy of the
leaching process.

2 Experimental

2.1 Materials

The raw material used in the leaching
experiment was the zinc- and lead-containing dust
produced from the fuming process of lead blast
furnace slag in Guangdong Province, China.
AR-grade ammonium chloride (99.8%) was
purchased from Xilong Scientific Reagent Co. Ltd.,
China. The elemental contents of the fuming dust
were analyzed using an inductively coupled plasma
emission spectrometer (ICP—OES, Spectro Blus
Sop), and the results are given in Table 1. The Zn
and Pb contents were 44.27 and 27.92 wt.%,
respectively, and the main impurities were As,
Fe, S, Cl, etc. The phase composition and
micromorphology of the fuming dust were
determined using X-ray diffraction (XRD, TTR III,
Rigaku) and scanning electron microscopy (SEM,
JSM—-7900F, JEOL), and the results are displayed in
Fig. 1. The XRD pattern in Fig. 1(a) indicates that
zinc oxide (ZnO, PDF#80-0075), lead sulfate
(PbSO4, PDF#82—1855), and a lead complex
compound (Pb4(SO4)(CO3)2(OH),, PDF#85—-1422)
are the significant minerals present in the fuming

dust. The SEM image in Fig. 1(b) shows that the
particles are relatively uniform (5 pm) with a rough
surface.

Table 1 Chemical elemental contents of fuming dust
(wt.%)

Zn Pb S Fe As Si0,
4427  27.92 3.02 0.43 0.35 0.43
Cl Ga Ge In Cd AlLOs
0.24 0.0036 0.011 0.0098 0.041 0.26
(a)
* ZnO
¢ PbSO,

0 Pb,(SO,)(CO;),(OH),

Fig. 1 XRD pattern (a) and SEM image (b) of fuming
dust

2.2 Experimental procedure

The required concentrations of the prepared
ammonium chloride solution varying from 3.0 to
7.0 mol/L were added to a 250 mL closed reactor
with a constant temperature and continuous
mechanical stirring function. The stirring speed
and liquid/solid ratio were in the range of
150750 r/min and 4:1-12:1 mL/g, respectively.
The leaching temperature was in the range of
60—105 °C. When the desired temperature was
reached and held steady, 10 g of fuming dust
sample was added to the solution. The solution was
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stirred for a certain amount of time (5—90 min) and
then separated by filtration. During filtration, the
filter residue and flask were washed three to five
times with approximately 20 mL of 10 wt.% HCI
solution until the white solids disappeared. A
sufficient amount of 8 wt.% H,SO4 solution was
added to 1 mL leaching solution to precipitate Pb in
the form of PbSO4. Then, PbSO4 was filtered and
separated after standing for 30 min. The filtrate was
used to analyze the content of zinc in the solution.
The PbSOs4 precipitate obtained by filtration was
fully dissolved with 20 wt.% of acetic acid—sodium
acetate solution and the lead content was analyzed
by titration.

The leaching rates of Zn and Pb are

Leaching rate/%

Leaching rate/%
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where r is the leaching rate of Zn and Pb (%), ¢ is
the concentration of Zn or Pb in the filtrate (mol/L),
V is the total volume of the filtrate (L), M is the
relative molar mass of Zn or Pb (g/mol), and m is
the mass of Zn or Pb in the fuming dust (g).

3 Results and discussion

3.1 Leaching conditions

The optimal leaching parameters of zinc- and
lead-bearing fuming dust using the ammonium
chloride solution were studied. The results are
shown in Fig. 2.
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Fig. 2 Effects of leaching parameters on leaching rates of Zn and Pb: (a) NH4Cl concentration; (b) Leaching
temperature; (c) Liquid/solid ratio; (d) Leaching time; (e) Stirring speed
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3.1.1 Effect of NH4Cl concentration

The effects of the NH4ClI concentration in the
range of 3—7 mol/L on the leaching rates of Zn and
Pb were studied at a leaching temperature of 80 °C,
stirring speed of 300 r/min, liquid/solid ratio of
10:1 mL/g, and leaching time of 90 min. The results
in Fig. 2(a) showed that the leaching rates of Zn and
Pb increased with increasing NH4Cl concentration;
and the leaching rate of Zn was less affected by the
NH4Cl concentration than that of Pb. The NH4Cl
concentration of 3 mol/L was sufficient to achieve a
Zn leaching rate of as high as 83.7%, and it
increased to a maximum of 92.4% when the NH4Cl
concentration increased to 5 mol/L. As the NH4Cl
concentration increased from 3 to 6 mol/L, the
leaching rate of Pb increased steeply from 13.6% to
58.04% and then increased slowly. This indicates
that low NH4Cl concentration can ensure the
effective leaching of Zn, but the extraction of lead
needs to control a higher concentration of NH4Cl.
This is mainly because NH;3 and Cl in the solution
preferentially complex with Zn?*; only when the
concentration of Zn*" in the solution decreases to a
certain range does Cl” begin to mainly complex
with Pb?*, To ensure the maximum leaching rates
of Zn and Pb simultaneously, 7 mol/L was selected
as the NH4Cl concentration for subsequent
experiments.
3.1.2 Effect of leaching temperature

The influence of leaching temperatures from
60 to 105 °C on the leaching rates of Zn and Pb was
investigated at NH4Cl concentration of 7 mol/L,
stirring speed of 300 r/min, liquid/solid ratio of
10:1 mL/g, and leaching time of 90 min. The results
in Fig. 2(b) reveal that the leaching temperature has
a more significant effect on Pb than on Zn. The
leaching rate of Pb increased from 41.2% to 72.4%
as the temperature increased from 60 to 100 °C. In
comparison, Zn leaching rate only increased from
92.3% to 98.6%. The Zn leaching rate reaches
92.3% at a low temperature in a short time, which
indicates that Zn can easily form complexes with
NH; and CI'. The change of Zn and Pb leaching
rates with temperature means that the simultaneous
leaching of Zn and Pb can be achieved by
controlling the higher leaching temperature. But
when the temperature is higher than 100 °C, the
solution volatilizes seriously, and the leaching rate

decreases. Thus, 100 °C was considered a suitable
leaching temperature.
3.1.3 Effect of liquid/solid ratio

The influence of liquid/solid ratio from 4:1 to
10:1 mL/g on the leaching rates of Zn and Pb was
investigated at NH4Cl concentration of 7 mol/L,
leaching temperature of 100 °C, stirring speed of
300 r/min, and leaching time of 90 min. Figure 2(c)
showed that the Zn leaching rate increased slowly
and the Pb leaching rate increased sharply as the
liquid/solid ratio increased from 4:1 to 10:1 mL/g,
and both changed little after a liquid/solid ratio of
10:1 mL/g. This indicates that high liquid/solid ratio
is helpful for simultaneous leaching of Zn and Pb.
Because increasing the liquid/solid ratio not only
increases the initial NH4Cl concentration but also
increases the diffusion gradient between the particle
surface and solution during the reaction process. A
liquid/solid ratio of 10 mL/g is sufficient to ensure
higher Zn and Pb leaching rates, and further
increasing larger liquid/solid ratio will waste NH4Cl.
Thus, a liquid/solid ratio of 10:1 mL/g was used in
subsequent experiments.
3.1.4 Effect of leaching time

The influence of leaching time from 5 to
90 min on the leaching rates of Zn and Pb was
investigated at NH4Cl concentration of 7 mol/L,
leaching temperature of 100 °C, liquid/solid ratio of
10:1 mL/g, and stirring speed of 450 r/min. The
results in Fig. 2(d) indicated that an increase in the
leaching time had little influence on the Zn and Pb
leaching rates. After a leaching time of 60 min,
the leaching rates of Zn and Pb changed slightly.
This indicated that 60 min was appropriate for
subsequent experiments.
3.1.5 Effect of stirring speed

The influence of stirring speeds from 150 to
750 r/min on the leaching rates of Zn and Pb was
investigated at NH4Cl concentration of 7 mol/L,
leaching temperature of 100 °C, liquid/solid ratio of
10:1 mL/g, and leaching time of 90 min. As shown
in Fig. 2(e), the Zn leaching rate was less affected
by the stirring speed, whereas the Pb leaching rate
was significantly affected by it. When the stirring
speed increased from 150 to 450 r/min, the leaching
rate of Pb increased from 68.4% to 75.3% and then
changed little with further increase in stirring speed.
Increasing the stirring speed significantly improved
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the diffusion speed of the solute and strengthened
the leaching process. Controlled by the diffusion,
slight improvement in the Zn and Pb leaching rates
was observed when the stirring speed exceeded
450 r/min; thus, 450 r/min was selected as the
optimal stirring speed.
3.1.6 Comprehensive factor experiment

Three groups of comprehensive factor
experiments were performed under the optimal
leaching conditions based on the experimental
results: NH4Cl concentration of 7 mol/L, leaching
temperature of 100 °C, liquid/solid ratio of 10:1 mL/g,
stirring speed of 450 r/min, and leaching time of
60 min. The average leaching rates of Zn and Pb
were 98.2% and 75.6%, respectively.

3.2 Kinetics analysis

The leaching process of Zn and Pb from
fuming dust using the ammonium chloride solution
mainly produces binary complexes of zinc and
ammonia, zinc and chlorine, and lead and chlorine.
In addition, zinc forms ternary complexes with
ammonia and chlorine. Other impurity metals, such
as Fe, As, and Ga, are not complexed with ammonia
chloride and remain in the leaching residue. The
possible complexation reactions are as follows:

ZnO+mNH,=[Zn(NH3),,)*"+(m—2)H"+H,0 ()
ZnO+H,0+nCl=[ZnCl,]*"+20H" 3)
ZnO+2iNH,+jCl =
[Zn(NH3),CL]*+H0+Q2i-2)H +iNHsaq  (4)
PbSO4+kCl'=[PbCl,]* +S03 (5)

where m, n, i, j, and k are coordination numbers.
These reactions are typical liquid/solid reactions
occurring at two-phase interface of ammonium
chloride solution and fuming dust, and the kinetics
of this type of reaction is largely described by the
shrinking unreacted core model, which consists of
four steps: (1) external diffusion of NH4ClI through
the leaching solution boundary layer, (2) internal
diffusion of NH4Cl through the reacted fuming dust
layer, (3) chemical reactions between ZnO and
PbSO4 with NH4Cl, and (4) diffusion of the
produced Zn and Pb complexes through the solid
and liquid layers into the leaching solution.
Therefore, three speed control steps are possible for
the shrinking unreacted core model: internal

diffusion control, external diffusion control, and
chemical reaction control [33—35]. According to
Fig. 2(e), the stirring speed has little effect on the
leaching rate of Zn; therefore, internal diffusion, as
shown in Eq. (6) [31,33—37], can be the dominant
controlled step for leaching Zn from fuming dust
using NH4Cl:

1-2r/3—(1-7)3=kint (6)

In contrast, the leaching rate of Pb is evidently
affected by the stirring speed, as shown in Fig. 2(e);
therefore, external diffusion, as shown in
Eq. (7) [38], can be the dominant controlled step for
leaching Pb from fuming dust using NH4Cl:

1_(1_r)2/3:kext (7)

where 7 is the leaching rate of Zn or Pb (%), kin and
kex are the reaction rate constants for internal
diffusion control process and external diffusion
control process, respectively (min'), and 7 is the
reaction time (min).

The effects of leaching temperatures from 60
to 105 °C on the leaching rates of Zn and Pb at
liquid/solid ratio of 10:1 mL/g, stirring speed of
300 r/min, NH4Cl concentration of 7 mol/L, and
leaching time of 5—90 min are shown in Figs. 3(a)
and (d), respectively. Figures 3(b) and (e) are
obtained by plotting 1-27/3—(1-7)*3 and 1-(1-r)*?
to leaching time with the experimental data
presented in Figs. 3(a) and (d), respectively. A clear
linear relationship between 1-2r/3—(1-r)** and ¢
for Zn and 1—(1-7)*® and ¢ for Pb indicates that
the leaching of Zn and Pb from fuming dust
by a ammonium chloride solution is controlled by
internal and external diffusion, respectively. The
corresponding kin, kex, and correlation coefficients
for Zn and Pb are listed in Table 2.

After the reaction rate constants (kin and kex)
were obtained, the apparent activation energy of the
relevant control process was calculated using the
Arrhenius formula [38]:

mk=—L2ip (8)
RT

where & is the reaction rate constants (kin and kex,
min '), E, is the apparent activation energy of the
relevant control process (J/mol), R is the molar
gas constant (8.314 J/(mol-K)), T is the reaction
temperature (K), and B is the pre-exponential factor.
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Fig. 3 Effects of temperature on leaching rates of Zn (a) and Pb (d), relationships between 1-27/3—(1—#)*3 and leaching

time for Zn leaching process (b) and between 1—(1-7)?3 and leaching time for Pb leaching process (e), and relationships
between In k and T ! for Zn (c) and Pb (f) leaching processes

The In k against 7! plots of Zn and Pb are
depicted in Figs. 3(c) and (f), respectively, and the
E, values are 23.922 and 19.139 kJ/mol as derived
from the slope and intercept of the lines, also
confirming that the leaching of Zn and Pb from
fuming dust by ammonium chloride solution is
controlled by internal and external diffusion,

respectively. The kinetics equations for Zn and Pb
are expressed by Egs. (9) and (10), respectively:
1-2r/3—(1-r)**=1.2432[exp(—23922/(RT))]¢ 9
1—(1-r)*3=-0.20737[exp(—19139/(RT))]t (10)
The complexation constant of Zn with NH;
can reach as much as 9.46, and Zn can also form a
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complex with CI". Pb can only complex with CI",
with a maximum complexation constant of 3.23. At
the beginning of the leaching, external diffusion is
not the speed control step because of the high
concentration of ammonium chloride in the
solution. The complexation reaction of Zn is
extremely fast, internal diffusion speed is slower
than the complexation speed, and internal diffusion
becomes the speed control step of Zn leaching.
With the leaching of Zn, the concentration of
ammonium chloride in the solution decreases, the
complexation reaction of Pb** and CI” mainly
occurs, and the external diffusion rate is slower than
the complexation reaction rate; thus, external
diffusion becomes the speed control step.

Table 2 kin, kex, and correlation coefficients (R?) of Zn
and Pb

7/ 1-2r/3—(1-r)*3 for Zn
°C " fin/min™! R?

1- (1-)%" for Pb

kex /min~! R?

60 0.000662183 0.87149  0.000789711 0.94001
80 0.000978018  0.93563 0.00127  0.97459
90 0.00119 0.92904 0.00140  0.96723
100 0.00164 0.93475 0.00167  0.95503
105 0.00170 0.93074 0.00184  0.91839

3.3 Characterization of leaching residue

XRD and SEM—-EDS characterizations were
performed to determine the mineralogical species
and micromorphology of the leaching residue
obtained in the comprehensive experiments. The
XRD pattern of the leaching residue is shown in
Fig. 4. The SEM image, main element surface
distributions, and EDS patterns are shown in Fig. 5.
Main elemental contents of leaching residue
obtained from EDS patterns are listed in Table 3.

The XRD pattern shows that the main phase
in the leaching residue is PbCl, (PDF#72—0440),
and it also contains small amounts of ZnS
(PDF#79-2204) and PbS (PDF#77—-0244). Usually,
Pb?>" and CI” can form three types of complex
species, PbCl*, PbClyag, and PbCl;, and their
corresponding complexation constants are 1.42,
2.23, and 3.23, respectively [39]. Theoretically,
PbCl; is preferentially generated in solution.
However, the XRD results indicate that PbClyg) is

also generated in the leaching residue, causing
some Pb loss, which may be the main reason for the
low Pb leaching rate. In addition, small amounts of
ZnS and PbS are precipitates formed by the trace
sulfur contained in the raw material with Zn*" and
Pb?" in the leaching solution; this also adversely
affects the recovery rates of Zn and Pb.

* PbCl,
PbS
v ZnS

10 20 30 40 50 60 70 80
200(°)

Fig. 4 XRD pattern of leaching residue

Table 3 Main elemental contents of leaching residue
obtained from SEM—EDS

Element Content/wt.% Content/at.%
C 38.25 70.56
o 11.26 15.51
Al 0.37 0.30
Si 0.87 0.69
S 4.11 2.83
Cl 5.36 3.33
Fe 2.32 0.91
Zn 7.67 2.58
As 0.71 0.21
Pb 28.88 3.07

Figure 5 shows that Pb, Cl, and S are the main
elements in the leaching residue, and the content of
Zn in the residue is significantly lower than that
of Pb, which is consistent with the XRD results.
It also shows that Zn is leached prior to Pb
in ammonium chloride solution. Trace impurity
elements of As, Fe, and S in the raw material
remaining in the leaching residue are not leached by
ammonium chloride.
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Fig. 5 SEM—EDS results of leaching residue

4 Conclusions

(1) The leaching rates of Zn and Pb reached
98.2% and 75.6% at 100 °C, an ammonium chloride
concentration of 7.0 mol/L, a liquid/solid ratio of
10:1 mL/g, a stirring speed of 450 r/min, and
leaching time of 60 min.

(2) The leaching of Zn and Pb conforms to the
shrinking unreacted core model and is controlled
by the internal diffusion of NH4Cl through the
reacted fuming dust layer and external diffusion
of NH4Cl through the leaching solution boundary
layer, respectively. The apparent activation energies
of Zn and Pb are 23.922 and 19.139 kJ/mol,
respectively.
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