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Abstract: A hybrid approach combining machine learning and microstructure analysis was proposed to investigate the 
relationship between microstructure and hardness of AA2099 Al−Li alloy through nano-indentation, X-ray diffraction 
(XRD) and electron backscatter diffraction (EBSD) technologies. Random forest regression (RFR) model was 
employed to predict hardness based on microstructural features and uncover influential factors and their rankings. The 
results show that the increased hardness correlates with a smaller distance from indentation to grain boundary (Ddis) or a 
shorter minimum grain axis (Dmin), a lower Schmidt factor in friction stir weld direction (SFFD), and higher sine values 
of the angle between {111} slip plane and surface (sin θmin). Ddis and Dmin emerge as pivotal determinants in hardness 
prediction. High-angle grain boundaries imped dislocation slip, thereby increasing hardness. Crystallographic 
orientation also significantly influences hardness, especially in the presence of T1 phases along {111}Al habit planes. 
This effect is attributable to the variation in encountered T1 variants during indenter loading. Consequently, the 
importance ranking of microstructural features shifts depending on T1 phase abundance: in samples with limited T1 
phases, Ddis or Dmin > SFFD > sin θmin, while in samples with abundant T1 phases, Ddis or Dmin > sin θmin > SFFD. 
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1 Introduction 
 

Understanding the relationship between the 
microstructure and mechanical properties of alloys 
is critically important in the field of materials 
science and engineering [1−4]. By manipulating 
composition, processing methods, and heat 
treatments, it becomes feasible to control the 
microstructural features and, ultimately, to tailor the 

mechanical performance of the material [5−7]. For 
instance, precise control of the grain size and 
orientation can enhance the strength and ductility  
of alloys. Similarly, optimizing phase distribution 
allows for improvements in the corrosion  
resistance, hardness, and other critical mechanical 
performance [8−10]. 

In recent decades, significant progress has 
been made in understanding relationship between 
the microstructure and mechanical properties, and  
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quantitatively predicting the individual strengthening 
effect in alloys [11−13]. While advanced 
experimental and computational techniques are 
available for characterizing the microstructure of 
alloys [14,15], challenges persist in dealing with 
complex alloy systems. There are numerous 
interactions and coupling effects between alloy 
microstructure and mechanical properties [16]. The 
burgeoning field of machine learning-driven 
research on material performance provides new 
insights for addressing this issue [17−19]. By 
collecting appropriate training feature parameter 
data and utilizing machine learning methods, 
researchers can develop correlation models that link 
the feature parameters of alloys with their 
performance. Machine learning methods are 
capable of predicting an alloy’s mechanical 
performance and of ranking the importance of 
microstructural features [20]. This, in turn, guides 
the development of mathematical and physical 
models, deepening our understanding of the 
microstructure−property relationship in alloys [21], 
which is crucial for optimizing mechanical 
performance. 

Fundamentally, most machine learning 
algorithms are founded on the premise that    
more data improve predictive or classification 
performance [17]. In many practical applications, 
larger datasets enable these models to discern finer 
nuances, understand complex relationships and 
obscure trends within the data. However, obtaining 
large volumes of high-quality data can be a 
challenge, especially when dealing with specialized 
domains or instances where data collection is 
expensive or time-consuming, such as predicting 
the mechanical performance of alloys. Nano- 
indentation has emerged as a standard, high- 
throughput experimental method for studying the 
mechanical behavior and characterizing the 
mechanical properties of various materials on a 
minuscule scale [22,23]. This high-throughput 
experimentation approach facilitates the exploration 
of an extensive array of conditions or combinations, 
resulting in the production of rich datasets. 

In this work, we aimed at investigating     
the relationship between the microstructure and 
hardness of AA2099 Al−Li alloy. A dataset capturing 
the microstructural features and corresponding 
hardness values was established utilizing hardness 
testing and a range of techniques for microstructural 

characterization. The underlying mechanism 
connecting the microstructural characteristics to the 
hardness of AA2099 Al−Li alloy was unveiled 
through the integration of machine learning data 
mining and slip trace analysis. Furthermore, a novel 
hybrid machine learning and microstructure-based 
approach for modeling the microstructure−hardness 
relationship of the AA2099 Al−Li alloy was 
proposed to better understand this important 
material system. 
 
2 Methods 
 
2.1 Experimental details 

AA2099 Al−Li alloy (Cu 2.78 wt.%; Li 
1.80 wt.%; Zn 0.67 wt.%; Mg 0.30 wt.%; Mn 
0.36 wt.%; Zr 0.09 wt.%; Fe 0.03 wt.%; Al balanced) 
was employed in this study. To achieve the targeted 
grain size, the plates underwent stir friction welding. 
The samples were prepared through different heat 
treatments. Each test sample was solution-treated at 
540 °C and water-quenched, followed by a natural 
aging step of several weeks at room temperature 
(named as T4). Subsequently, a subset of these 
samples were subjected to artificial aging at 160 °C 
for 24 h (named as T6). Other samples were 
pre-deformed to strains of 3% and 6% (named as 
T3-3% and T3-6%, respectively), and then artificial 
aged immediately at 160 °C for 24 h (named as 
T8-3% and T8-6%, respectively). 

For nanoindentation tests, samples measuring 
10 mm × 15 mm × 5 mm were extracted from the 
plates subjected to stir friction welding, as shown in 
Fig. 1. The tests were performed using an Agilent 
G200 nano-indenter with a trihedral Berkovich 
indenter at a constant strain rate of 0.05 s−1. The 
tests applied the continuous stiffness measurement 
mode with a maximum penetration depth of 2 μm. 
Samples for the nanoindentation tests were 
prepared through grinding and electrochemically 
polishing in a mixed solution of 10 mL HClO4 and  
90 mL ethanol at 20 V and −25 °C. After the 
nanoindentation tests, the samples were subjected  
to electron backscatter diffraction (EBSD) 
investigation using a Zeiss Gemini 300 field 
emission gun scanning electron microscope (SEM) 
with an Oxford Symmetry S1 detector. 

For transmission electron microscopy (TEM) 
observations, the samples were carefully ground to 
the thickness of 70 µm. These were then formed into 



Xiang-hui ZHU, et al/Trans. Nonferrous Met. Soc. China 34(2024) 3504−3520 3506 

 

 
Fig. 1 Schematic diagrams showing coordinate system and test samples (Unit: mm) 
 
3 mm diameter disks, which were electropolished 
using a twin-jet electro- polishing instrument in a 
33 vol.% nitric acid methanol solution for 40 s at 
−30 °C under 15 V. The observations were carried 
out with an FEI Talos F200X operated at 200 kV 
utilizing bright field (BF), high-angle annular dark 
field (HAADF) and selected area electron 
diffraction (SAED). 

Dislocation density was measured using X-ray 
diffraction (XRD) line profile analysis. A Bruker 
D8 Advance instrument was used with Cu Kα 
radiation. The instrument settings were adjusted to a 
twin primary of 1 mm and a secondary twin of 
5 mm over a scanning range 2θ of 35°−140° at a 
scanning speed of 0.05 (°)/s. 

Pre-deforming and tensile testing were carried 
out on a WANCE electro-hydraulic servo testing 
machine at a strain rate of 8×10−4 s−1. The clip 
extensometer gauge length was 12.5 mm. All 
samples were machined along the rolling direction 
with a cross-section of 5 mm × 2 mm and a gauge 
length of 20 mm, as shown in Fig. 1. The final 
mechanical property data were the average value of 
three tensile samples. The yield strength of the 
annealed AA2099 Al−Li alloy, tested immediately 
after solution treatment, was determined to be 
153.30 MPa. 
 
2.2 Database generation 

Data collection is a crucial aspect of machine 
learning, providing relevant datasets and features 
for analysis [24]. This study focused specifically on 
acquiring data related to hardness and micro- 
structure characteristic parameters. Hardness data 
were obtained via nanoindentation tests. Concurrently, 
the microstructure characteristic parameters 

corresponding to the hardness indentations were 
identified as independent variable features as they 
provide valuable insights into the microstructural 
properties of the material. For each sample, 12 
relevant features were carefully selected to capture 
important aspects of the microstructure. To gather 
necessary data for feature extraction, EBSD    
data were utilized. From the EBSD data, 
crystallographic and geometric features relevant to 
the study were extracted, forming the feature 
dataset. 

A critical aspect of our data collection process 
was to ensure an adequate representation of the 
microstructural characteristics. This was achieved 
by having each sample group at least 250 points. 
Including a sufficient number of data points 
allowed the dataset to capture the diverse micro- 
structural characteristics present in the samples. 

The meticulous data collection process yielded 
a feature database containing approximately 1200 
data points, each with 12 features. The database 
served as a comprehensive resource for subsequent 
machine learning analysis, facilitating the 
exploration of relationships between the 
independent variable features and the dependent 
variable dataset of hardness data. 
 
2.3 Developing microstructural descriptors 

The feature engineering was meticulously 
executed, using knowledge of the pertaining field  
to develop a set of features for the machine  
learning algorithm. This process was guided by 
understanding that the plastic deformation behavior 
of a material is strongly correlated with its micro- 
structure and the loading conditions. For hardness 
prediction, both crystallographic and geometric 
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microstructural descriptors formed the professional 
knowledge-based feature set. 
2.3.1 Crystallographic descriptors 

Under specific loading conditions, the flow 
stress is determined by the grain orientation, which 
can be captured by Euler angles. However, it is 
difficult to interpret hardness results directly from 
Euler angles due to the non-linearity of Euler space. 
Hence, the following features were developed to 
better represent the grain crystallographic properties. 

(1) Schmidt factor 
During the plastic deformation process of 

alloys, the Schmidt factor plays a crucial role in 
determining how easily a crystal lattice slips along 
its slip plane. Schmidt factors for the applied stress 
along friction stir weld direction (FD), transverse 
direction (TD), and normal direction (ND) were 
named as SFFD, SFTD, and SFND, respectively. The 
average Schmidt factor across these three directions 
is named as SFavg. 

(2) Sine/cosine value of angle between {111} 
slip plane and surface plane 

When the sine or cosine value of the angle 
between the slip plane and the surface plane 
(TD−ND plane) changes, different slip systems are 
activated, leading to variations in the Schmidt 
factors. Additionally, the presence of {111} habit 
planes for the T1 phase, which has a high aspect 
ratio, may result in differences in the loading 
resistance between the inclined T1 phase and the 
edge-on T1 phase. To quantify these angles, the sine 
and cosine values of the minimum angle between 
the {111} slip plane and the surface are named as 
sin θmin and cos θmin, respectively. The sine and 
cosine values of the maximum angle between the 
{111} slip plane and the surface are named as 
sin θmax and cos θmax, respectively. The sine and 
cosine values of the average angle between the {111} 
slip plane and the surface are named sin θavg and 
cos θavg, respectively. 
2.3.2 Geometrical descriptors 

Grain boundaries are important microstructural 
features that affect the mechanical performance of 
metal materials. When these materials undergo 
deformation process, mobile dislocations pile up at 
grain boundaries, causing stress concentration. A 
key aspect of grain boundaries is their relationship 
to grain size: the smaller the grain size, the higher 
the total grain boundary surface area per unit 
volume, which means that the material can 

withstand higher loads. Therefore, the distance from 
each hardness point to the nearest grain boundary 
(Ddis) and the minimum axis of the grain (Dmin) are 
selected as geometric features for predicting 
nanoindentation hardness. 
 
2.4 Machine learning methods 

Machine learning is a statistical framework 
that automates analytical model fitting for data 
analysis such as finding structure in data (clustering) 
and making data-driven predictions or decisions. In 
this study, predicting hardness involves a binary 
classification problem. Machine learning methods 
can effectively uncover relationships between the 
microstructural descriptors (represented as features) 
and the micromechanical outcome of interest. 

During data collection, it is important to 
account for potential outliers that may arise due to 
statistical errors, sample organization defects, or 
other factors. To manage this, a clustering algorithm 
was employed to cluster all samples in the dataset, 
followed by an analysis to determine the degree of 
isolation for each sample point based on the 
clustering information. A threshold for the degree of 
belonging was set to pinpoint a specified number of 
isolated points. Furthermore, the initial distribution 
of data features was analyzed to detect and exclude 
abnormal or noisy data points. This step involves 
identifying data points with exceptional degree 
more than 3 using isolated point analysis and 
subsequently removing outlier data points using the 
quartile range method. 

The primary objective of this research is to 
comprehend the microstructural attributes that 
influence hardness. To this end, we employed a 
transparent machine learning approach known    
as random forest regression (RFR) algorithm [25]. 
RFR transparently selects features and builds 
models, ensuring that they represent the training 
data and generalize well to unseen data. This 
enhances the accuracy of the model and the 
reliability of the prediction results by eliminating 
irrelevant or redundant parameters. 

Model hyperparameters consist of the number 
of decision trees, the number of features, and the 
depth of each decision tree. These hyperparameters 
were carefully chosen and optimized by the 
iterative adjustment process. The optimized values 
determined through the optimization process were 
maximum depth of 30 and estimators number of 2. 
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A robust data-driven model should perform 
well on the training data and generalize effectively 
on test data. We divided our dataset into two parts: 
70% for training to conduct preliminary regression 
analysis, and the remaining 30% for testing to 
assess the performance of the machine learning 
models. To evaluate the prediction results, the R2 
(coefficient of determination) value was used. 

The iterative process of the model involves 
several steps aimed at improving its performance. 
One of these steps includes increasing the volume 
of data samples, which helps to enhance the 
model’s training and generalization capabilities. 
Additionally, modifying and fine-tuning the model 
parameters is another crucial aspect of the iterative 
process. By carefully adjusting these parameters, 
the model can better adapt to the specific task at 
hand, optimizing its accuracy and effectiveness. 
Overall, through these iterative steps, the model 
continuously evolves and improves its capabilities 
to deliver reliable and accurate results. 
 
3 Results 
 
3.1 Microstructure characteristics under different 

heat treatments 
3.1.1 Grain structures and precipitation characteristics 

Figure 2 shows the inverse pole figure (IPF) 

maps with grain boundaries of AA2099 Al−Li alloy 
under different processing conditions. After solution 
treatment, all samples are predominantly composed 
of recrystallized grains. The IPF maps on the 
ND−TD plane exhibit a mostly recrystallized 
microstructure with elongated grains dominated by 
fiber textures 〈111〉//TD. 

Figure 3 shows HAADF images of the 
precipitates and the corresponding SAED maps of 
the samples under various aging conditions. Due to 
the absence of artificial aging, the occurrence of 
precipitate phases is scarcely observed in the T4 
sample (Fig. 3(a)). Without pre-straining, as 
depicted in Fig. 3(b), a high density of small plates 
is present on the {100} matrix planes with a small 
amount of T1 present on the {111} matrix planes  
in the T6 sample. Figures 3(e, f) show a high- 
resolution TEM image of the small plates and the 
corresponding fast Fourier transform (FFT) image, 
where the plates with a bright Cu layer are Cu-rich 
zones (GP I) [26]. Due to the introduction of a 
significant number of nucleation sites through 
pre-straining [4], the T8-3% and T8-6% samples 
precipitate more uniform T1 phase with a small 
content of GP I, as shown in Figs. 3(c, d). The 
results demonstrate a corresponding increment in 
the number density and a decrement in average 
diameter of the T1 phase with rising the pre-strain. 

 

 
Fig. 2 IPF maps of tested samples: (a) T4; (b) T6; (c) T8-3%; (d) T8-6% 
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Fig. 3 HAADF images along 〈110〉Al zone axis of samples and corresponding SAED maps: (a) T4; (b) T6; (c) T8-3%;  
(d) T8-6%; (e) High-resolution TEM image of small plates present on {100} matrix planes; (f) Corresponding FFT 
image in (e) 
 
3.1.2 Dislocation structures 

The TEM bright field images in Fig. 4 show 
the dislocation structures in AA2099 Al−Li alloy 
under different heat treatments. It can be observed 
that a small number of dislocations are present in 
the T4 and T6 samples, whereas the T8-3% and 
T8-6% samples exhibit a uniform and high density 
of dislocations after pre-stretching. 

The high dislocation density presented in 
Fig. 4 poses challenges for precise measurement. To 
supplement qualitative TEM observations, XRD 
peak broadening analysis was conducted for the 
T3-3% and T3-6% samples. Diffraction peak 
broadening is related to dislocation density and 
nanocrystalline structures [27−29]. However, in this 
study, owing to the large grain size (>10 μm), the 
observed peak broadening can be attributed to the 
presence of high dislocation density. 

The XRD peak profiles of the {200}, {220}, 
{311} and {420} planes under different heat 
treatments were measured to analyze the effect of 
dislocation density on peak broadening. A Pseudo- 
Voigt distribution function was employed to fit each 
diffraction peak, allowing for the estimation of the 
full width at half-maximum (FWHM). Subsequently, 

the dislocation density values were calculated utilizing 
the modified Williamson−Hall model [30,31]: 
 

2 2 1/2 1/2 1/20.9/ (π /2)K D A b KCρ∆ = +
          

(1) 
 
where ∆K is the strain broadened FWHM in 
reciprocal space given by 
 
∆K=2cos θ·∆θ/λ                          (2)  
where θ is the diffraction angle, ∆θ is the FWHM, λ 
is the wavelength of the X-ray (0.15418 nm for Cu 
radiation), and K is the amplitude of the diffraction 
vector defined by  
K=2sin θ/λ                              (3)  

D, ρ and b represent the average grain size, the 
dislocation density and the magnitude of the 
Burgers vector (0.286 nm for Al), respectively. A is 
the Wilkens arrangement parameter (0.63 for this 
work) [30]. C  is the average contrast factor for 
different diffraction peaks. The software package 
ANIZC was utilized to calculate the required 
average contrast factors [32]. As a result, ∆K is 
modified and fitted among the (hkl) reflections   
as a function of 1/2KC , as shown in Fig. 5(a).  
The effective dislocation densities calculated by this 
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Fig. 4 Bright field TEM images showing dislocation structures in AA2099 Al−Li alloy under different heat treatments: 
(a) T4; (b) T6; (c) T8-3%; (d) T8-6% 
 

 
Fig. 5 Peak broadening analysis results (a) and effective dislocation density (b) obtained by modified Williamson−Hall 
method 
 
method were plotted against the level of pre-strain 
for the T3 sample in Fig. 5(b). The results reveal a 
near-linear increment in dislocation density with 
rising pre-strain levels. Due to strong solute 
interaction between dislocations and solute atoms, 

the recovery of dislocations in the aging stage is 
greatly inhibited [27]. Therefore, the strength 
increment of dislocation strengthening induced by 
pre-strain is considered to remain unchanged in the 
T8 samples. 
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3.2 Hardness and tensile strength under different 
heat treatments 
Figure 6(a) presents the hardness−displacement 

curves for different samples. Notably, a significant 
size effect is observed in hardness, whereby the 
hardness progressively decreases with an increase 
in indentation depth. This decrease stabilizes   
upon reaching a depth of 1 μm. Consequently, the 
average hardness values, measured within the depth 
range of 1−1.1 μm, were utilized to compare the 
hardness of different indentation points among 
different samples. 
 

 
Fig. 6 Results of nanoindentation test: (a) Hardness− 
indentation depth curves for different samples;        
(b) Average hardness and hardness distribution for 
different samples 
 

Figure 6(b) illustrates the average hardness 
and its distribution for the AA2099 Al−Li alloy 
subjected to various heat treatments. These 
treatments significantly affect the mechanical 
performance of the alloy. The results demonstrate a 
rise in hardness, correlating with an increase in the 
precipitate density of the main strength phase, i.e., 
T1 (Fig. 3). In addition, the standard deviation (SD) 

in hardness for the T8 samples is observed to be 
higher compared to that for the T4 and T6 samples. 
This variation is likely due to the increased 
inhomogeneity in the T1 phases or the dislocation 
structures caused by pre-stretching [33]. Figure 7 
shows the tensile curves of AA2099 Al−Li alloy 
with various heat treatments. Consistent with the 
findings from hardness measurements, the yield 
strength of the alloy demonstrates significant 
enhancement subsequent to various heat treatments. 
 

 
Fig. 7 Engineering stress−strain curves of samples after 
different heat treatments 
 
3.3 Feature importance ranking on hardness 

The RFR algorithm was employed to predict 
the hardness of various samples. This process 
involved an iterative adjustment phase, which 
included the integration of new data and parameter 
tuning, with the aim of refining the machine 
learning model and improving its predictive 
performance. The final predicted hardness values 
for different samples are depicted in Fig. 8. The R2 
values obtained for hardness are 0.73, 0.66, 0.74, 
and 0.68 for the T4, T6, T8-3%, and T8-6% 
samples, respectively. The R2 value serves as a 
measure of the success of prediction by quantifying 
the deviation between the predicted and actual 
values. A larger R2 value indicates a smaller 
deviation, indicating a more accurate prediction. 
Therefore, the prediction accuracy can be evaluated 
using the R2 value, where a value above 0.6 is 
considered indicative of a reliable prediction. 

The utilization of the RFR algorithm facilitates 
the exploration of feature importance, helping to 
identify the input variables with the greatest 
influence on hardness prediction. As shown in 
Fig. 9, the feature importance ranking reveals that  
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Fig. 8 Comparison of predicted hardness values obtained from RFR machine learning models with measured hardness 
values for different samples: (a) T4; (b) T6; (c) T8-3%; (d) T8-6% 
 
geometric features (Ddis and Dmin) have the most 
prominent impact on hardness of all samples. 
Additionally, for the T4 sample, SFFD exhibits the 
second highest degree of influence, whereas sin θmin 
emerges as the second most influential factor for the 
T8-3% and T8-6% samples. Notably, among the 
evaluated feature variables (SFFD, SFTD, and SFND), 
SFFD is identified as the most critical feature in 
determining hardness. 

Considering exhaustively all the critical 
features influencing hardness remains a challenging 
topic of discussion. The absence of key features 
may potentially lead to suboptimal model 
performance, thereby diminishing the accuracy of 
hardness prediction. However, the comprehensive 
analysis presented in this study provides valuable 
insights into the underlying factors that contribute 
to the predicted hardness values across diverse 
sample variations. 

 
4 Analysis and modeling 
 
4.1 Deformed region around indents based on 

hybrid of machine learning and slip trace 
analysis 

Figure 10 shows the indentation morphology 
and slip trace analysis results of the T4, T6 and 
T8-3% samples. Two sets of slip planes are 
activated on each side of the triangular impression 
in the T6 and T8-3% samples, while the activation 
of a single slip plane is more common on each side 
of the triangular impression in the T4 sample. This 
variation in deformation behaviors may be related 
to the slip modes of dislocations. In the T4 sample, 
cluster strengthening predominates with strong 
planar slip [34], resulting in the activation of a 
single slip plane. In contrast, in the artificially  
aged sample (T6 and T8-3%), a large number of  
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Fig. 9 Feature importance ranking of AA2099 Al−Li alloy after different heat treatments: (a) T4; (b) T6; (c) T8-3%;   
(d) T8-6% 
 

 

Fig. 10 Indentation morphologies (a−c) and slip trace analysis results (d−f) of samples: (a, d) T4; (b, e) T6; (c, f) T8-3% 
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precipitates suppress planar slip behaviors, leading 
to the activation of more slip systems to coordinate 
deformation. 

Slip traces are pivotal in elucidating the 
micro-mechanisms of plastic deformation. Active 
slip systems often exhibit higher Schmidt factors, 
which depend on the orientation of the slip system 
relative to the applied stress. To determine the 
Schmidt factor, the direction of applied stress in the 
crystal coordinate system is essential. Machine 
learning results suggest that the hardness is most 
strongly correlated with SFFD when the stress is 
applied along the FD. Therefore, for Schmidt factor 
calculations on the contact planes A1, A2, and A3 of 
the indenter tip (as shown in Fig. 10(a−c)), the 
stress direction is assumed to be parallel to the 
direction of indentation. 

Figures 10(d−f) present IPF maps of the 
corresponding areas around the indentation, 
showcasing the crystal orientations of grains 
surrounding the indentation. EBSD data analysis 
indicates that the two activated slip systems in the 
T4 sample (Fig. 10(a)) are located on the (1 11)
and (1 1 1 )  slip planes of Grain 1, respectively. 
These slip systems correspond to the Schmidt 
factors with the highest (G1max) or the next highest 
(G1max-1) values when the loading direction is 
assumed to be along the FD. In the T6 sample 
(Fig. 10(b)), the indentation is located near the 
grain boundary. The two activated slip systems of 
Grain 2 are located on the ( 1 11)  and (1 11)   
slip planes, respectively. These slip systems 
correspond to the Schmidt factors with the highest 
(G2max) or third highest (G2max-2) values. The single 
activated slip systems of Grain 3 are located on the 
( 1 11)  slip planes, which correspond to the 
Schmidt factors with the highest (G3max) values. In 
the T8-3% sample, the same result is obtained, with 
the two activated slip systems located on the 
(1 11)  and (1 1 1 )  slip planes of Grain 4. These 
analysis results indicate that the deformation 
behavior near the indentation is predominantly 
influenced by the stress in the FD. 

Analyzing the stress field of an indentation   
is challenging. Several studies [35−37] have 
employed finite element simulations for this 
purpose. In this study, machine learning models 
have been utilized, making various assumptions 
about the stress field surrounding the indentation. 
Specifically, the deformation behavior near the 

indentation is hypothesized to be primarily 
influenced by the stress applied in the FD, TD, and 
ND. We calculated the Schmid factors for the grain 
located at the indentation when subjected to stress 
in the FD, TD, and ND. SFFD is identified as the 
most critical feature in determining hardness. In 
other words, the results from machine learning 
method also indicate that the deformation behavior 
near the indentation is predominantly influenced by 
the stress applied in the FD. The stress field 
surrounding the indentation can be likened to that 
of uniaxial compression in the FD. 

Figures 10(d−f) highlight the high strain 
regions with kernel average misorientation (KAM) 
maps. The estimation of geometrically necessary 
dislocations (GND) is based on KAM. In the T6 
sample, an interesting observation is the visible 
accumulation of GND near the grain boundary in 
the vicinity of A1. This accumulation indicates a 
strong hindering effect of high-angle grain 
boundaries on dislocation slip, which leads to an 
increase in hardness [38,39]. In contrast, in the  
T8-3% sample, there is no significant pileup of 
dislocations near the grain boundaries in the 
vicinity of A2 and A3. This could be attributed to 
the lower misorientations of these boundaries, 
which have less impact on plastic deformation, 
especially near low-angle grain boundaries. This 
finding is consistent with the analysis of important 
distribution results in machine learning, where grain 
boundaries are identified as one of the key factors 
affecting the hardness. 

The geometric feature parameters Ddis and Dmin 
are listed as the most important features in the 
analysis of important distribution results in machine 
learning. During model training, it was found that 
the feature importance distribution of these two 
parameters differs significantly among different 
samples. Notably, these two parameters exhibit a 
positive correlation and strong association. 
Typically, a reduction in grain size leads to a 
decrease in the nearest distance between the 
indentation and the grain boundary. Interestingly, 
both parameters have similar effects on the 
hardness, as evidenced by the pileup of dislocations 
at grain boundaries. Using a single parameter 
feature seems to result in unstable feature 
importance distribution. Therefore, if both 
parameters need to be considered at the same time, 
it is recommended to multiply them to create a 
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composite feature, which can significantly enhance 
the predictive ability of the machine learning  
model. In this study, however, we opted to simply 
superimpose the importance of these two 
parameters. 

EBSD data analysis, combined with machine 
learning, revealed that crystallographic orientation 
exerts a significant influence on hardness, which is 
further exacerbated by the presence of T1 phases. 
Due to the precipitation of T1 phases along {111}Al 
habit planes, four crystal orientation variants 
correspond to different non-parallel (111)Al planes. 
Figure 11 illustrates diagrams representing the four 
variants of T1 phases in relation to specific 
indentation loading directions. In the fiber texture 
〈111〉//TD (Fig. 11(a)), the indenter encounters 
obstructions from two inclined T1 variants and two 
vertically parallel T1 phase variants. In contrast, for 
the fiber texture 〈111〉//FD (Fig. 11(b)), the indenter 
faces obstructions from one vertical T1 variant and 
three inclined T1 variants. The T1 phase variants 
precipitate along different {111}Al habit planes in 
grains with different crystal orientations, which 
may lead to different amounts of inclined/face-on T1 
 

 
Fig. 11 Schematic diagrams of T1 phase orientation 
variants with respect to specific indentation loading    
in different crystal orientations: (a) 〈111〉//TD;        
(b) 〈111〉//FD 

phase variants during FD loading. These T1 phase 
variants, with their different angles relative to the 
surface plane, exhibit different resistances to 
indenter loading [40]. Consequently, sin θmin 
emerges as the second most influential factor 
affecting hardness of the T8-3% and T8-6% 
samples, which contain a substantial amount of 
lamellar T1 phases. 
 
4.2 Strength modeling 
4.2.1 Yield strength modeling 

Various models have established to show a 
relationship between the critical resolved shear 
stress (τ) and the yield strength (σy) of 
polycrystalline metals [41,42]. The yield strength of 
the alloys can be approximately described by the 
following relationship [43−45]: 
 
σy=Mτ=M(τb+∆τp+∆τρ)                     (4) 
 
where M is the Taylor factor (~3.1). M  

−1 is the 
Schmidt factor (SFFD) for a monocrystal. τb is the 
base strength, ∆τp and ∆τρ are the increase in 
strength due to precipitation and dislocation density, 
respectively. It is assumed that the increase in 
strength due to solid solution hardening will remain 
constant during artificial aging as any change from 
a loss of solid solution strengthening is relatively 
small compared to the significant strength gains 
from strain and precipitation hardening. Therefore, 
the yield strength of the annealed 2099 Al−Li alloy, 
tested immediately after solution treatment, was 
used to determine the base strength τb. 

The measured dislocation density values 
obtained by XRD of the material following 
stretching in the T3 temper can be used to estimate 
the contribution from forest hardening to the CRSS 
of the alloy. The standard expression relating 
dislocation density to the CRSS is given by [46]  
∆τρ=αGbρ1/2                                              (5)  
where α is a dimensionless constant between 0.2 
and 0.5, and G is the shear modulus. 

The increase in strength resulting from 
precipitation or clusters in the sample can be 
quantified as the total yield strength minus the base 
strength and strain hardening contribution. Several 
main strength contributions can be separated based 
on the above calculation results, as shown in 
Fig. 12. 
4.2.2 Hardness modeling 

The correlation between hardness (H) and 
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yield strength can be expressed as [47−49]  
H=a1σy+b1                              (6) 
 
where a1 and b1 are constants that depend on    
the indentation displacement, with their values 
approaching 1.907 and 1.079 GPa, respectively. The 
hardness−yield strength relationship is presented in 
Fig. 13, exhibiting a strong alignment with the ideal 
linear behavior. 
 

 

Fig. 12 Main strengthening terms of AA2099 Al−Li 
alloy after different heat treatments 
 

 
Fig. 13 Change in average hardness with yield strength 
 

According to Eq. (4), we can get the following 
relationship: 
 
H=a1Mτ+b1                              (7) 
 

Within the same sample, notable variations  
in hardness are observed due to microstructural 
heterogeneity. The results of machine learning and 
plastic deformation of indentation indicate that 
high-angle grain boundaries strongly impede 

dislocation slip, resulting in increased hardness. 
Previous investigations [50,51] have demonstrated 
that the hardening effect intensifies as the distance 
from the indentations to the grain boundary Ddis 
decreases. This distance can be interpreted as the 
length of dislocation pileup [52]. Therefore, it is 
clear that an additional parameter, namely Ddis, is 
required to describe such deviation in hardness 
among different grains, as it significantly affects the 
hardness. The influence of grain boundaries on 
shear stress can be expressed in the following  
form [53,54]:  
τ=τ0+k0d−1/2                                              (8) 
 
where τ0 is the friction stress, k0 is a constant, and d 
is the grain diameter or Ddis. Then, the hardness can 
be expressed as 
 
H=a2Mτ(1+kd−1/2)+b2                      (9) 
 
where a2 and b2 are constants, and k is a synergistic 
strengthening constant, approaching a value of 
1 μm−1/2. As depicted in Fig. 14(a), the hardness of 
the T4 sample, calculated using Eq. (9), aligns 
reasonably well with the experimentally determined 
hardness. However, when Ddis is lower than 20 μm, 
the discrepancy between the predicted hardness   
in the model and the experimentally measured 
hardness becomes more pronounced. This may be 
due to the insufficient accuracy in measuring Ddis or 
the fact that the hardness is also influenced by the 
crystal orientation of the adjacent grains [50]. 

However, this model fails to consider the 
impact of precipitate morphology on hardness. In 
the T8 temper, the sine value of the angle between 
the {111} slip plane and the surface plane is more 
important than the Schmidt factor for predicting 
hardness. The indenter encounters varying 
resistance from different T1 phase variants, resulting 
in different CRSS for different grains. The hardness 
is fitted with sin θmin (Fig. 14(b)), using the 
relationship: 
 
H=a3Mτ(1+kd−1/2+csin θmin)+b3             (10) 
 
where a3 and b3 constants, and c is also a constant, 
with a fitted value of c=0.9. The results reveal a 
near-linear increase in hardness with increasing 
sin θmin. It is worth noting that disparities in the c 
values are potentially observable for the T8-6% 
sample owing to heterogeneities in the dimensions 
and the number density of precipitates. 
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Fig. 14 Hardness as function of Ddis and SFFD in T4 
sample (a), and Ddis and sin θmin in T8-3% sample (b) 
 
5 Conclusions 
 

(1) Geometric feature parameters (Ddis and 
Dmin) emerge as crucial determinants in hardness 
prediction. High-angle grain boundaries stall 
dislocation slip, leading to dislocation pileup and 
subsequent hardness increase. Conversely, low- 
angle grain boundaries do not exhibit this hardening 
effect. 

(2) A lower SFFD and a higher sin θmin are 
correlated with the increased hardness. This 
indicates the significant impact of crystallographic 
orientation on the hardness, an effect that is further 
amplified by the presence of T1 phases along 
{111}Al habit planes. This variation in hardness can 
be attributed to different T1 variants, of which the 
indenter encounters during loading. 

(3) The importance of these features varies 
depending on the presence of T1 phases. In samples 
without a significant amount of T1 phases (T4 and 
T6 samples), the feature importance ranking is Ddis 

or Dmin> SFFD > sin θmin. However, in samples with 
a large amount of T1 phases (T8-3% and T8-6% 
samples), the ranking shifts to Ddis or Dmin > sin θmin > 
SFFD. 
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基于机器学习与显微组织的 
AA2099 铝锂合金显微组织与硬度关系建模 
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3. 重庆理工大学 材料科学与工程学院，重庆 400044； 

4. 重庆大学 材料科学与工程学院，重庆 400044 

 
摘  要：提出一种将机器学习和显微组织分析相结合的方法，通过纳米压痕、X 射线衍射和电子背散射衍射(EBSD)

技术，研究 AA2099 铝锂合金显微组织与硬度的关系。利用随机森林回归(RFR)模型，基于显微组织特征对硬度

进行预测，揭示硬度的影响因素并对其重要性进行排序。研究表明，压痕到晶界的距离(Ddis)越小、最短晶粒轴(Dmin)

越短、Schmidt 因子(SFFD)越小以及{111}滑移面和表面夹角的正弦值(sin θmin)越大，硬度越高。在硬度预测中，Ddis

和Dmin为关键因素。大角度晶界能阻碍位错滑移，从而提高材料硬度。此外，晶体学取向对硬度也具有显著影响，特

别是在{111}Al惯习面上析出 T1相时。这种影响归因于在压痕加载过程中所遇到的不同类型的 T1相变体。因此，显

微组织特征的重要性排序取决于 T1 相，在 T1 相有限的样品中，排序为 Ddis 或 Dmin > SFFD > sin θmin；而在具有大

量 T1 相的样品中，排序变为 Ddis 或 Dmin > sin θmin > SFFD。 

关键词：机器学习；T1 相；硬度；铝锂合金 
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