
 

 

 Trans. Nonferrous Met. Soc. China 34(2024) 3194−3207 

 
High-throughput studies and machine learning for 

design of β titanium alloys with optimum properties 
 

Wei-min CHEN1, Jin-feng LING2, Kewu BAI3, Kai-hong ZHENG1, Fu-xing YIN1, Li-jun ZHANG4, Yong DU4 
 

1. Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, 
National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals, 
Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China; 

2. Institute of Advanced Wear & Corrosion Resistant and Functional Materials, 
Jinan University, Guangzhou 510632, China; 

3. Institute of High Performance Computing, Agency for Science, Technology and Research, 138632, Singapore; 
4. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China 

 
Received 29 March 2023; accepted 9 October 2023 

                                                                                                  
 

Abstract: Based on experimental data, machine learning (ML) models for Young’s modulus, hardness, and hot-working 
ability of Ti-based alloys were constructed. In the models, the interdiffusion and mechanical property data were high- 
throughput re-evaluated from composition variations and nanoindentation data of diffusion couples. Then, the 
Ti−(22±0.5)at.%Nb−(30±0.5)at.%Zr−(4±0.5)at.%Cr (TNZC) alloy with a single body-centered cubic (BCC) phase was 
screened in an interactive loop. The experimental results exhibited a relatively low Young’s modulus of (58±4) GPa, 
high nanohardness of (3.4±0.2) GPa, high microhardness of HV (520±5), high compressive yield strength of 
(1220±18) MPa, large plastic strain greater than 30%, and superior dry- and wet-wear resistance. This work demonstrates that 
ML combined with high-throughput analytic approaches can offer a powerful tool to accelerate the design of multicomponent 
Ti alloys with desired properties. Moreover, it is indicated that TNZC alloy is an attractive candidate for biomedical 
applications. 
Key words: high-throughput; machine learning; Ti-based alloys; diffusion couple; mechanical properties; wear 
behavior 
                                                                                                             
 
 
1 Introduction 
 

Metallic biomaterials have attracted rapidly 
increasing attention in recent decades due to good 
combination of strength and plasticity and have 
been widely used in biomedical applications, such 
as bone plates and dental roots [1−4]. Among them, 
the metallic implant materials including stainless 
steels, Co−Cr-based alloys, and α/β Ti−6Al−4V 
have certain biological toxicity for the clinical 
applications and may lead to other diseases [5−7]. 
The commercially pure (CP) Ti with the α phase 

has low hardness and bad wear resistance, greatly 
shortening its service life [8]. Moreover, the above 
clinical implants have a higher elastic modulus  
than bones or teeth, resulting in stress shielding 
phenomena, and further leading to aggravations, 
including bone instability and bone loss. Therefore, 
β Ti alloys with good biocompatibility, appropriate 
mechanical properties, and good corrosion 
resistance have been developed as alternative 
metallic implant materials [9−12]. Among them, 
Ti−Nb−Zr alloys with a suitable Young’s modulus 
have attracted extensive attention [13−15]. Alloying 
elements, such as Cr, Hf, Mo, Sn, or Ta, are often 
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added to Ti alloys to provide thermodynamically 
more stable body-centered cubic (BCC) alloy 
and/or better mechanical properties [16−20]. The 
high-throughput approaches are thus urgently 
needed as the compositional space of the β Ti alloys 
is significantly enlarged. 

The machine learning (ML) method, originally 
used for determining the structure−activity 
relationship of medicine and biological phenomena 
[21,22], is parallelly applied in exploring the 
structure−property relationships in material science 
in recent years [23−33]. The ML method has been 
used to predict the property data of arbitrary 
composition in the wide composition range of 
multicomponent Ti alloys, and then to screen the 
materials with exceptional property using a large 
number of experimental data to build the property 
databank [16,28]. Despite the growing use of ML 
models in designing the β Ti alloys, there are still 
drawbacks to its underlying design models. First, 
most ML-based material models have been focused 
on optimizing a single objective, mainly Young’s 
modulus of Ti alloys, because of its importance in 
the stress shielding effect. Although the failure of Ti 
alloys utilized in the bio-applications frequently 
occurs through a synergistic combination of 
multiple properties, only a few multi-objective ML 
models have been used to explore the crucial 
properties of the Ti alloys. As far as we know, no 
multi-objective ML has been utilized to design the 
multicomponent Ti alloys with optimum properties, 
such as low Young’s modulus, high hardness, high 
wear resistance, and good hot workability. Second, 
the physical and chemical properties of Ti alloys  
are often used as essential features of the ML 
models to improve the prediction and interpretation 
performance of the model. These models face 
difficulties in the forward and inverse design of 
multiple properties of multicomponent Ti alloys. In 
contrast, alloy compositions are often employed as 
the features, and common algorithms (i.e., the 
support vector machine and the Gaussian process) 
are used in the regression of the property data, 
which can be found in Refs. [26,28,31,34]. 

The ML application can accelerate the 
discovery of novel materials, but needs plenty of 
reliable data [35]. The data acquired by using 
traditional trial-and-error methods are limited in  
the vast composition space and huge amounts of 
research work are still needed. High-throughput 

measurements on the specimens with a relatively 
small volume are urgently developed for the 
composition-dependent property data to reduce  
the experimental cost and time. Nanoindentation 
conducted on the diffusion couple/multiple was 
proposed by ZHAO [36] and illustrated in the 
recent literature [37−39] to obtain a number of 
mechanical property data. Young’s modulus and 
hardness can be obtained by reverse analysis 
algorithms from the nanoindentation data [34,40]. 
Since wear property is determined by the hardness 
and Young’s modulus, the wear resistance of 
materials can be indirectly characterized by ratios 
of hardness to Young’s modulus [41]. Moreover, 
very recently, a hot workability parameter defined 
by the ratio of the effective diffusion coefficient to  
the cube of Young’s modulus has been utilized to 
qualitatively estimate the steady-state rate at 
intermediate temperatures [38,39]. The effective 
diffusion coefficient is obtained from the 
composition-dependent interdiffusion coefficients 
determined using a pragmatic numerical inverse 
method [42−44]. The above combinational method 
based on the diffusion couple, nanoindentation, and 
electron probe microanalysis (EPMA) techniques is 
a high-throughput analytic approach to determine 
the mechanical, diffusion, and wear properties. 
Therefore, multi-objective ML combined with high- 
throughput determination plays a very significant 
role in predicting the accurate property data for the 
multicomponent alloys with the desired mechanical, 
wear, and hot-working properties. 

The ML-type databanks built using reliable 
and high-throughput data can be used to explore the 
Ti bio-alloys with optimum mechanical and wear 
properties from the vast composition space of  
three or more metallic elements. Young’s modulus, 
hardness, and hot workability are the research 
objects in the interactive loop. First, the 
compositions with low Young’s modulus are 
selected from the investigated compositions. 
Subsequently, the compositions with high hardness 
are picked from the selected compositions. The 
final compositions with high hot workability are 
found within the existing composition data. After 
the selection, the compositions with low Young’s 
modulus, high hardness, and high hot workability 
can be found as potential Ti bio-alloys with 
excellent mechanical properties and superior wear 
resistance. 
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In this study, ML combined with high- 
throughput analytic approaches was used to 
establish the mechanical and diffusion property 
databanks of the BCC Ti−Nb−Zr− (Cr, Hf, Mo, Sn, 
and Ta) systems. Moreover, an interactive loop was 
presented to guide the rational design of the 
biomedical Ti alloys with the desired mechanical 
properties and superior wear resistance. First, 
experimental data on interdiffusion and mechanical 
properties of Ti−Nb−Zr−(Cr, Hf, Mo, Sn, and Ta) 
alloys [20,37−39] were re-evaluated by the 
pragmatic numerical inverse method and reverse 
analysis algorithms from the raw data such as 
composition profiles and nanoindentation 
information. Subsequently, the composition- 
dependent property databanks of Ti−Nb−Zr-based 
quaternary alloys were built by the ML method   
to provide Young’s modulus, hardness, and hot 
workability parameters. Finally, novel Ti alloys 
with low Young’s modulus, high hardness, and 
good hot workability parameter would be selected 
and verified by microstructure characterization and 
mechanical properties and wear behavior tests. 
 
2 Theoretical method 
 

ML method was utilized to predict the β Ti 
alloys with low modulus, high hardness (or yield 
stress), and good hot-workability. The reverse 
analysis algorithms [40] were used to extract Young’s 
modulus and hardness from the load−displacement 
(L−D) curves of quaternary diffusion couples 
[20,37−39], while a pragmatic numerical inverse 
method was used to obtain the interdiffusion 
coefficients from the corresponding composition 
gradients [42]. And then, the composition- 
dependent Young’s modulus, hardness, and hot 
workability parameters were conducted as property 
databanks of quaternary Ti alloys for training and 
testing data of ML. The composition was denoted 
as input variable, and the property data including 
Young’s modulus, hardness, and hot workability 
parameter were denoted as response variables. In 
the calculations, cross-validation method was 
adopted to randomly divide the input data into 
training and testing data. Several models such as 
linear regression (LR), support vector regression 
(SVR), and Gaussian process regression (GPR) 
were employed to build the correlation between 
composition and property. 

 
3 Experimental  
 
3.1 Sample preparation and microstructure 
characterization 

The Ti, Nb, Zr, and Cr slugs with a purity of 
more than 99.9 wt.% from ZhongNuo Advanced 
Material (Beijing) Technology Co., Ltd. (China) 
were used for the fabrication of the predicted 
Ti−22Nb−30Zr−4Cr (at.%) alloy by ML. To  
ensure compositional homogeneity, Ti−Nb−Zr−Cr 
alloy was flipped and remelted five times by arc 
melting under an Ar atmosphere using a 
non-consumable tungsten electrode (WKDHL−1, 
Opto-electronics Co., Ltd., Beijing, China), and 
then poured into a copper mold with a size of 
10 mm × 10 mm × 50 mm. Several blocks sealed 
into vacuum tubes was annealed at (1273±2) K for 
2 h in an ELF1106-type furnace (Carbolite Gero 
Co., Ltd., United Kingdom), and quenched with 
flowing water. In addition, Ti6Al4V and CP Ti  
from ZhongNuo Advanced Material (Beijing) 
Technology Co., Ltd. (China) were also used here 
for comparisons. The as-cast and solution-treated 
Ti−22Nb−30Zr−4Cr alloy, Ti6Al4V and CP Ti were 
denoted as AC-TNZC, ST-TNZC, TC4, and CP-Ti, 
respectively. The compositions were determined  
by the field emission EPMA equipped with a 
wavelength-dispersive spectrometer (WDS), and 
the phase constitutions of the above samples were 
characterized by X-ray diffraction (XRD, Ultima  
IV, Rigaku, Tokyo, Japan) with a Cu Kα radiation 
source (λ=0.1506 nm), a scanning step of 2 (°)/min, 
and a 2θ scan range of 20°−90° under an 
accelerating voltage of 40 kV and a current of 
40 mA. The morphology and structure of the 
samples were examined by using optical 
microscope (DMT3000) and scanning electron 
microscope (SEM). The analysis of electron 
backscatter diffraction (EBSD) was conducted 
using thermal field emission scanning microscope 
(JSM−IT800). Before microstructural characterization, 
the samples were ground to remove surface 
contaminations and polished, followed by 
electropolishing with HClO4, CH3(CH2)3OH, and 
CH3OH solutions at 35 V and −20 °C for 90 s to 
reveal the grain boundaries. 
 
3.2 Mechanical property tests 

The microhardness tests were performed in a 
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microhardness tester (HXD−1000TMC, Taiming 
Inc., Shanghai, China) with an indentation load of 
200 g and dwell time of 15 s. At least 9 indentations 
were tested on each sample surface and the average 
values were taken to ensure the accuracy. The 
nanoindentation tests combined with reverse 
analysis algorithms were conducted by a nano- 
indenter (Keysight G200, Agilent Technology,  
USA) with an in-depth control (2000 nm) to obtain 
the Young’s modulus and hardness. The measured 
mechanical property data were expressed as means± 
standard deviation (SD). Compressive tests were 
carried out on an INSTRON universal materials 
testing machine with a cross-head speed of 0.5  
and 1 mm/min at room temperature, respectively. 
Square cylinder compression specimens were 
prepared according to the GB/T 7314 standard by 
considering the ratio of diameter to the length 
between 1.5 and 2. The average values of three 
measurements were considered for compressive 
property. 
 
3.3 Wear property tests 

The wear properties of the samples with the 
size of 10 mm × 10 mm × 5 mm were measured on 
a multi-functional tribometer (MFT−5000, Rtec 
instruments, Co., Ltd., USA) under the ambient 
atmospheric and simulated body fluid (SBF, pH= 
7.4) solution conditions, respectively. SBF solution 
was composed of KCl (0.225 g/L), K2HPO4·3H2O 
(0.231 g/L), MgCl2·6H2O (0.311 g/L), CaCl2 

(0.292 g/L), Na2SO4 (0.072 g/L), Tris (6.118 g/L), 
NaCl (8.035 g/L), NaHCO3 (0.355 g/L), and 
1.0 mol/L HCl (39 mL) [45]. Zirconia ceramic  
balls with a diameter of 5 mm were used as the 
couple-pair. The parameters used in this experiment 
were a normal force of 2 N, a sliding time of 1 h 
and sliding frequency of 1 Hz. Before the wear test, 
the samples were mechanically ground to 5 μm by 
waterproof silicon carbide sandpaper, and polished 
to a mirror-like surface with silica suspension for 
ensuring similar surface roughness. The coefficient 
of friction (COF) was recorded during the test. The 
wear rate was determined by the ratio of wear 
volume loss to sliding distance. The wear volume 
was calculated by two-dimensional (2D) curves of 
the wear mark multiplied by the total length of  
wear mark, which can be obtained from the three- 
dimensional (3D) wear morphology. And the sliding 
distance was equal to the product of sliding distance 

per second and sliding time (here, the sliding time 
was set to be 1 h). More than or equal to 3 sliding 
experiments were repeated for each sample. After 
that, the wear morphologies of samples were 
evaluated by using the SEM. 
   
4 Results and discussion 
 
4.1 High-throughput determinations of 

experimental data from diffusion couples 
One of the fundamental assumptions of the 

current ML method is the availability of large   
and uniformly sampled (or balanced) training   
data. Unfortunately, the balanced data in the vast 
composition space of β Ti alloys are exceedingly 
rare. To overcome this issue, the experimental 
information reported in the previous investigations 
[20,37−39], including the L−D curves and 
composition versus distance profiles of the 
Ti−Nb−Zr−(Cr, Hf, Mo, Sn, and Ta) diffusion 
couples, was utilized to provide the mechanical and 
diffusion properties to establish the property 
databanks. It is noted that Ti−Nb−Zr−(Cr, Hf, Mo, 
Sn, and Ta) diffusion couples within the single β 
phase were used to produce the experimental data 
of β Ti alloys. The reverse analysis algorithms [40] 
were used to reassess Young’s modulus and 
hardness of quaternary Ti−Nb−Zr−(Cr, Hf, Mo, Sn, 
and Ta) alloys with a fixed Poisson’s ratio of 0.3 
from the corresponding L−D curves. It was found 
that one diffusion couple could provide dozens of 
indentations with different compositions. Thus, 
1290 sets of mechanical properties could be 
obtained from a series of Ti−Nb−Zr-based diffusion 
couples. Moreover, the pragmatic numerical inverse 
method [42] was used to determine the quaternary 
interdiffusion coefficients from the composition 
distribution profiles along the diffusion direction. 
The main interdiffusion coefficients of the solute 
element with the largest atomic radius were then 
obtained as effective diffusion coefficients for the 
compositions corresponding to the aforementioned 
indentations to calculate the hot workability 
parameter. Figure 1 shows the variations of Young’s 
modulus, hardness, and hot workability parameters 
for the quaternary Ti−Nb−Zr−(Cr, Hf, Mo, Sn, and 
Ta) alloys. It is seen that Young’s modulus, hardness, 
and hot workability parameter were closely related 
to the alloy composition. Solute elements, such as 
Hf, Nb, Sn, Ta, and Zr, can increase the equilibrium  
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Fig. 1 Experimental elastic modulus (a), hardness (b), 
and hot workability parameter (c) of quaternary Ti−Nb− 
Zr−(Cr, Hf, Mo, Sn, and Ta) alloys re-evaluated from 
literature data [21−24] 
 
lattice constant of Ti alloys, thus decreasing their 
Young’s moduli. Due to solid solution strengthening, 
the hardness of Ti alloys increases with increasing 
the solute element contents. The high Young’s 

modulus, low effective diffusion coefficient, or both 
may cause the low hot workability parameter. The 
low diffusion coefficients of Nb, Hf, Sn, and Ta can 
reduce the hot workability parameter of Ti alloys. In 
contrast, the high diffusion coefficient of Zr has a 
positive effect on improving the hot workability. 
The composition-dependent Young’s modulus, 
hardness, and hot workability parameters were used 
as the input data in the subsequent ML modeling. 

The property databanks of Ti-rich Ti−Nb−Zr− 
(Cr, Hf, Mo, Sn, and Ta) systems were built using 
the ML, and the Young’s modulus, hardness, and 
hot workability parameter were predicted. The root 
mean squared errors (RMSEs) of LR, SVR, and 
GPR models are presented in Fig. 2. The RMSE of 
the GPR model for Young’s modulus, hardness, and 
hot workability parameter was the lowest, and the 
LR model had a higher RMSE than the SVR model. 
This indicates that the GPR model is suitable for 
constructing ML property databanks. The possible 
reason may be the practical advantage of the GPR 
model providing uncertain estimations on the 
predictions for probabilistic modeling purposes. 
Moreover, the GPR model is a simple yet powerful 
tool for dealing with a large set of multi-variable 
sample data, which can also be easy to maintain and 
update the available sample data [46]. The GPR 
model results are illustrated in Fig. 2, and are 
compared with the experimental data obtained  
from the high-throughput technique. It is shown 
that the agreements between ML predictions and 
experimental data are excellent. The presently 
established property databanks were then used by 
interactive loops to select the Ti alloys with 
exceptional properties. Because more than 30 at.% 
of the Nb solute element can be necessary to 
stabilize the β phase of Ti alloys [47] and Nb is a 
more efficient BCC stabilizer in the Ti matrix than 
Zr, the Nb and Zr contents should be within the 
composition range of 15−35 at.% in calculations, 
respectively. In the first loop, for all the composition 
points with a composition interval of 0.5 at.% (the 
maximum content of the third solute element was 
10 at.%), the alloys should have Young’s modulus 
of lower than 63 GPa (about 55% of Young’s 
modulus of CP-Ti [48] and TC4 [49]). Then, the 
alloys were utilized in the second selection. For  
the retained alloys, the ones with a hardness of 
higher than 3.2 GPa (slightly higher than hardness 
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Fig. 2 Root mean squared errors (RMSEs) of three regression models for Young’s modulus (a), hardness (c), and hot 
workability parameter (e) of Ti-rich Ti−Nb−Zr−(Cr, Hf, Mo, Sn, and Ta) alloys, and comparisons between experimental 
Young’s modulus (b), hardness (d), and hot workability parameter (f) and predicted data by using ML method 
 
of CP-Ti [48]) were conserved in the second   
loop. The last loop achieved the targets with     
the hot workability parameter greater than 
1×10−19 m2·s−1·GPa−3 (slightly higher than the 
parameter of the TC4 alloy [38]). Figure 3 shows 
the screening process based on the ML-type 
property databanks of Ti-rich Ti−Nb−Zr−(Cr, Hf, 
Mo, Sn, and Ta) systems. It can be seen that many 

alloys have a low Young’s modulus, but limited 
alloys can have excellent mechanical and process- 
ability properties. After the selection, compositions 
with exceptional properties were predicted. 
Therefore, final composition of Ti−(22±0.5)at.%Nb− 
(30±0.5)at.%Zr−(4±0.5)at.%Cr could be obtained, 
with the predicted Young’s modulus of 62.56 GPa, 
the hardness of 3.23 GPa, and the hot workability 
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Fig. 3 Alloy compositions satisfying requirements of low 
Young’s modulus (a), high hardness (b), and high hot 
workability parameter (c) in Ti-rich Ti−Nb−Zr−(Cr, Hf, 
Mo, Sn, and Ta) systems 
 
parameter of 1.04×10−19 m2·s−1·GPa−3. This target 
alloy predicted from the ML was very close to the 
alloy selected using Young’s modulus databank [20]. 
This indicates that both the ML and CALculation of 

PHAse Diagrams (CALPHAD) methods could 
provide similar predicted results for the same 
requirements. It is noted that the CALPHAD-  
type property databank always suffers from the 
fundamental model parameters used as a kind of 
input data. For example, the property data of BCC 
Zr have an important effect on the databank 
reliability, but they are not accurately measured or 
computed due to the α→β phase transition. Thus, 
the accurate property data of pure elements and 
binary and ternary alloys are urgently needed for 
the quaternary system, significantly restricting the 
establishment of CALPHAD-type databanks. ML 
approach allows the computation of the property 
data directly from the existing data and has no 
special input data. The compositions of quaternary 
alloys were independent variables in the present 
input data and were used to predict the properties in 
the quaternary Ti−Nb−Zr-based systems. Thermo- 
dynamic and phenomenological parameters such as 
melting temperature, mixing enthalpy, Pauling 
electronegativity difference, and valence electron 
concentration can be converted from the 
composition information combined with the end- 
members of pure metals [32]. Then, they can be 
utilized as features to discover the relation with the 
properties. Once the intrinsic relationships between 
these key features and properties are established, 
the properties of quinary and higher-order element 
alloys may be well predicted. The recently proposed 
framework could accelerate the exploration of 
multicomponent alloys with exceptional properties 
by combining high-throughput calculations and  
the active learning method in Ref. [50]. Thus, the 
active learning method based on high-throughput 
determinations and high-throughput calculations 
can be very helpful in constructing the desired 
databank and rapidly screen the target alloys. It is 
noted that both the ML and CALPHAD methods 
can predict better results from more experimental 
data. Quaternary Ti−(22±0.5)at.%Nb−(30±0.5)at.%Zr− 
(4±0.5)at.%Cr alloy was selected from the present 
ML predictions. 
 
4.2 Microstructure and mechanical properties 

Figure 4(a) shows the XRD patterns of 
AC-TNZC, ST-TNZC, TC4, and CP-Ti. It can be 
seen that the TC4 alloy was composed of α and β 
phases and CP-Ti had a single α phase. Importantly, 
the main peaks of the β phase at 2θ of 38.7°, 55.9°,  
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Fig. 4 XRD patterns of CP Ti and Ti alloys (a), and 
EBSD maps of AC-TNZC (b) and ST-TNZC (c) alloys 
 
70.1°, and 80.1° were detected in the AC- and 
ST-TNZC alloys, corresponding to (110)β, (200)β, 
(211)β and (220)β, respectively. It is worth noting 
that, compared with the β phase in the TC4 alloy, 
the positions of the β phase peaks related to the 
TNZC alloys shifted as a whole toward a lower 
angle. This is attributed to the increase in the lattice 
constants with increasingly larger Zr and Nb atoms. 
The EBSD maps of TNZC alloys in the as-cast and 
solution treated states are presented in Figs. 4(b, c). 
It is shown that both two specimens were composed 
of equiaxed grains, and the distributions of their 
grain orientation were random. 

The microhardness, Young’s modulus, and 

hardness of the pure Ti and Ti alloys were 
determined from the micro- and nanoindentation 
tests, as listed in Table 1. It can be seen that the 
TNZC alloy exhibited the highest hardness value of 
about HV 519−535, and the microhardness of the 
TNZC alloy was nearly triple that of the CP-Ti and 
twice that of the TC4 alloy. The results indicated 
that the microhardness of Ti alloys with the β phase 
was higher than that of Ti alloys with the α phase, 
which agrees well with the results in Ref. [51]. The 
Young’s modulus and hardness of CP-Ti and TC4 
alloy obtained from the nanoindentation agreed 
with the reference data (Young’s modulus and 
hardness of CP-Ti were within the range of 108− 
131 GPa and 1.9−3.8 GPa [48], respectively, and 
Young’s modulus and hardness of TC4 alloy were 
(121±3) GPa and (5±0.1) GPa [49], respectively). 
The measured data of the TNZC alloy were in 
excellent agreement with the ML results (62.56 GPa 
for Young’s modulus and 3.23 GPa for hardness). 
Moreover, the compressive stress−strain curves of 
the pure Ti and Ti alloys at room temperature are 
shown in Fig. 5. It can be seen that the TNZC alloy 
and CP-Ti were not fractured when the compressive 
strain was up to 50%, exhibiting their good 
plasticity. The 0.2% proof compressive yield 
strengths (σ0.2) of AC-TNZC, ST-TNZC, TC4,   
and CP-Ti were (1202.2±13.8), (1220.3±17.9), 
(891.1±35.1), and (340.1±16.4) MPa, respectively. 
The σ0.2 values of AC- and ST-TNZC were very 
close, and the result of the TNZC alloy was about 
35% and 2.5 times that of TC4 and CP-Ti, 
respectively. 
 
Table 1 Microhardness, Young’s modulus, and hardness 
of CP-Ti and Ti alloys measured from micro- and nano- 
indentation tests 

Sample Microhardness 
(HV) 

Hardness/ 
GPa 

Young’s 
modulus/GPa 

CP-Ti 166.9±20.6 1.9±0.2 123±9 

TC4 308.8±18.7 3.1±0.2 115±5 

AC-TNZC 535.6±22.5 3.5±0.2 63±2 

ST-TNZC 519.6±15.5 3.4±0.2 58±4 

 
4.3 Wear property 

Figures 6(a, b) display the wear volume and 
wear rate of CP-Ti and Ti alloys under both dry and 
wet sliding conditions. It can be intuitively seen that 
the dry wear volume loss or wear rate of the 
AC-TNZC alloy was only half that of the TC4 alloy 
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Fig. 5 Compression stress−strain curves (a) and corresponding compressive yield strengths (b) of CP-Ti and Ti alloys 
 

 
Fig. 6 Wear volume (a) and wear rate (b) of CP-Ti and Ti alloys under dry sliding and wet sliding in SBF solution, 
two-dimension wear track profiles of CP-Ti and Ti alloys under dry (c) and wet (d) sliding, and relationships between 
dry (e) or wet (f) wear rates and ratios of hardness to Young’s modulus of CP-Ti and Ti alloys 
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and slightly lower than the value of ST-TNZC alloy, 
while CP Ti had the highest wear volume loss and 
wear rate. This indicates that the TNZC alloy 
exhibited the highest wear resistance under the dry 
sliding condition. Similar results were obtained for 
the wet condition. The 2D wear track profiles of 
CP-Ti and Ti alloys are also shown in Figs. 6(c, d). 
It is worth noting that the TNZC alloy had the 
shallowest and narrowest 2D wear track profiles 
under both dry and wet reciprocating friction 
environments. The lower the wear volume of the 
samples was, the shallower the wear profiles were. 
Intriguingly, the wear track profiles of the TC4 
alloy under the sliding in the SBF solution tended to 
be deeper than those in the dry sliding condition. 
The ratios of hardness (H) to Young’s modulus (E) 
(i.e., H/E and H 

3/E2) of CP-Ti and Ti alloys are 
plotted in Figs. 6(e, f), along with the corresponding 
wear rates. There was an inverse correlation 
between the wear rates and hardness-to-elastic 
modulus ratios. Although the hardness of the TC4 
alloy was close to that of the TNZC alloy, the high 
Young’s modulus led to the high wear rate of the 
TC4 alloy. In addition, the wear rate of the TC4 
alloy during sliding in the SBF solution was larger 
than that during the dry sliding, which may be 
caused by the interplay between wear and corrosion. 
The H/E and H 

3/E2 ratios can be utilized to reflect 
the wear property of materials, consistent with   
the descriptions in Refs. [14,41]. Therefore, this 
qualitative method lays a foundation for selecting 
bio-alloys with excellent wear resistance. 

The COF curves for CP-Ti and Ti alloys during 
the sliding are illustrated in Figs. 7(a, b). It is shown 
that the COF value under wet sliding in the SBF 
solution had a larger fluctuation than that under dry 
sliding. This is attributed to the lubrication effect of 
the SBF solution. Moreover, the COFs for CP-Ti 
and Ti alloys are shown in Fig. 7(c). The results 
demonstrate that the COFs of CP-Ti and Ti alloys 
could be reduced due to the lubrication of the SBF 
solution. In addition, the COF value of the TNZC 
alloy was slightly higher than that of CP-Ti and 
TC4, indicating that CP-Ti and TC4 alloy had a 
better lubrication effect. Figure 8 shows the SEM 
morphologies of wear scars for CP-Ti and Ti alloys 
under both the dry and wet sliding. Typical wear 
features, including plowing grooves, microcracks, 
adhesion, and delamination could be found. After 
the solution treatment, the TNZC alloy had the 

 

 
Fig. 7 Curves of COF for CP-Ti and Ti alloys during  
dry (a) and wet (b) sliding, and measured coefficients  
of friction for CP-Ti and Ti alloys (c) 
 
shallowest plowing grooves and the least surface 
delamination, corresponding to the lowest wear 
volume loss and wear rate. This is caused by the 
low Young’s modulus and relatively high hardness. 
Owing to the combination of wear and corrosion, 
the plowing grooves of TC4 got deeper, and its 
delamination was more significant under the wet 
wear condition. 
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Fig. 8 SEM images of worn scar surfaces of CP-Ti and Ti alloys under dry and wet sliding conditions 
 
 
5 Conclusions 
 

(1) The property databanks of the Ti−Nb−Zr- 
based quaternary alloys were successfully 
established by using the ML method. A Ti−(22± 
0.5)at.%Nb−(30±0.5)at.%Zr−(4±0.5)at.%Cr (TNZC) 
alloy was selected from the built ML databanks. 
The predicted elastic modulus, hardness, and    
hot workability parameter of TNZC alloy were 
62.56 GPa, 3.23 GPa, and 1.04×10−19 m2·s−1·GPa−3, 
respectively. 

(2) TNZC alloy had only β phase and equiaxed 
grains with random grain-orientation. A dendrite 
structure in the arc-melted TNZC alloy disappeared 
after solution annealing. TNZC alloy had an 

optimal combination of a relatively low Young’s 
modulus of (57.5±4.1) GPa, high nanohardness of 
(3.4±0.2) GPa, high microhardness of HV (520±5), 
high compressive yield strength of (1220±18) MPa, 
and large plastic strain of greater than 30% 
according to nanoindentation, microhardness, and 
compression tests. 

(3) TNZC alloy had a superior wear resistance 
under both dry and wet wear conditions to CP-Ti 
and TC4, and an inverse correlation between the 
wear rates and hardness-to-Young’s modulus   
ratio was verified. The present results indicated  
that TNZC alloy had excellent comprehensive 
properties, which could be used as the candidate  
to replace traditionally CP-Ti and TC4 alloy in 
biomedical applications. 
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用于设计具有最佳性能 β钛合金的高通量研究和机器学习 
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摘  要：基于实验数据构建了钛基合金杨氏模量、硬度和热加工能力的机器学习模型。首先，从扩散偶的成分变

化和纳米压痕数据中重新高通量评估互扩散和力学性能数据。然后，通过所构建的模型在交互循环中筛选出一种

具有单一 BCC 相的 Ti−(22±0.5)%Nb−(30±0.5)%Zr−(4±0.5)%Cr (摩尔分数)(TNZC)合金。并且，该合金具有相对较

低的杨氏模量((58±4) GPa)、高纳米硬度((3.4±0.2) GPa)、高显微硬度(HV (520±5))、高压缩屈服强度((1220±18) MPa)、

大于 30%的大塑性应变以及优异的干磨损和湿磨损性能。结果表明，机器学习与高通量分析方法相结合可以作为

一个强大的工具来加速设计具有优异性能的多元钛合金，同时也表明 TNZC 合金是生物医学应用中一种具有吸引

力的候选材料。 

关键词：高通量；机器学习；Ti 基合金；扩散偶；力学性能；磨损行为 
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