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Abstract: Based on experimental data, machine learning (ML) models for Young’s modulus, hardness, and hot-working
ability of Ti-based alloys were constructed. In the models, the interdiffusion and mechanical property data were high-
throughput re-evaluated from composition variations and nanoindentation data of diffusion couples. Then, the
Ti—(2240.5)at.%Nb—(30+0.5)at.%Zr—(4+0.5)at.%Cr (TNZC) alloy with a single body-centered cubic (BCC) phase was
screened in an interactive loop. The experimental results exhibited a relatively low Young’s modulus of (58+4) GPa,
high nanohardness of (3.4+0.2) GPa, high microhardness of HV (520+5), high compressive yield strength of
(1220+18) MPa, large plastic strain greater than 30%, and superior dry- and wet-wear resistance. This work demonstrates that
ML combined with high-throughput analytic approaches can offer a powerful tool to accelerate the design of multicomponent
Ti alloys with desired properties. Moreover, it is indicated that TNZC alloy is an attractive candidate for biomedical
applications.
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has low hardness and bad wear resistance, greatly

1 Introduction

Metallic biomaterials have attracted rapidly
increasing attention in recent decades due to good
combination of strength and plasticity and have
been widely used in biomedical applications, such
as bone plates and dental roots [1-4]. Among them,
the metallic implant materials including stainless
steels, Co—Cr-based alloys, and a/ff Ti—6Al-4V
have certain biological toxicity for the clinical
applications and may lead to other diseases [5—7].
The commercially pure (CP) Ti with the a phase

shortening its service life [8]. Moreover, the above
clinical implants have a higher elastic modulus
than bones or teeth, resulting in stress shielding
phenomena, and further leading to aggravations,
including bone instability and bone loss. Therefore,
[ Ti alloys with good biocompatibility, appropriate
mechanical properties, and good corrosion
resistance have been developed as alternative
metallic implant materials [9—12]. Among them,
Ti—Nb—Zr alloys with a suitable Young’s modulus
have attracted extensive attention [13—15]. Alloying
elements, such as Cr, Hf, Mo, Sn, or Ta, are often
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added to Ti alloys to provide thermodynamically
more stable body-centered cubic (BCC) alloy
and/or better mechanical properties [16—20]. The
high-throughput approaches are thus urgently
needed as the compositional space of the £ Ti alloys
is significantly enlarged.

The machine learning (ML) method, originally
used for determining the structure—activity
relationship of medicine and biological phenomena
[21,22], is parallelly applied in exploring the
structure—property relationships in material science
in recent years [23—33]. The ML method has been
used to predict the property data of arbitrary
composition in the wide composition range of
multicomponent Ti alloys, and then to screen the
materials with exceptional property using a large
number of experimental data to build the property
databank [16,28]. Despite the growing use of ML
models in designing the £ Ti alloys, there are still
drawbacks to its underlying design models. First,
most ML-based material models have been focused
on optimizing a single objective, mainly Young’s
modulus of Ti alloys, because of its importance in
the stress shielding effect. Although the failure of Ti
alloys utilized in the bio-applications frequently
occurs through a synergistic combination of
multiple properties, only a few multi-objective ML
models have been used to explore the crucial
properties of the Ti alloys. As far as we know, no
multi-objective ML has been utilized to design the
multicomponent Ti alloys with optimum properties,
such as low Young’s modulus, high hardness, high
wear resistance, and good hot workability. Second,
the physical and chemical properties of Ti alloys
are often used as essential features of the ML
models to improve the prediction and interpretation
performance of the model. These models face
difficulties in the forward and inverse design of
multiple properties of multicomponent Ti alloys. In
contrast, alloy compositions are often employed as
the features, and common algorithms (i.e., the
support vector machine and the Gaussian process)
are used in the regression of the property data,
which can be found in Refs. [26,28,31,34].

The ML application can accelerate the
discovery of novel materials, but needs plenty of
reliable data [35]. The data acquired by using
traditional trial-and-error methods are limited in
the vast composition space and huge amounts of
research work are still needed. High-throughput

measurements on the specimens with a relatively
small volume are urgently developed for the
composition-dependent property data to reduce
the experimental cost and time. Nanoindentation
conducted on the diffusion couple/multiple was
proposed by ZHAO [36] and illustrated in the
recent literature [37—39] to obtain a number of
mechanical property data. Young’s modulus and
hardness can be obtained by reverse analysis
algorithms from the nanoindentation data [34,40].
Since wear property is determined by the hardness
and Young’s modulus, the wear resistance of
materials can be indirectly characterized by ratios
of hardness to Young’s modulus [41]. Moreover,
very recently, a hot workability parameter defined
by the ratio of the effective diffusion coefficient to
the cube of Young’s modulus has been utilized to
qualitatively estimate the steady-state rate at
intermediate temperatures [38,39]. The effective
diffusion coefficient is obtained from the
composition-dependent interdiffusion coefficients
determined using a pragmatic numerical inverse
method [42—44]. The above combinational method
based on the diffusion couple, nanoindentation, and
electron probe microanalysis (EPMA) techniques is
a high-throughput analytic approach to determine
the mechanical, diffusion, and wear properties.
Therefore, multi-objective ML combined with high-
throughput determination plays a very significant
role in predicting the accurate property data for the
multicomponent alloys with the desired mechanical,
wear, and hot-working properties.

The ML-type databanks built using reliable
and high-throughput data can be used to explore the
Ti bio-alloys with optimum mechanical and wear
properties from the vast composition space of
three or more metallic elements. Young’s modulus,
hardness, and hot workability are the research
objects in the interactive loop. First, the
compositions with low Young’s modulus are
selected from the investigated compositions.
Subsequently, the compositions with high hardness
are picked from the selected compositions. The
final compositions with high hot workability are
found within the existing composition data. After
the selection, the compositions with low Young’s
modulus, high hardness, and high hot workability
can be found as potential Ti bio-alloys with
excellent mechanical properties and superior wear
resistance.
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In this study, ML combined with high-
throughput analytic approaches was used to
establish the mechanical and diffusion property
databanks of the BCC Ti—Nb—Zr— (Cr, Hf, Mo, Sn,
and Ta) systems. Moreover, an interactive loop was
presented to guide the rational design of the
biomedical Ti alloys with the desired mechanical
properties and superior wear resistance. First,
experimental data on interdiffusion and mechanical
properties of Ti—Nb—Zr—(Cr, Hf, Mo, Sn, and Ta)
alloys [20,37-39] were re-evaluated by the
pragmatic numerical inverse method and reverse
analysis algorithms from the raw data such as
composition  profiles and  nanoindentation
information. ~ Subsequently, the composition-
dependent property databanks of Ti—Nb—Zr-based
quaternary alloys were built by the ML method
to provide Young’s modulus, hardness, and hot
workability parameters. Finally, novel Ti alloys
with low Young’s modulus, high hardness, and
good hot workability parameter would be selected
and verified by microstructure characterization and
mechanical properties and wear behavior tests.

2 Theoretical method

ML method was utilized to predict the g Ti
alloys with low modulus, high hardness (or yield
stress), and good hot-workability. The reverse
analysis algorithms [40] were used to extract Young’s
modulus and hardness from the load—displacement
(L—D) curves of quaternary diffusion couples
[20,37-39], while a pragmatic numerical inverse
method was used to obtain the interdiffusion
coefficients from the corresponding composition
gradients [42]. And then, the composition-
dependent Young’s modulus, hardness, and hot
workability parameters were conducted as property
databanks of quaternary Ti alloys for training and
testing data of ML. The composition was denoted
as input variable, and the property data including
Young’s modulus, hardness, and hot workability
parameter were denoted as response variables. In
the calculations, cross-validation method was
adopted to randomly divide the input data into
training and testing data. Several models such as
linear regression (LR), support vector regression
(SVR), and Gaussian process regression (GPR)
were employed to build the correlation between
composition and property.

3 Experimental

3.1 Sample preparation and microstructure
characterization

The Ti, Nb, Zr, and Cr slugs with a purity of
more than 99.9 wt.% from ZhongNuo Advanced
Material (Beijing) Technology Co., Ltd. (China)
were used for the fabrication of the predicted
Ti—22Nb—30Zr—4Cr (at.%) alloy by ML. To
ensure compositional homogeneity, Ti—Nb—Zr—Cr
alloy was flipped and remelted five times by arc
melting under an Ar atmosphere using a
non-consumable tungsten electrode (WKDHL-1,
Opto-electronics Co., Ltd., Beijing, China), and
then poured into a copper mold with a size of
10 mm x 10 mm % 50 mm. Several blocks sealed
into vacuum tubes was annealed at (1273+2) K for
2h in an ELF1106-type furnace (Carbolite Gero
Co., Ltd., United Kingdom), and quenched with
flowing water. In addition, Ti6Al4V and CP Ti
from ZhongNuo Advanced Material (Beijing)
Technology Co., Ltd. (China) were also used here
for comparisons. The as-cast and solution-treated
Ti—22Nb—30Zr—4Cr alloy, Ti6Al4V and CP Ti were
denoted as AC-TNZC, ST-TNZC, TC4, and CP-Tij,
respectively. The compositions were determined
by the field emission EPMA equipped with a
wavelength-dispersive spectrometer (WDS), and
the phase constitutions of the above samples were
characterized by X-ray diffraction (XRD, Ultima
IV, Rigaku, Tokyo, Japan) with a Cu K, radiation
source (41=0.1506 nm), a scanning step of 2 (°)/min,
and a 260 scan range of 20°-90° under an
accelerating voltage of 40kV and a current of
40 mA. The morphology and structure of the
samples were examined by using optical
microscope (DMT3000) and scanning electron
microscope (SEM). The analysis of electron
backscatter diffraction (EBSD) was conducted
using thermal field emission scanning microscope
(JSM-IT800). Before microstructural characterization,
the samples were ground to remove surface
contaminations and polished, followed by
electropolishing with HClO4, CH3(CH,)3OH, and
CH;0H solutions at 35V and —20 °C for 90's to
reveal the grain boundaries.

3.2 Mechanical property tests
The microhardness tests were performed in a
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microhardness tester (HXD—1000TMC, Taiming
Inc., Shanghai, China) with an indentation load of
200 g and dwell time of 15 s. At least 9 indentations
were tested on each sample surface and the average
values were taken to ensure the accuracy. The
nanoindentation tests combined with reverse
analysis algorithms were conducted by a nano-
indenter (Keysight G200, Agilent Technology,
USA) with an in-depth control (2000 nm) to obtain
the Young’s modulus and hardness. The measured
mechanical property data were expressed as means+
standard deviation (SD). Compressive tests were
carried out on an INSTRON universal materials
testing machine with a cross-head speed of 0.5
and 1 mm/min at room temperature, respectively.
Square cylinder compression specimens were
prepared according to the GB/T 7314 standard by
considering the ratio of diameter to the length
between 1.5 and 2. The average values of three
measurements were considered for compressive

property.

3.3 Wear property tests

The wear properties of the samples with the
size of 10 mm x 10 mm x 5 mm were measured on
a multi-functional tribometer (MFT—5000, Rtec
instruments, Co., Ltd.,, USA) under the ambient
atmospheric and simulated body fluid (SBF, pH=
7.4) solution conditions, respectively. SBF solution
was composed of KCI (0.225 g/L), KoHPO4-3H,O
(0.231 g/L), MgCl,:6H.O (0.311 g/L), CaCl,
(0.292 g/L), Na»SO4 (0.072 g/L), Tris (6.118 g/L),
NaCl (8.035¢g/L), NaHCO; (0.355¢g/L), and
1.0 mol/L. HCI (39 mL) [45]. Zirconia ceramic
balls with a diameter of 5 mm were used as the
couple-pair. The parameters used in this experiment
were a normal force of 2 N, a sliding time of 1h
and sliding frequency of 1 Hz. Before the wear test,
the samples were mechanically ground to 5 pm by
waterproof silicon carbide sandpaper, and polished
to a mirror-like surface with silica suspension for
ensuring similar surface roughness. The coefficient
of friction (COF) was recorded during the test. The
wear rate was determined by the ratio of wear
volume loss to sliding distance. The wear volume
was calculated by two-dimensional (2D) curves of
the wear mark multiplied by the total length of
wear mark, which can be obtained from the three-
dimensional (3D) wear morphology. And the sliding
distance was equal to the product of sliding distance

per second and sliding time (here, the sliding time
was set to be 1 h). More than or equal to 3 sliding
experiments were repeated for each sample. After
that, the wear morphologies of samples were
evaluated by using the SEM.

4 Results and discussion

4.1 High-throughput determinations of
experimental data from diffusion couples

One of the fundamental assumptions of the
current ML method is the availability of large
and uniformly sampled (or balanced) training
data. Unfortunately, the balanced data in the vast
composition space of f Ti alloys are exceedingly
rare. To overcome this issue, the experimental
information reported in the previous investigations
[20,37-39], including the L—D curves and
composition versus distance profiles of the
Ti—Nb—Zr—(Cr, Hf, Mo, Sn, and Ta) diffusion
couples, was utilized to provide the mechanical and
diffusion properties to establish the property
databanks. It is noted that Ti—Nb—Zr—(Cr, Hf, Mo,
Sn, and Ta) diffusion couples within the single S
phase were used to produce the experimental data
of S Ti alloys. The reverse analysis algorithms [40]
were used to reassess Young’s modulus and
hardness of quaternary Ti—Nb—Zr—(Cr, Hf, Mo, Sn,
and Ta) alloys with a fixed Poisson’s ratio of 0.3
from the corresponding L—D curves. It was found
that one diffusion couple could provide dozens of
indentations with different compositions. Thus,
1290 sets of mechanical properties could be
obtained from a series of Ti—Nb—Zr-based diffusion
couples. Moreover, the pragmatic numerical inverse
method [42] was used to determine the quaternary
interdiffusion coefficients from the composition
distribution profiles along the diffusion direction.
The main interdiffusion coefficients of the solute
element with the largest atomic radius were then
obtained as effective diffusion coefficients for the
compositions corresponding to the aforementioned
indentations to calculate the hot workability
parameter. Figure 1 shows the variations of Young’s
modulus, hardness, and hot workability parameters
for the quaternary Ti—Nb—Zr—(Cr, Hf, Mo, Sn, and
Ta) alloys. It is seen that Young’s modulus, hardness,
and hot workability parameter were closely related
to the alloy composition. Solute elements, such as
Hf, Nb, Sn, Ta, and Zr, can increase the equilibrium
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Fig. 1 Experimental elastic modulus (a), hardness (b),
and hot workability parameter (c) of quaternary Ti—Nb—
Zr—(Cr, Hf, Mo, Sn, and Ta) alloys re-evaluated from
literature data [21—24]

lattice constant of Ti alloys, thus decreasing their
Young’s moduli. Due to solid solution strengthening,
the hardness of Ti alloys increases with increasing
the solute element contents. The high Young’s
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modulus, low effective diffusion coefficient, or both
may cause the low hot workability parameter. The
low diffusion coefficients of Nb, Hf, Sn, and Ta can
reduce the hot workability parameter of Ti alloys. In
contrast, the high diffusion coefficient of Zr has a
positive effect on improving the hot workability.
The composition-dependent Young’s modulus,
hardness, and hot workability parameters were used
as the input data in the subsequent ML modeling.
The property databanks of Ti-rich Ti—-Nb—Zr—
(Cr, Hf, Mo, Sn, and Ta) systems were built using
the ML, and the Young’s modulus, hardness, and
hot workability parameter were predicted. The root
mean squared errors (RMSEs) of LR, SVR, and
GPR models are presented in Fig. 2. The RMSE of
the GPR model for Young’s modulus, hardness, and
hot workability parameter was the lowest, and the
LR model had a higher RMSE than the SVR model.
This indicates that the GPR model is suitable for
constructing ML property databanks. The possible
reason may be the practical advantage of the GPR
model providing uncertain estimations on the
predictions for probabilistic modeling purposes.
Moreover, the GPR model is a simple yet powerful
tool for dealing with a large set of multi-variable
sample data, which can also be easy to maintain and
update the available sample data [46]. The GPR
model results are illustrated in Fig. 2, and are
compared with the experimental data obtained
from the high-throughput technique. It is shown
that the agreements between ML predictions and
experimental data are excellent. The presently
established property databanks were then used by
interactive loops to select the Ti alloys with
exceptional properties. Because more than 30 at.%
of the Nb solute element can be necessary to
stabilize the f phase of Ti alloys [47] and Nb is a
more efficient BCC stabilizer in the Ti matrix than
Zr, the Nb and Zr contents should be within the
composition range of 15—35 at.% in calculations,
respectively. In the first loop, for all the composition
points with a composition interval of 0.5 at.% (the
maximum content of the third solute element was
10 at.%), the alloys should have Young’s modulus
of lower than 63 GPa (about 55% of Young’s
modulus of CP-Ti [48] and TC4 [49]). Then, the
alloys were utilized in the second selection. For
the retained alloys, the ones with a hardness of
higher than 3.2 GPa (slightly higher than hardness
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Young’s modulus (b), hardness (d), and hot workability parameter (f) and predicted data by using ML method

of CP-Ti [48]) were conserved in the second
loop. The last loop achieved the targets with
the hot workability parameter greater than
1107 m?-s7!-GPa™ (slightly higher than the
parameter of the TC4 alloy [38]). Figure 3 shows
the screening process based on the ML-type
property databanks of Ti-rich Ti—-Nb—Zr—(Cr, Hf,
Mo, Sn, and Ta) systems. It can be seen that many

alloys have a low Young’s modulus, but limited
alloys can have excellent mechanical and process-
ability properties. After the selection, compositions
with  exceptional properties were predicted.
Therefore, final composition of Ti—(22+0.5)at.%Nb—
(3020.5)at.%Zr—(4+0.5)at.%Cr could be obtained,
with the predicted Young’s modulus of 62.56 GPa,
the hardness of 3.23 GPa, and the hot workability
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Young’s modulus (a), high hardness (b), and high hot
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parameter of 1.04x10"”m?-s”!-GPa™. This target
alloy predicted from the ML was very close to the

alloy selected using Young’s modulus databank [20].

This indicates that both the ML and CALculation of
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PHAse Diagrams (CALPHAD) methods could
provide similar predicted results for the same
requirements. It is noted that the CALPHAD-
type property databank always suffers from the
fundamental model parameters used as a kind of
input data. For example, the property data of BCC
Zr have an important effect on the databank
reliability, but they are not accurately measured or
computed due to the a—/f phase transition. Thus,
the accurate property data of pure elements and
binary and ternary alloys are urgently needed for
the quaternary system, significantly restricting the
establishment of CALPHAD-type databanks. ML
approach allows the computation of the property
data directly from the existing data and has no
special input data. The compositions of quaternary
alloys were independent variables in the present
input data and were used to predict the properties in
the quaternary Ti—Nb—Zr-based systems. Thermo-
dynamic and phenomenological parameters such as
melting temperature, mixing enthalpy, Pauling
electronegativity difference, and valence electron
concentration can be converted from the
composition information combined with the end-
members of pure metals [32]. Then, they can be
utilized as features to discover the relation with the
properties. Once the intrinsic relationships between
these key features and properties are established,
the properties of quinary and higher-order element
alloys may be well predicted. The recently proposed
framework could accelerate the exploration of
multicomponent alloys with exceptional properties
by combining high-throughput calculations and
the active learning method in Ref. [50]. Thus, the
active learning method based on high-throughput
determinations and high-throughput calculations
can be very helpful in constructing the desired
databank and rapidly screen the target alloys. It is
noted that both the ML and CALPHAD methods
can predict better results from more experimental
data. Quaternary Ti—(22+0.5)at.%Nb—(3020.5)at.%Zr—
(4£0.5)at.%Cr alloy was selected from the present
ML predictions.

4.2 Microstructure and mechanical properties
Figure 4(a) shows the XRD patterns of
AC-TNZC, ST-TNZC, TC4, and CP-Ti. It can be
seen that the TC4 alloy was composed of a and S
phases and CP-Ti had a single a phase. Importantly,
the main peaks of the § phase at 26 of 38.7°, 55.9°,
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Fig. 4 XRD patterns of CP Ti and Ti alloys (a), and
EBSD maps of AC-TNZC (b) and ST-TNZC (c) alloys

70.1°, and 80.1° were detected in the AC- and
ST-TNZC alloys, corresponding to (110)g, (200)g,
(211)p and (220)p, respectively. It is worth noting
that, compared with the § phase in the TC4 alloy,
the positions of the £ phase peaks related to the
TNZC alloys shifted as a whole toward a lower
angle. This is attributed to the increase in the lattice
constants with increasingly larger Zr and Nb atoms.
The EBSD maps of TNZC alloys in the as-cast and
solution treated states are presented in Figs. 4(b, c).
It is shown that both two specimens were composed
of equiaxed grains, and the distributions of their
grain orientation were random.

The microhardness, Young’s modulus, and

hardness of the pure Ti and Ti alloys were
determined from the micro- and nanoindentation
tests, as listed in Table 1. It can be seen that the
TNZC alloy exhibited the highest hardness value of
about HV 519-535, and the microhardness of the
TNZC alloy was nearly triple that of the CP-Ti and
twice that of the TC4 alloy. The results indicated
that the microhardness of Ti alloys with the § phase
was higher than that of Ti alloys with the o phase,
which agrees well with the results in Ref. [51]. The
Young’s modulus and hardness of CP-Ti and TC4
alloy obtained from the nanoindentation agreed
with the reference data (Young’s modulus and
hardness of CP-Ti were within the range of 108—
131 GPa and 1.9-3.8 GPa [48], respectively, and
Young’s modulus and hardness of TC4 alloy were
(12143) GPa and (5+0.1) GPa [49], respectively).
The measured data of the TNZC alloy were in
excellent agreement with the ML results (62.56 GPa
for Young’s modulus and 3.23 GPa for hardness).
Moreover, the compressive stress—strain curves of
the pure Ti and Ti alloys at room temperature are
shown in Fig. 5. It can be seen that the TNZC alloy
and CP-Ti were not fractured when the compressive
strain was up to 50%, exhibiting their good
plasticity. The 0.2% proof compressive yield
strengths (002) of AC-TNZC, ST-TNZC, TCA4,
and CP-Ti were (1202.2+13.8), (1220.3£17.9),
(891.1+£35.1), and (340.1+£16.4) MPa, respectively.
The 09, values of AC- and ST-TNZC were very
close, and the result of the TNZC alloy was about
35% and 2.5 times that of TC4 and CP-Ti,
respectively.

Table 1 Microhardness, Young’s modulus, and hardness
of CP-Ti and Ti alloys measured from micro- and nano-
indentation tests

Sample Microhardness Hardness/ Young’s
(HV) GPa modulus/GPa
CP-Ti 166.94+20.6 1.9+0.2 12349
TC4 308.8+18.7 3.1£0.2 11545
AC-TNZC  535.6+22.5 3.5+0.2 6342
ST-TNZC  519.6£15.5 3.4+0.2 58+4
4.3 Wear property

Figures 6(a, b) display the wear volume and
wear rate of CP-Ti and Ti alloys under both dry and
wet sliding conditions. It can be intuitively seen that
the dry wear volume loss or wear rate of the
AC-TNZC alloy was only half that of the TC4 alloy
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and slightly lower than the value of ST-TNZC alloy,
while CP Ti had the highest wear volume loss and
wear rate. This indicates that the TNZC alloy
exhibited the highest wear resistance under the dry
sliding condition. Similar results were obtained for
the wet condition. The 2D wear track profiles of
CP-Ti and Ti alloys are also shown in Figs. 6(c, d).
It is worth noting that the TNZC alloy had the
shallowest and narrowest 2D wear track profiles
under both dry and wet reciprocating friction
environments. The lower the wear volume of the
samples was, the shallower the wear profiles were.
Intriguingly, the wear track profiles of the TC4
alloy under the sliding in the SBF solution tended to
be deeper than those in the dry sliding condition.
The ratios of hardness (H) to Young’s modulus (£)
(i.e., H/E and H?/E?) of CP-Ti and Ti alloys are
plotted in Figs. 6(e, f), along with the corresponding
wear rates. There was an inverse correlation
between the wear rates and hardness-to-elastic
modulus ratios. Although the hardness of the TC4
alloy was close to that of the TNZC alloy, the high
Young’s modulus led to the high wear rate of the
TC4 alloy. In addition, the wear rate of the TC4
alloy during sliding in the SBF solution was larger
than that during the dry sliding, which may be
caused by the interplay between wear and corrosion.
The H/E and H*/E? ratios can be utilized to reflect
the wear property of materials, consistent with
the descriptions in Refs.[14,41]. Therefore, this
qualitative method lays a foundation for selecting
bio-alloys with excellent wear resistance.

The COF curves for CP-Ti and Ti alloys during
the sliding are illustrated in Figs. 7(a, b). It is shown
that the COF value under wet sliding in the SBF
solution had a larger fluctuation than that under dry
sliding. This is attributed to the lubrication effect of
the SBF solution. Moreover, the COFs for CP-Ti
and Ti alloys are shown in Fig. 7(c). The results
demonstrate that the COFs of CP-Ti and Ti alloys
could be reduced due to the lubrication of the SBF
solution. In addition, the COF value of the TNZC
alloy was slightly higher than that of CP-Ti and
TC4, indicating that CP-Ti and TC4 alloy had a
better lubrication effect. Figure 8 shows the SEM
morphologies of wear scars for CP-Ti and Ti alloys
under both the dry and wet sliding. Typical wear
features, including plowing grooves, microcracks,
adhesion, and delamination could be found. After
the solution treatment, the TNZC alloy had the
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Fig. 7 Curves of COF for CP-Ti and Ti alloys during
dry (a) and wet (b) sliding, and measured coefficients
of friction for CP-Ti and Ti alloys (c)

shallowest plowing grooves and the least surface
delamination, corresponding to the lowest wear
volume loss and wear rate. This is caused by the
low Young’s modulus and relatively high hardness.
Owing to the combination of wear and corrosion,
the plowing grooves of TC4 got deeper, and its
delamination was more significant under the wet
wear condition.
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5 Conclusions

(1) The property databanks of the Ti—Nb—Zr-
based quaternary alloys were successfully
established by using the ML method. A Ti—(22+
0.5)at.%Nb—(30+0.5)at.%Zr—(4+0.5)at.%Cr (TNZC)
alloy was selected from the built ML databanks.
The predicted elastic modulus, hardness, and
hot workability parameter of TNZC alloy were
62.56 GPa, 3.23 GPa, and 1.04x10™"° m?*s'-GPa?,
respectively.

(2) TNZC alloy had only S phase and equiaxed
grains with random grain-orientation. A dendrite
structure in the arc-melted TNZC alloy disappeared
after solution annealing. TNZC alloy had an

optimal combination of a relatively low Young’s
modulus of (57.5+4.1) GPa, high nanohardness of
(3.4+0.2) GPa, high microhardness of HV (52045),
high compressive yield strength of (1220+18) MPa,
and large plastic strain of greater than 30%
according to nanoindentation, microhardness, and
compression tests.

(3) TNZC alloy had a superior wear resistance
under both dry and wet wear conditions to CP-Ti
and TC4, and an inverse correlation between the
wear rates and hardness-to-Young’s modulus
ratio was verified. The present results indicated
that TNZC alloy had excellent comprehensive
properties, which could be used as the candidate
to replace traditionally CP-Ti and TC4 alloy in
biomedical applications.
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