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Abstract: A general prediction model for seven heavy metals was established using the heavy metal contents of 207 
soil samples measured by a portable X-ray fluorescence spectrometer (XRF) and six environmental factors as model 
correction coefficients. The eXtreme Gradient Boosting (XGBoost) model was used to fit the relationship between the 
content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site. The 
results demonstrated that the generalized prediction model developed for Pb, Cd, and As was highly accurate with fitted 
coefficients (R2) values of 0.911, 0.950, and 0.835, respectively. Topsoil presented the highest ecological risk, and there 
existed high potential ecological risk at some positions with different depths due to high mobility of Cd. Generally, the 
application of machine learning significantly increased the accuracy of pXRF measurements, and identified key 
environmental factors. The adapted potential ecological risk assessment emphasized the need to focus on Pb, Cd, and 
As in future site remediation efforts. 
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1 Introduction 
 

Potentially toxic elements (PTEs) in soil have 
attracted worldwide concern due to their generally 
high toxicity and non-degraded characteristics [1,2]. 
Mining and smelting activities are the main 
anthropogenic sources of PTEs in soil [3,4]. China, 
as the largest producer and consumer of non-ferrous 
metals globally, has amassed a significant number 
of PTEs in the soil surrounding non-ferrous   
metal smelting sites [5]. Consequently, accurate 
identification, assessment, and detection of multi- 
metals in contaminated sites are crucial for effective 
site remediation and contamination control.  

Traditionally, the accurate PTEs content in the 

soil has been determined by atomic absorption 
spectroscopy (AAS) or inductively coupled plasma 
optical emission spectrometry (ICP-OES) after 
concentrated acid digestion (see USEPA 3050b, 
3051a, and 3052). Although these methods can 
accurately measure total PTEs content in the    
soil, the measurement process is time-consuming, 
laborious, and expensive. Portable X-ray 
fluorescence (pXRF) is a simple, fast, accurate 
measurement mean of determining element content. 
It offers several advantages over traditional 
methods, including low detection limits, multi- 
element detection capability, inexpensive, and 
environment friendly characteristics [6]. As a result, 
pXRF has been widely used as a rapid screening 
tool for contaminants in fieldwork at contaminated 
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sites. However, previous studies [7,8] have identified 
several factors leading to deviations between the 
measured results and the actual PTEs contents    
in the soil, including water content, organic matter 
content, soil particle size, soil matrices, and mineral 
morphology. Therefore, as an effective and 
convenient method to measure PTEs contents, it is 
necessary to improve the accuracy of pXRF 
measurement with a simpler method and make it 
suitable for different measurement environments 
and enormous sites. 

PTEs in the soil can threaten human health 
through physiological/molecular pathways, and 
long-term exposure to PTEs contamination causes 
pathological changes in the human body [9,10]. 
Therefore, an accurate ecological risk assessment 
method is urgently needed. The potential ecological 
risk index (RI) has been widely used for the 
evaluation of soil PTEs pollution levels, which 
integrates the concentrations and toxicity of each 
PTE to provide a comprehensive assessment of the 
level of contamination. However, the toxicity and 
mobility of PTEs in soil mainly rely on their 
presence pattern [11,12], and the risk value 
assessment method relying solely on the total PTEs 
content may exaggerate the risk level of PTEs in 
soils. Therefore, an accurate ecological risk 
assessment method is needed to guide site 
remediation. 

Machine learning (ML), a subset of artificial 
intelligence, can adapt and learn from multi- 
dimensional, complex, and large data to build 
predictive models and mine the inner relationship 
between data. ML has been successfully used to 
correct the heavy metal values measured by  
pXRF [13,14]. However, potential variations in soil 
properties among sites will affect PTEs forms. In 
addition to diversities in organic matter abundance 
and soil hydration status, there are also variances in 
heavy metal distributions [15]. Therefore, it follows 
that distinct pXRF measurement errors can arise at 
every location, underscoring the importance of 
understanding local contexts and potential sources 
of variation. Some substances in the soil may 
change their fugitive form in the soil by binding to 
PTEs. For example, iron oxides, an active soil 
constituent, exhibit a strong ability to adsorb  
PTEs [16], and phosphates tend to induce heavy 
metals to form phosphate minerals, especially    
Pb [17]. However, few reports discuss the pXRF 

measurement biases caused by environmental 
features. 

In this study, the objects were to predict actual 
heavy metal levels at a smelting site by utilizing 
ML algorithms that incorporate environmental 
characteristics (such as available phosphorus, 
crystalline iron, amorphous iron oxide, free iron 
oxide, and pH) and pXRF measured PTEs levels. A 
general model for seven PTEs was established by 
using the XGBoost algorithm in an innovative way 
to uncover the intrinsic link between PTEs and 
complex soil environmental factors. Based on this, 
a potential ecological risk evaluation method was 
established that incorporates relevant environmental 
conditions, providing a more comprehensive 
framework for site assessment. 
 
2 Experimental 
 
2.1 Study area and sampling 

The study was conducted at an abandoned Pb 
smelter located in Central China with an area of 
about 15000 m2 (Fig. 1). 32 sampling points were 
arranged by the grid distribution method, and 
JDL150 crawler probes were used to drill the 
subsurface soil cores. The upper 3 m layer was 
sampled every 0.5 m, the lower 3−6 m layers were 
sampled every 1 m, and 207 soil samples at 
different depths were collected. All soil samples 
were taken to the laboratory and naturally air-dried 
for 7 d. 
 

 
Fig. 1 Study area with locations of sample sites 
 
2.2 Characterization of soil samples 

To better discuss the effect of physicochemical 
properties of the soil on the measurement   
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process [18,19], the soil was air-dried and sieved 
(150 μm mesh) prior to testing with portable X-ray 
fluorescence (pXRF, Delta Premium XPD 600, 
Olympus Innov-X, USA). Standard samples were 
used to calibrate before measuring. Each sample 
was scanned for 60 s and the mean of the three 
measurements was calculated as the final result. 
The exact concentration of heavy metals in the 
samples was determined by the inductively coupled 
plasma optical emission spectrometer (ICP-OES, 
ICAP 7000 Series, Thermo Scientific, USA) after 
digestion extraction with a mixture of HNO3 and 
HCl (1:3, volume ratio). To ensure the accuracy of 
the experimental analysis results, the method of two 
blanks and standard reference materials were used 
for each test batch (GBW07424−GBW07430). The 
recoveries of Cu, Ni, Pb, Cd, Zn, Sb, and As for the 
standard reference material were between 80%  
and 125%. The relative deviation between the 
determinate result and the actual concentration 
value was less than 10%. 

Soil pH was measured using a pH meter in  
the extraction solution (ratio of solid/water is 1꞉5 
(mg/mL)). The content of soil organic matter  
(SOM) was determined by the low-temperature 
external thermal potassium dichromate oxidation- 
colorimetric method. Soil available phosphorus  
(AP) was extracted with 0.5 mol/L sodium 
bicarbonate and analyzed by the molybdenum− 
antimony anti-colorimetric method. The free iron 
(Fed) oxide was extracted by the dithionite−citrate− 
bicarbonate (DCB) method; the amorphous iron 
(Feo) oxide was extracted by ammonium oxalate 
buffer. After extraction, the iron content was 
determined by the plasma emission spectrometer 
(VISTA-MPX). The crystalline iron (Fec) oxide 
content was calculated as a difference between free 
iron oxide content and amorphous iron oxide 
content. 
 
2.3 Selection and optimization of ML model 

Prior to the modeling, all pXRF results from 
scans of soil samples were normalized to improve 
the efficiency of the model, except this, there was 
no transformation in the data. Further, the total data 
were randomly divided into training set and 
validation set according to the proportion of 75% 
and 25%, respectively. Separate ML models were 
developed for two conditions: one using only  

pXRF measurements and the other using pXRF 
measurements and environment characteristic values. 

In this study, four traditional learning 
algorithms, including Linear Regression (LR), 
Random Sample Consensus (RANSAC), Decision 
Tree (DT) and Support Vector Machine (SVM), and 
two ensemble algorithms, including random forest 
(RF) and eXtreme gradient boosting (XGBoost), 
were used to train and predict the PTE contents. 
The introduction and parameter settings for each 
model were presented in the Supplement Materials. 
 
2.4 Adapted potential ecological risk assessment 

XGBoost was applied to analyzing the 
relationship between each environmental factor and 
PTEs, and determining the respective weights of 
each factor [20]. The environmental characteristic 
value corresponding to each PTE was calculated by 
the weight of each environmental characteristic and 
assigned to the potential ecological risk index after 
normalizing the environmental characteristic value, 
and the calculation formulas were as follows:  
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where Wi denotes the weights of different 
environmental characteristics, N denotes the 
number of environmental characteristics, Vi denotes 
the normalized environmental characteristic value, 
Fi denotes the environmental characteristic value 
corresponding to each PTE, and the obtained 
environmental characteristic value is normalized to 
obtain the weight wi reflecting the influence of 
environmental factors, AE i

j  is the adapted 
potential ecological risk value brought by PTE i at 
sampling site j, i

jE  denotes the single potential 
ecological risk index of PTE i at sampling site j, 
and ARIj represents the adapted potential ecological 
risk index brought by the PTEs investigated in the 
study at sampling site j. 
 
2.5 Statistical analysis 

Linear Regression, Random Sample Consensus, 
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Decision Trees, Support Vector Machines, and 
Random Forests were all implemented using 
Python’s Scikit-Learn machine learning package 
(version 1.0.2), and eXtreme Gradient Boosting was 
implemented using the XGBoost (1.6.1) package. 
Grid search was employed to optimize parameters 
for superior predictions. For each algorithm, only 
essential hyperparameters known to significantly 
impact the prediction process (see Supplementary 
Materials) were selected for parameter fine-tuning; 
other parameters remained fixed at their default 
settings. 

To further ensure and improve the robustness 
and predictability of the model, 10-fold cross- 
validation was used to adjust the model parameters 
and evaluate whether there was overfitting. Two 
indices including the coefficient of determination 
(R2) and root mean square error (RMSE) were  
used to evaluate the predictive performance of the 
model [21]. RMSE is commonly used to measure 
the deviation of the true value from the predicted 
value (Eq. (5)). The smaller the value of RMSE, the 
higher the accuracy of the model prediction.  
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where n is the number of samples, yi is the predicted 
value of the model, and mi is the observed value of 
the chemical analysis. 

SHAP interpretation is a local interpretation 

method extended from the concept of Shapley value 
in game theory, which aims to distribute the 
contributions of players fairly in the game [22].   
In ML, the Shapley value can quantify the 
contribution of each feature in the model. The 
SHAP (0.41.0) package in Python was used for 
visualization. 
 
3 Results and discussion 
 
3.1 Characteristics of contaminated smelting site 

soil 
The contents of Ni, As, Cu, Pb, Zn, Cd, and Sb 

were determined by pXRF and ICP, as shown in 
Table 1. The average contents of Ni, Cu, Pb, Cd, 
and Sb measured by ICP were significantly higher 
than the average contents measured by pXRF, 
which was consistent with the results from XIA   
et al [23]. There was a metal-dependent discrepancy 
between pXRF and ICP measurements [16]. QU  
et al [24] found a similar conclusion that the mean 
and coefficient of variation (CV) of Cu measured 
by ICP were higher than those by pXRF, which may 
be due to the presence of organic matter and other 
substances in the soil. Notably, the pXRF values for 
Cu, Cd, and Sb exhibited similar median, mean,  
and standard deviations (SD) compared to those 
determined by ICP. The CV of PTEs measured by 
pXRF was almost not different from that measured 
by ICP, except Ni. The CV values of As, Cu, Pb, Zn, 
Cd, and Sb were all greater than 1, indicating that 

 
Table 1 PTE contents measured by pXRF and ICP (mg/kg, n=207) 

Item ICP-Ni ICP-As ICP-Cu ICP-Pb ICP-Zn ICP-Cd ICP-Sb 

Max 466 2130 1574 7790 1580 250 517 

Min 8.47 1.61 25.7 16.6 3.30 0.014 0.18 

Median 32.0 14.9 62.1 184 92.7 1.39 2.99 

Mean 34.7 65.8 127.5 698 134 11.5 18.9 

SD 36.1 183 193 1221 155 32.4 52.6 

CV 1.04 2.78 1.51 1.75 1.16 2.81 2.78 

Item XRF-Ni XRF-As XRF-Cu XRF-Pb XRF-Zn XRF-Cd XRF-Sb 

Max 154 2664 1220 7314 1962 204 133 

Min 2.71 0.01 7.37 8.47 27.3 0.02 0.11 

Median 33.5 18.7 63.5 108 101 1.11 3.05 

Mean 34.1 102 132 526 161 9.91 20.7 

SD 16.1 303 184 1020 227 25.9 58.3 

CV 0.47 2.97 1.39 1.94 1.42 2.62 2.82 
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these PTEs had great chances of being affected by 
external causes such as anthropogenic activities. 
The spatial distribution of PTE contents in the soil 
exhibited strong variability. 

The Pearson correlation heat map between 
pXRF and ICP measurements of PTEs was shown 
in Fig. 2. An exceptionally strong correlation was 
observed between pXRF and ICP contents of Cd, 
Sb, and Pb, particularly for Cd (0.98). The high 
accuracy of Zn and Pb measurements was 
consistent with the results in Refs. [25,26]. This 
consistency may be attributed to the pre-treatment 
of the measured soil through drying, grinding, and 
sieving, which removed the influence of soil 
moisture and particle size. In the present study, the 
Pearson correlation coefficient between pXRF 
measurement data and ICP measurement data of  
As was 0.77, while pXRF measurements data and 
ICP measurement data showed extremely high 
linear correlation (R2=0.999) in the study of TIAN 
et al [27], which may be related to the content of As 
in soil. JIANG [28] noted significant deviations in 
ICP and pXRF measurements when the element 
content was low. Furthermore, HU et al [29] 
suggested that the measurements of As and Ni by 
pXRF need substantial improvement, with Ni only 
measurable qualitatively, which could also be 
influenced by soil types [30]. 
 

 
Fig. 2 Pearson correlation coefficient between pXRF and 
ICP data 
 

The physicochemical properties of all soil 
samples in the study area were shown in Fig. S1 in 
Supplementary Materials. The pH values of all soil 
samples ranged from 8.07 to 8.56 (median: 8.37). 
The SOM content ranged from 0.72% to 1.11% 
(median: 0.837%), and the organic matter content 

of the soil was relatively low and concentrated. The 
soil available phosphorus content ranged from 
10.12 to 89.82 mg/kg (median: 45.944 mg/kg). The 
free iron oxides ranged from 8.35 to 14.57 g/kg 
(median: 11.005 g/kg). The amorphous iron oxides 
were in the range of 0.45−1.99 g/kg (median: 
0.991 g/kg). The crystalline iron oxides were in the 
range of 7.54−13.72 g/kg (median: 10.016 g/kg). 
 
3.2 Performance of different ML algorithms in 

predicting soil PTEs 
Six different ML algorithms were used to 

establish the model, and the prediction results were 
shown in Figs. S2−S7 in Supplementary Materials). 
The results of the ML algorithm with the best 
predictive performance for each PTE content were 
shown in Fig. 3. The dots represented the datasets 
obtained by pXRF testing against the equivalent 
expected values calculated by the ML model 
algorithm. The color change of the scatter indicated 
the ratio of the actual content of PTEs to the 
predicted value, which was helpful for visually 
identifying the overall or partial prediction effect of 
the model. 

The R2 and RMSE values for each model in 
predicting seven PTEs were shown in Fig. 4. Both 
traditional learning and ensemble learning achieved 
a relatively good level of prediction for Cd and Sb. 
The stronger predictive performance for Cd and Sb 
may be due to the excellent agreement between the 
measurements collected by pXRF and ICP (Fig. 2). 
Linear regression was used to effectively predict Cd, 
Sb, and Pb, as they shared a good correlation in the 
original data. Although the predicted results of Cd 
were very satisfactory according to R2, some 
prediction results were negative, the linear 
regression method was not suitable for the direct 
prediction of Cd concentration. The effect of linear 
regression on Cu prediction was consistent with the 
results obtained by XIA et al [23]. Random sample 
consensus, a linear regression-based approach for 
handling outliers (see Supplement Materials), 
demonstrated negligible improvement compared to 
traditional linear regression (Fig. S2). The decision 
tree showed good applicability for Ni content 
prediction, although the results of RMSE were not 
the smallest (RMSE=19.047), which may be caused 
by the deviation of the model when dealing with 
high-value data. The RMSE and R2 for support 
vector machine and linear regression had almost the  
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Fig. 3 Contents of PTEs predicted from each pXRF measurement using the best predictive model against measured 
contents (The line is the fitting line of the scatter and the color of the dot indicates the ratio of the measured value to the 
predicted value): (a) As; (b) Cd; (c) Zn; (d) Sb; (e) Cu; (f) Pb; (g) Ni 
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Fig. 4 Comparison of prediction performance of six ML algorithms for Ni (a), As (b), Cu (c), Pb (d), Cd (e), Sb (f) and 
Zn (g) (Six machine learning algorithms included LR, RANSAC, DT, SVR, RF and XGBoost) 
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same effect on Cu prediction. However, linear 
regression yielded a higher deviation than the 
support vector machine in terms of the maximum 
ratio between predicted and measured values in the 
scatter plot (Fig. S3). The support vector machine 
also performed well in Pb prediction, particularly in 
the low-value range, and the high RMSE of the 
prediction results may be due to the high Pb content 
in the whole site (ICP measured mean value of 
697.68 mg/kg). Unfortunately, none of the six 
algorithms effectively predicted As content. XGBoost 
outperformed other models in predicting most PTEs 
contents, with the most significant improvement 
observed for Zn, reaching a maximum predicted 
deviation value-to-true value ratio of 1.4. Although 
Pb prediction was generally accurate across the 
entire concentration range, there were some 
instances of significant deviations at lower values. 

3.3 Simulation of spatial distribution of PTEs 
based on optimal ML prediction model 

Based on the correction results of different ML 
algorithms for PTE contents measured by pXRF, 
the spatial distribution of the predicted values of the 
best algorithm and measured values for each PTE 
were shown in Fig. 5. The spatial distribution map 
of PTEs in the surface soil (0−0.5 m) was mapped 
using the inverse distance weighting interpolation 
method in ArcGIS (10.2). Mapping the differences 
between predicted and measured values was an 
important step to assess the accuracy of the trained 
ML models, which helped to evaluate whether the 
models accurately captured the variation patterns in 
the target variables across space. Additionally, 
mapping the predicted contents provided an easy 
way to visualize and analyze the accuracy of    
the models. Due to the direct influence of human  

 

 
Fig. 5 Comparison of spatial distribution of predicted PTE contents by optimal ML algorithm modeling and measured 
PTE contents in soil (unit: mg/kg) 
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activities, the content of PTEs in the surface soil of 
contaminated sites usually has a high coefficient  
of variation [31], which was helpful in reflecting 
whether the models have the capability of capturing 
both high and low values. The screening value and 
control value in the reference soil pollution risk 
control standard for construction land in China (GB 
36600—2018) and the US superfund soil screening 
guidelines were set in sections in the color bar to 
show the pollution degree of different PTEs in the 
soil of the plot. Red, yellow, and blue areas 
represented high, medium, and low contents of 
PTEs, respectively. 

Overall, the predicted PTE contents obtained 
by the ML models followed the general trends of in 
the measured values. For As, although the predicted 
results of XGBoost were unsatisfactory (R2=0.531), 
the distribution trend was similar. The main 
deviation observed in XGBoost's prediction was the 
underestimation of As content at individual high 
and median points, which likely contributed to the 
significant deviation in the prediction results 
(Figs. 5(a, b)). The prediction results for Cd    
and Sb showed good predictability in terms of the 
regression coefficients (R2=0.931 and 0.953)    
and RMSE (6.393 and 16.449). The spatial 
characteristics of the measured and predicted values 
of Cd and Sb were not significantly different 
(Fig. 5). The deviations in Pb content prediction 
made by SVR were relatively small at various 
points on the surface soil, and the deviation of some 
low values may appear in the prediction of deep soil 
(Fig. S3(e)). In terms of Cu content prediction, 
SVM yielded slightly lower predicted values 
compared to the actual values, and there was a 
significant deviation observed only at one point in 
the topsoil. 
 
3.4 Influence of soil environmental factors on 

model prediction accuracy 
The topsoil was seriously polluted by Pb, Cd, 

and As (Fig. 5). Additionally, none of the six    
ML algorithms achieved satisfactory results in   
the As prediction when only using pXRF data   
for prediction. Therefore, the physicochemical 
properties including organic matter content, pH, 
available phosphorus content, free iron oxide, 
amorphous iron oxide, crystalline iron oxide 
content, and pXRF measurements were further used 
as model correction factors. XGBoost showed 

excellent prediction performance for most PTEs. 
Compared to other ML algorithms, the XGB 
algorithm also had the advantage of interpreting the 
complex soil data, so it was chosen as the algorithm 
for the multi-input model. SHAP was used to rank 
and show the importance of various environmental 
factors in the prediction process, so as to explore 
the impact of site environmental factors on the 
prediction process (Fig. 6). 

Compared with the single input model 
(R2=0.531) (Fig. 3(a)), the XGBoost multi-input 
model significantly improved the prediction 
efficiency of As (R2=0.835) (Fig. 6(b)). In the 
prediction process of As, only pH and amorphous 
iron oxide content played an important role. 
Regarding the process of Cd prediction, pH, organic 
matter content, free iron oxide, and available 
phosphorus content had a certain role. In the 
process of Pb prediction, six soil physicochemical 
properties were involved, with organic matter 
playing the most crucial role. The overall color 
distribution of scattered points indicated higher 
prediction accuracy of the model in the low value of 
Pb. Whether for Pb, Cd or As, pH and organic 
matter played an important role in predicting. 
Numerous studies [31−33] showed that pH and soil 
organic matter had a dominant influence on the 
bioavailability and mobility of contaminants. 
Organic matter in soil easily adsorbs soil PTEs. 
Previous research [32] showed that lighter carbon 
and hydrogen elements in organic matter may dilute 
Pb content in the soil during pXRF measurement. 
However and LEMKE the dilution effect of organic 
matter on PTEs also exists in elemental dependence. 
For example, RAVANSARI [33] showed that the 
pXRF content of Pb was in good agreement with 
the theoretical dilution line of organic matter; on the 
contrary, the pXRF content of As was always lower 
than the theoretical dilution line of organic matter. 
This also indicated that the interference of organic 
matter in the pXRF measurement process cannot be 
adequately described and corrected by simple linear 
equations. 

As had a high affinity for metal oxides in soil, 
especially iron oxides [34]. Amorphous iron oxides 
can adsorb As more strongly than free iron oxides, 
such as goethite and magnetite, as well as crystalline 
iron oxides [35]. However, this adsorption largely 
affects the morphology of As present in the soil,  
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Fig. 6 Mean absolute Shapley values showing average impact on model output magnitude for all descriptors in 
XGBoost model (a, c, e), and predicted PTE contents using XGBoost model based on pXRF measurement and environmental 
characteristic values versus measured values (b, d, f): (a, b) As; (c, d) Cd; (e, f) Pb 
 
which can interfere with pXRF measurements. 
Organic matter played a crucial role in controlling 
the transformation of PTE fugitive forms in soils, 
and high organic matter content tends to limit the 
migration flow of PTEs [36]. In the soil, the active 
materials include iron minerals and organic matter, 
which usually exist as iron-organic associations. 
The adsorption of Cd can be strongly influenced  
by iron-organic associations [37]. Organic matter, 
clay minerals, and iron oxide were the three 
adsorbents with strong sorption of Pb in the soil [38]. 

Pb in the soil can form ternary complexes 
(Fe−OC−Pb, Fe−Pb−OC) with organic matter and 
iron oxides [39], resulting in the presence of Pb in 
the soil in the organic-bound and Fe−Mn 
oxide-bound states. Phosphates in soils were able to 
transform with PTEs ions from a readily 
transportable water-soluble state to a stable 
precipitate, e.g., Pb and phosphate form the most 
stable environmental soil lead, lead phosphate 
(pyromorphite mineral family (Pb5(PO4)3X; X= 
halide or hydroxide)) [40]. Similarly, Cd forms 
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cadmium phosphate precipitates with phosphate. 
The occurrence forms of PTEs in soil were 

highly susceptible to the influence of soil pH, which 
was widely considered to be one of the most 
important geochemical parameters affecting the 
present form of PTEs in soil [11,41]. For example, 
the mobility of Cd and Pb increases with the 
increase of pH, and their mobility is much higher in 
acidic soils than in alkaline and neutral soils [42]. 
WIECZOREK et al [43] found that the solubility  
of Cd and Pb was reduced in soils with low soil  
pH but high organic matter content. Conversely,  
the mobility of As might increase in alkaline 
environments due to competition for anion sites [44]. 
 
3.5 Adapted ecological risk assessment of PTEs 

in profile soils 
The potential ecological risk of PTEs was 

evaluated using an adapted method that considered 
six environmental characteristics influencing the 
toxicity and mobility of these metals. Based on 
these characteristics, the ecological risk of the soil 
at the site was calculated. The adapted potential 
ecological risk index (ARI) was calculated by 
Formulas (1)−(4) based on the PTE contents of the 
control sites around the contaminated site and the 
background values of PTEs in Chinese soils 
(Table 2), and compared with the grading criteria of 
Hakanson ecological risk index (Tables S1 and S2 
in Supplementary Materials). Pb, Cd, and As have 
different degrees of potential ecological risk at the 
site. Except for Cd, the mean values of the potential 
ecological risk indices for other six PTEs were 
below the moderate risk threshold (E=40). Among 

all soil samples, Cd was identified as the main 
contributor to the high risk, as 25% soil samples 
had a high potential ecological risk for Cd, and 7% 
soil samples had a very high potential ecological 
risk for Cd. In contrast, only a low percentage of 
soil samples had a high ecological risk for As (1% 
soil samples), while 8% soil samples had a potential 
ecological risk for Pb. Other PTEs, including Sb, Ni, 
Cu, and Zn, showed low ecological risk. 
 
Table 2 Descriptive statistics for adapted individual 
potential risk value (AE) 

Metal Max Min Mean 

Pb 51.5 0.16 2.7 

Cd 106 0.2 4.67 

As 328 1.22 39.3 

Ni 1.8 0.03 0.14 

Cu 0.28 0.01 0.04 

Zn 19.1 0.24 1.54 

Sb 17.8 0.04 0.52 

 
Referring to the grading criteria of Hakanson 

potential ecological risk index in Table S1, the 
comprehensive potential ecological risk was 
divided into five levels, and the spatial distribution 
of ecological risk at different depths was mapped by 
ArcGIS, with different levels of red and yellow 
representing the existence of different levels of 
comprehensive potential ecological risk (Fig. 7). 
The ecological risks caused by PTEs at the site  
exist in the entire depth of investigation, and the 
potential ecological risks at depths below 2.5 m 

 

 

Fig. 7 Spatial distribution of adapted potential ecological risk index at different depths 
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mainly concentrate at a particular sampling site, 
which may result from the presence of high content 
of Cd, the high mobility of Cd causing the entire 
depth range to be affected [43], its high toxicity 
(toxicity efficient TCd=30) resulting in a high 
ecological risk, and the potential ecological risks 
presented in the deep soil may further affect the soil 
ground-water [45,46]. The spatial distribution of 
ecological risks corresponds closely to the presence 
of elevated PTEs concentrations (Pb, As, and Cd). 

The distribution of ecological risks present in 
the surface soil was consistent with the distribution 
of Pb, As, and Cd in the surface soil. Localized 
areas surrounding the study site exhibited 
pronounced influences attributable to anthropogenic 
processes, with major contributions stemming from 
industrial activities. The high potential ecological 
risks in the surface soil were mainly concentrated 
near the production area, and linked to leakage of 
pollutants in the plant during the industrial 
production process. The ecological risks of Pb, Cd, 
and As in the study site require urgent attention in 
subsequent site remediation and control. 

The adapted risk assessment considered a 
wider range of factors, effectively uncovering the 
intricate relationship between pollutants and 
environmental features. This holistic approach 
offered significant advantages over traditional 
ecological risk assessment that focused solely on 
the content of PTEs in the environment. Traditional 
ecological risk assessment focused on the content of 
PTEs in the environment, which may result in an 
overestimation of potential risks for a given site. By 
considering various environmental factors, adapted 
potential ecological risk assessment provides a 
more nuanced perspective on ecological risk. 
Therefore, potential ecological risk assessment 
based on environmental factors offers a more 
comprehensive and accurate approach to assessing 
ecological risk. 
 
4 Conclusions 
 

(1) DT had the best performance in predicting 
Ni. SVM had good predictions for Cu and Pb. 
XGBoost performed well for most PTEs, except As. 
However, by incorporating environmental factors as 
model correction factors, the prediction of As was 
significantly improved. 

(2) The determination process of Pb, Cd, and 

As was affected by pH and soil organic matter 
content. Additionally, pH and soil organic matter 
content played key roles in developing the 
generalized prediction model. 

(3) The spatial distribution of ecological risk 
was consistent with that of PTEs (Pb, Cd, and As). 
Although the adapted potential ecological risk 
index reduced the ecological risk to some extent 
compared with the Hakanson ecological risk index, 
the single factor ecological risk index still indicated 
that there were different degrees of ecological risk 
for Pb, Cd, and As at the site, with Cd being the 
primary contributor. Therefore, it is necessary to 
focus on the remediation of Pb, Cd, and As in the 
subsequent site remediation and pollution control. 
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基于机器学习的铅冶炼场地污染快速识别与风险评估 
 

薛生国 1，冯静培 1，可文舜 1，李 幕 1，邱坤艳 2，李楚璇 1，吴 川 1，郭 林 3 

 
1. 中南大学 冶金与环境学院，长沙 4100083； 
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摘  要：以便携式 X 射线荧光光谱仪(pXRF)测量的 207 个土壤样品的重金属含量和 6 种环境因素作为模型修正  

系数，建立了 7 种重金属的通用预测模型。为了评估冶炼场地存在的潜在生态风险，使用 XGBoost 算法拟合重金

属含量和环境特征之间的关系，建立了基于环境因素的潜在生态风险指数。结果表明，通用预测模型对铅(拟合   

系数 R2=0.911)、镉(R2=0.950)和砷(R2=0.835)均具有极高的预测精度；表层土壤重金属的潜在生态风险较高，部分

点位因 Cd 的高迁移性在不同深度均有较高的潜在生态风险；机器学习显著提高了 pXRF 重金属测量结果的准确

性，识别了影响测量过程的关键环境因素。基于改进的潜在生态风险评价，该铅冶炼场地铅、镉和砷的生态风险

较高，应重点考虑对其进行修复。 

关键词：冶炼场地；潜在有害元素；X 射线荧光光谱；潜在生态风险；机器学习 

 (Edited by Wei-ping CHEN) 

 
 


