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Abstract: A composite solid electrolyte comprising a Cu−Al bimetallic metal-organic framework (CAB), lithium salt 
(LiTFSI) and polyethylene oxide (PEO) was fabricated through molecular grafting to enhance the ionic conductivity  
of the PEO-based electrolytes. Experimental and molecular dynamics simulation results indicated that the electrolyte 
with 10 wt.% CAB (PL-CAB-10%) exhibits high ionic conductivity (8.42×10−4 S/cm at 60 °C), high Li+ transference 
number (0.46), wide electrochemical window (4.91 V), good thermal stability, and outstanding mechanical properties. 
Furthermore, PL-CAB-10% exhibits excellent cycle stability in both Li−Li symmetric battery and Li/PL-CAB- 
10%/LiFePO4 asymmetric battery setups. These enhanced performances are primarily attributable to the introduction of 
the versatile CAB. The abundant metal sites in CAB can react with TFSI− and PEO through Lewis acid–base 
interactions, promoting LiTFSI dissociation and improving ionic conductivity. Additionally, regular pores in CAB 
provide uniformly distributed sites for cation plating during cycling. 
Key words: polyethylene oxide; Cu−Al bimetallic metal-organic framework; solid lithium metal battery; molecular 
grafting; ionic conductivity 
                                                                                                             
 
 
1 Introduction 
 

Lithium-ion batteries (LIBs) are applied in 
various electronic products, electric vehicles, and 
large-scale energy storage systems owing to    
their lightweight characteristics and good cyclic 
stability [1−3]. However, conventional liquid LIBs 
employ highly volatile and flammable organic 
electrolytes, leading to inadequate stability, low  
ion selectivity and significant safety hazards [4−6]. 

Furthermore, the limited theoretical capacity of 
liquid LIBs fails to satisfy the high energy density 
requirements of advanced applications [7,8]. By 
contrast, solid-state batteries (SSBs) exhibit higher 
energy density and are safer and more suitable for 
high-energy storage devices [9−11]. However, the 
commercialization of SSBs is hindered by the   
low ionic conductivity of solid electrolytes (SEs), 
and unsatisfactory interfacial contact between   
the electrolyte and the electrode [12−14]. Thus,   
most studies on SSBs have primarily focused on 
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improving the ionic conductivity of SEs and the 
electrolyte−electrode interface contact. 

Solid-state polymer electrolytes (SPEs), 
particularly, polyethylene oxide (PEO), have 
attracted extensive attention owing to their high 
flexibility, high interfacial compatibility, and    
ease of preparation [15,16]. However, the inferior 
mechanical strength and low ionic conductivity of 
SPEs restrict their practical application [17−19]. 
Researchers have attempted to address these issues 
through approaches such as cross-linking [14], 
copolymerization [20,21], and filler incorporation 
[22−24]. Among various methods, adding fillers 
(TiO2 [25], SiO2 [26], Al2O3 [27], Mg2B2O5 [28], 
BaTiO3 [29], and Gd0.1Ce0.9O1.95 [30]) to prepare 
composite SPEs results in the most substantial 
improvements in the mechanical strength and ionic 
conductivity of composite SPEs. Nonetheless, 
incorporating inorganic fillers may deteriorate the 
interfacial contact and stability of SPEs [31]. 

Being composed of metal ions and organic 
ligands, metal-organic frameworks (MOFs) are 
extensively used to modify SPEs owing to their rich 
porosity, large specific surface area, and inorganic–
organic hybrid properties [32−34]. Compared with 
binary metal oxides, bimetallic MOFs offer several 
benefits for SPEs, which can be summarized as 
follows. Firstly, the metal content of bimetallic 
MOFs can be varied to accurately tune their 
physicochemical and electrochemical properties, 
including stability and conductivity [35,36]. 
Secondly, the controllable porous structures of 
bimetallic MOFs serve as ion sieves that 
preferentially facilitate cation transfer [37]. Thirdly, 
the large specific surface area of bimetallic   
MOFs promotes sufficient contact with other 
components [37,38]. Fourthly, the regular pores of 
bimetallic MOFs provide uniformly distributed 
metal sites, ensuring the uniformity of cation 
plating and the formation of stable interfacial layers 
during cycling, thus enhancing the cycle stability  
of SSBs [37,39]. Moreover, bimetallic MOFs with 
different active metal sites exhibit superior 
physicochemical properties and synergistic effects 
compared with their monometallic counterparts 
[40−42]. When selecting metal nodes for bimetallic 
MOFs, factors such as electronegativity, valency, 
Lewis acidity, and adsorption energy towards 
lithium salt anions must be considered [37]. For 
example, the high electronegativity of Cu2+ 

facilitates the formation of more covalent bonds 
with thermodynamic stability compared with other 
metals such as Mn2+, Zn2+, Cd2+, and Pb2+ [43,44]. 
Because of its high valency and Lewis acidity,  
Al3+ effectively restricts the movement of lithium 
salt anions, thereby enhancing the dissociation   
of lithium bis(trifluoromethanesulphonyl) imide 
(LiTFSI) and improving the ionic conductivity of 
SPEs [45,46]. When appropriate metal nodes    
are selected, bimetallic MOFs with controllable 
structures and compositions can exhibit high 
stability, good conductivity, and exposed active 
sites [37]. At present most studies on bimetallic 
MOFs have been focused on their application in 
supercapacitors and electrocatalysis [47,48]; their 
applicability in SPEs has yet to be explored. 

In the present study, molecular grafting was 
used to develop a novel and flexible PEO-based 
composite solid electrolyte film composed of 
Cu−Al bimetallic metal-organic framework (CAB) 
and LiTFSI to enhance the ionic conductivity and 
mechanical strength of SPEs. A series of composite 
solid electrolytes with varying amounts of CAB 
were prepared and characterized to investigate the 
effects of CAB content on the properties of SPEs. 
The influence mechanism of CAB in polymer 
electrolytes was analyzed through physicochemical 
characterization and molecular dynamics simulation 
(MDS). By using Cu−Al bimetallic MOF, this 
molecular grafting strategy offers an innovative 
approach for designing and developing high- 
performance SSBs. 
 
2 Experimental 
 
2.1 Synthesis of Cu−Al bimetallic MOFs materials 

The Cu−Al bimetallic MOFs were synthesized 
through a hydrothermal method, as depicted in 
Fig. 1 and Fig. S1 in Supplementary Information. 
Firstly, 9 mmol of Cu(NO3)2·3H2O (AR, National 
Medicine) and 1.5 mmol of Al(NO3)3·9H2O (AR, 
National Medicine) were dissolved in ultrapure 
water and stirred magnetically until a homogeneous 
solution, referred to as Solution A, was obtained. 
Simultaneously, 6 mmol of homophthalic acid (H3BTC, 
Macklin) and a small amount of cetyltrimethyl 
ammonium bromide (Macklin) were dissolved in 
anhydrous ethanol and stirred to form a transparent 
solution, referred to as Solution B. Subsequently, 
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Solutions A and B were mixed and stirred for 
30 min, then transferred to a Teflon-lined 
stainless-steel autoclave and heated at 120 °C for 
24 h. The resulting precipitate was washed by 
centrifugation with ethanol and ultrapure water to 
obtain a light blue crystallite, which was then dried 
in a vacuum drying oven at 100 °C for 12 h. The 
dried blue crystallite was ground into a powder and 
activated in a vacuum drying oven at 150 °C to 
obtain Cu−Al bimetallic MOFs. 
 
2.2 Preparation of composite solid electrolyte 

As depicted in Fig. 2, the Cu−Al bimetallic 
MOFs, featuring abundant and highly Lewis acidic 
sites, reacted with the oxygen in PEO and TFSI− 
anions to form a composite solid electrolyte.  
Firstly, 0.4 g of LiTFSI (99.99%, Aladdin), 0.92 g 
of poly(propylene oxide) (PEO, relative molecular 
mass of 6×105, Macklin) and the desired amount of 

CAB were weighed and dissolved to 20 mL of 
anhydrous acetonitrile solution (AR, National 
Medicine). The mixture was stirred until complete 
dissolution. The resulting solution was poured  
into a container lined with a Teflon membrane   
and allowed to the rest 24 h to ensure that       
the acetonitrile solvent evaporated. Subsequently,  
it was transferred to a vacuum drying oven at  
40 °C for 12 h to remove any residual solvent.  
The resulting solid electrolyte film was obtained 
and cut into small discs with a diameter of 19 mm 
for cell assembly. A control sample composed of  
the PEO polymer electrolyte without CAB was 
prepared. The composite electrolytes with mass 
fractions of CAB (0%, 1%, 5%, 10%, 15%) were 
denoted as PL, PL-CAB-1%, PL-CAB-5%, 
PL-CAB-10%, and PL-CAB-15%, respectively. All 
these processes were conducted in an Ar-filled 
glove box. 

 

 
Fig. 1 Schematic diagram of fabrication of Cu−Al bimetallic MOF 
 

 
Fig. 2 Schematic diagram of synthesis of PL-CAB 
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3 Results and discussion 
 
3.1 Physicochemical properties of Cu−Al 

bimetallic MOF 
The crystal structures of the synthesized 

materials were examined using X-ray diffraction 
(XRD). As depicted in Fig. 3, the characteristic 
peaks of the synthesized materials resembled those 
of Cu-based MOF (HKUST-1) reported in previous 
studies [49,50], indicating the consistency in the 
crystal structure. Furthermore, no impurity peaks 
associated with Al compounds were observed in  
the spectra, suggesting the successful incorporation   
of the Al element into the crystal structure       
of HKUST-1 without disrupting the original 
arrangement of the crystal structure. 

The microcosmic morphology of CAB was 
characterized using scanning electron microscopy 
(SEM), as illustrated in Fig. 4(a). The synthesized 
material exhibited a regular octahedral shape with a 
 

 
Fig. 3 XRD pattern of Cu−Al bimetallic MOF 

side length of approximately 40 μm. A closer 
inspection of the partially magnified SEM image 
(Fig. 4(b)) revealed that the octahedron was formed 
by self-assembled tiny primary particles, resulting 
in a porous structure. This porous structure 
enhanced the contact area with the polymer 
electrolyte, while the exposed metal active sites on 
the pore walls of CAB facilitated the binding of 
lithium salt anions in the pore channels. This 
binding promotes the transport of Li+ along the 
interfacial channels formed between PEO and the 
CAB filler. Energy spectrum analysis revealed  
that Cu, Al, and O were uniformly distributed 
throughout the octahedral CAB rather than being 
aggregated at specific locations, confirming that  
the Cu−Al bimetallic MOF was successfully 
synthesized using the hydrothermal method. 

 
3.2 Physicochemical properties of composite 

solid electrolytes 
The incorporation of CAB can reduce the 

crystallized region of the PEO matrix and enhance 
Li+ migration ability, as indicated by XRD and 
differential scanning calorimetry (DSC) results.  
As shown in Fig. 5(a), PL-CAB-10% exhibited 
characteristic PEO peaks after the addition of CAB, 
indicating that the composite solid-state electrolyte 
PL-CAB-10% was stable during the preparation 
process. Notably, the peaks corresponding to PEO 
in PL-CAB-10% were considerably weaker than 
those corresponding to PEO in PL, suggesting a 
reduction in the crystallinity of PEO after the 
addition of CAB, which improved its ability     
for ionic migration. Additionally, differential 
scanning calorimetry (DSC) analysis was performed 

 

 
Fig. 4 SEM image (a) and partial magnification SEM image and element mapping (b) of Cu−Al bimetallic MOF 
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Fig. 5 XRD patterns of PL and PL-CAB-10% (a), DSC curves of PEO, PL and PL-CAB-10% (b), thermogravimetric 
curves of PL-CAB-10% (c), Raman spectra of PL and PL-CAB-10% (d), Raman spectra of PL-CAB-10% fitted with F1 
and F2 bands (e), and stress−strain curves of PL and PL-CAB-10% (f) 
 
to determine the glass transition temperature (Tg) 
and melting point (Tm) of the polymeric materials. 
As depicted in Fig. 5(b), the decreasing order of  
Tg and Tm values was PEO (Tg=−41.35 °C, 
Tm=61.58 °C) > PL (Tg=−43.83 °C, Tm=41.57 °C) > 
PL-CAB-10% (Tg=−49.31 °C, Tm=37.13 °C). Thus, 
the addition of LiTFSI and CAB can synergistically 
lower Tg and Tm of PEO, thereby enhancing its  
ionic conductivity. Furthermore, the proportion of 
crystallized regions was calculated using the 
melting enthalpy of the polymer materials obtained 
from the DSC test and Eq. (S1) in Supplementary 
Information [51]. The proportion of crystallized 

regions in PL-CAB-10% was 11.1%, lower than 
that of PL. Hence, incorporating CAB can improve 
the amorphous region in the polymeric materials, 
consistent with the XRD results. The decrease in 
the crystallized region increases the conductivity by 
facilitating the motion of active chain segments. 

Thermogravimetric analysis (TGA) tests under 
an Ar atmosphere were conducted to investigate the 
thermal stability of the SPEs. The samples exhibited 
mass loss at temperatures lower than 200 °C, likely 
because of the desorption of surface-adsorbed water 
or bound water. The thermal decomposition of  
PEO (Fig. S2(a) in Supplementary Information) and 
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CAB (Fig. S2(b) in Supplementary Information) 
occurred within the temperature ranges of 340−420 
and 280−365 °C, respectively. As shown in 
Fig. S2(c) in Supplementary Information, the TGA 
graph of PL indicated excellent stability at 
temperatures lower than 325 °C compared with 
combustible organic liquid electrolytes [52,53]. 
However, PL underwent an irreversible thermal 
decomposition occurred between 325 and 450 °C. 
The initial thermal decomposition temperature of 
PL was lower than that of pure PEO, which can be 
attributed to the introduction of lithium salt. By 
contrast, the influence of CAB on the thermal 
stability of PL was minimal, as depicted in Fig. 5(c). 
Nevertheless, a significant mass loss was observed 
within the temperature range of 315−445 °C, 
corresponding to three stages of thermal 
decomposition. The mass loss observed in 
PL-CAB-10% between 315 and 345 °C can be 
attributed to the decomposition process of CAB. 
The thermal decomposition of PEO and CAB 
predominated between 345 and 385 °C, while the 
thermal decomposition of PEO and LiTFSI 
dominated within the range of 385−445 °C. 
Ultimately, PL-CAB-10% exhibited a final residual 
mass fraction of 15%, higher than that of PL (8%). 
These TGA results indicated the excellent thermal 
stability of PL-CAB-10%. 

Raman spectroscopy revealed characteristic 
peaks of —CF3 and —SO2 spectra within the 
range of 1000−1400 cm−1, as illustrated in Fig. 5(d). 
The characteristic peaks of —CF3 and — SO2 
considerably were weakened after the addition of 
CAB and can be attributed to the interaction 
between CAB and TFSI−. As shown in Fig. 5(e)  
and Fig. S3 in Supplementary Information, the 
dissociation degree of lithium salts in PL and 
PL-CAB-10% was determined through Raman 
spectroscopy. The Lorentzian fitting curves of F1 
and F2 correspond to the free TFSI− and ion cluster 
[Li(TFSI)2]−, respectively. The percentage of free 
TFSI− was calculated using Eq. (S2) in Supplementary 
Information [54]. The dissociation degree of lithium 
salt in PL-CAB-10% was 82.59%, remarkably 
higher than that in PL (49.74%). This increase can 
be primarily attributed to the addition of CAB, 
which possesses abundant unsaturated Cu/Al site, 
restricting the formation of [Li(TFSI)2]− aggregates 
through Lewis acid–base interactions and thereby 
increasing the availability of Li+ and TFSI−. 

The mechanical properties of solid-state 
electrolytes notably influence the safety performance 
of SSBs [55]. Typically, solid-state electrolyte  
films with poor mechanical strength are prone to 
puncture upon collisional deformation of the battery, 
leading to short circuits. The tensile strength of 
PL-CAB-10% reached 6.2 MPa (Fig. 5(f)), with a 
maximum strain of 1002%, surpassing that of PL 
(0.97 MPa, 845%), demonstrating good plastic 
flexibility. Hence, the mechanical properties of the 
composite solid electrolyte were improved 
substantially upon the addition of CAB. Furthermore, 
the excellent flexibility of PL-CAB-10% effectively 
reduced the susceptibility of the electrolyte film  
to rupture under external forces. Additionally, 
PL-CAB-10% can prevent the breakage of the solid 
electrolyte film due to the growth of lithium 
dendrites, thereby enhancing the long-cycle 
stability and safety performance of SSBs. 

The effects of CAB filler on the morphological 
characteristics of the PEO-based PL and PL-CAB-10% 
polymer samples were analyzed through SEM. 
Figure 6(a) and the corresponding inset indicate 
uneven areas and wrinkles on the surface of     
the PL film. However, after incorporating CAB, 
PL-CAB-10% exhibited a more even, smoother, 
and almost wrinkle-free surface morphology, as 
depicted in Fig. 6(b). This even, smooth surface 
facilitated interface contact with the positive and 
negative electrodes, resulting in the uniform 
deposition of Li+, and enhanced battery stability 
during long cycling. Furthermore, numerous holes 
were observed on the cross-section of the 
PL-CAB-10% solid electrolyte film (Fig. 6(c)), 
providing interfacial channels for efficient lithium- 
ion transport and enhancing transport efficiency. 
Hence, the addition of CAB improves the internal 
structure of the original electrolyte film. Element 
mappings (Fig. 6(d)) indicated the uniform 
distribution of Cu, N, C, Al, S, O, and F elements 
throughout the composite electrolyte, indicating 
that CAB was evenly dispersed within the polymer 
electrolyte rather than aggregated into clusters. 

The enhancement of ionic conductivity in 
SPEs upon the addition of CAB was investigated 
through AC impedance tests conducted using 
blocking cells at temperatures ranging from 30 to 
60 °C. The AC impedance spectra of SPEs with 
varying filler contents are presented in Fig. 7(a) and  
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Fig. 6 SEM images of PL (a) and PL-CAB-10% (b), cross-sectional SEM image of PL-CAB-10% (c), and cross- 
sectional mappings of PL-CAB-10% (d) 
 

 

Fig. 7 AC impedance spectra of PL-CAB-10% at different temperatures (a), comparison of ionic conductivity of 
different samples at different temperatures (b), chronoamperometry profile of Li/PL-CAB-10%/Li symmetrical cell 
(inset: AC impedances of corresponding symmetric cell before and after polarization) (c), and electrochemical window 
curves of different samples (d) 
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Fig. S4 (Supplementary Information). The resistance 
of all SPEs decreased with increasing temperature 
because of the decrease in the crystallized region in 
the polymer matrix and the accelerated chain 
segment motion of the PEO chain segment at high 
temperatures. These factors favor the migration of 
lithium ions, thereby reducing the interfacial 
resistance of the SPEs. Conductivity tests revealed 
that Cu−Al bimetallic MOFs are superior to 
Cu-based monometallic MOF, as shown in  
Fig. S5 in Supplementary Information. Within   
the temperature range from 30 to 60 °C, the  
Cu−Al bimetallic MOFs exhibited higher     
ionic conductivity compared with the Cu-based 
monometallic MOF (HKUST-1). The bimetallic 
MOF with a Cu−Al molar ratio of 6:1 exhibited the 
highest ionic conductivity. Therefore, the Cu−Al 
bimetallic MOF with a molar ratio of 6:1 was 
selected as the optimal material for subsequent 
experiments. Figure 7(b) displays the calculated 
ionic conductivities of SPEs with different CAB 
filler contents using the AC impedance spectra    
at different temperatures according to Eq. (S3)    
in Supplementary Information. The ionic 
conductivities of the composite SPEs with CAB 
fillers were higher than that of the SPEs without 
CAB. Moreover, the composite solid electrolytes 
filled with 10% CAB filler (PL-CAB-10%) exhibited 
the highest ionic conductivity within the temperature 
range from 30 to 60 °C. However, the variation of 
ionic conductivity was not always linearly related to 
the increase in CAB filler content. The ionic 
conductivity of the SPEs with 10% CAB filler was 
the highest. However, the conductivity decreased 
with further increases in the CAB filler content  
(e.g., 15%) because of an excess of CAB filler, 
which aggregates and blocks the Li+ migration 
pathway, thereby decreasing the ionic conductivity. 
The composite SPEs filled with 10% CAB filler 
exhibited optimal conductivities of 6.06×10−5 S/cm 
at 30 °C and 8.42×10−4 S/cm at 60 °C, which  
were considerably higher than those of PL 
(1.19×10−5 S/cm at 30 °C and 3.77×10−4 S/cm at 
60 °C). These results indicated that adding suitable 
amounts of CAB filler can effectively reduce the 
interface resistance of the PEO-based polymers and 
improve their ionic conductivities. 

Lithium-ion transference number (tLi) is an 
important indicator of the electrochemical 
performance of SPEs. Li−Li symmetric cells were 

assembled using polymer electrolytes with varying 
CAB contents, and their transference number was 
calculated. Additionally, the polarization current 
and impedance were measured before and after 
polarization. By utilizing Eq. (S4) in Supplementary 
Information, the tLi values of PL (Fig. S6(a) in 
Supplementary Information), PL-CAB-1% (Fig. S6(b) 
in Supplementary Information), PL-CAB-5% 
(Fig. S6(c) in Supplementary Information), PL- 
CAB-10% (Fig. 7(c)) and PL-CAB-15% (Fig. S6(d) 
in Supplementary Information) were 0.24, 0.38, 
0.40, 0.46, and 0.42, respectively. The variations in 
tLi of the polymer electrolytes were consistent with 
the changes in ionic conductivity (Fig. 7(b)). The 
interfacial channels for lithium-ion in the polymer 
electrolytes may be obstructed by the aggregation 
of excessive CAB filler, which hinders lithium-ion 
transport. However, an appropriate amount (10%) 
of CAB can facilitate lithium salt decomposition, 
restrict TFSI migration, and increase the lithium-ion 
transference number. 

Linear scanning voltammetry (LSV) tests were 
conducted to determine the electrochemical window 
of the prepared electrolytes. As depicted in Fig. 7(d), 
the electrolytes were gradually oxidized with the 
increase in voltage. Pure PEO oxidized at about 
4.13 V, whereas the SPEs with addition of CAB 
underwent oxidative decomposition at higher 
voltages, reaching 4.91 V. Hence, the addition of 
CAB can enhance the internal structure of the SPEs, 
enabling them to withstand high voltages without 
causing structural damage and widening the 
electrochemical window. 
 
3.3 Cycle stability of Li−Li symmetric cells 

The inhibitory effects of CAB on lithium 
dendrites and the stability of the solid–solid 
interface were analyzed through cycling tests using 
Li−Li symmetric cells. The stability of the output 
voltage under corresponding conditions indicated 
that the interface between the electrolyte and the 
electrode was stable during cycling. As illustrated 
in Fig. 8(a), the voltage of the Li−Li symmetric cell 
assembled with PL fluctuated drastically after   
300 cycles at 0.1 mA/cm2, indicating inferior 
interface stability. This phenomenon can be 
attributed to unsatisfactory interfacial contact and 
poor mechanical strength of the PL electrolyte. As 
cycling progressed, the Li+ accumulated at the 
interface, resulting in lithium dendrites, decreased 
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Fig. 8 Cycle performance of Li−Li symmetrical cells 
based on PL (a) and PL-CAB-10% (b) at current 
densities of 0.1 mA/cm2, and cyclic testing results of 
Li−Li symmetrical cells based on PL-CAB-10% at 
different current densities (c) 
 
interface stability, restricted Li+ insertion/extraction, 
and increased interface resistance. By comparison, 
the Li−Li symmetric cell assembled with 
PL-CAB-10% (Fig. 8(b)) maintained a voltage of 
approximately 100 mV for 1000 cycles at 
0.1 mA/cm2, indicating superior interface stability 
primarily because of the incorporation of CAB. The 
initial voltage of the PL-CAB-10% symmetric  
cell was approximately 100 mV, but gradually 
decreased and stabilized at 70−80 mV with 
increasing cycles. This initial behavior can be 
attributed to the inadequate and unstable interfacial 
contact between the solid electrolyte and the 
electrodes during the initial cycling, which requires 
activation through subsequent cycles. As illustrated 
in Fig. 8(c), the Li−Li symmetric cell assembled 

with PL-CAB-10% was stable at different current 
densities of 0.1, 0.2, and 0.3 mA/cm2. This can be 
attributed to the uniform cation plating and the 
generation of stable interfacial layers during the 
charge–discharge process, thereby enhancing the 
cycle stability of SSBs. 
 
3.4 Electrochemical performance of asymmetric 

cells 
Two asymmetric cells, LiFePO4/PL/Li and 

LiFePO4/PL-CAB-10%/Li were assembled with 
LiFePO4 as the cathode and metallic lithium as the 
anode to assess the practical applicability of PL and 
PL-CAB-10% in SSBs. Constant-current charging  
at 1.0C (1.0C=170 mA/g) to 3.8 V followed by 
constant-voltage charging resulted in high charging 
efficiency and reduced charging time, without 
overcharging or damage of the battery at high 
currents. The current density of the battery during 
constant-current discharging was 1.0C. As shown in 
Fig. S7(a) in Supplementary Information, the 
LiFePO4/PL/Li cell exhibited substantial capacity 
degradation after approximately 10 cycles, with a 
capacity retention rate of only 59% after 100 cycles. 
Additionally, its coulombic efficiency (CE) 
fluctuated considerably during cycling, indicating 
poor cycling stability. By contrast, the LiFePO4/ 
PL-CAB-10%/Li cell exhibited an initial discharge 
capacity of 155.9 mA·h/g, with a capacity retention 
rate of 92.7% after 100 cycles, as shown in Fig. 9(a). 
Furthermore, the charge/discharge voltage plateau 
of the LiFePO4/PL-CAB-10%/Li cell remained 
stable throughout cycling (Fig. 9(b)), with a smaller 
voltage of approximately 0.20 V compared with  
PL (about 1.05 V in Fig. S7(b) in Supplementary 
Information), indicating excellent cyclic stability 
and reduced electrochemical polarization. 

The interfacial stability of the LiFePO4/PL/Li 
and LiFePO4/PL-CAB-10%/Li cells after 100 cycles 
was analyzed through AC impedance tests, as 
illustrated in Figs. S8(a) and S8(b) in Supplementary 
Information, respectively. The resistance of the 
LiFePO4/PL-CAB-10%/Li cell was lower than 
800 Ω after 100 cycles. By contrast, the resistance 
of the LiFePO4/PL/Li cell was in the order of tens 
of ohms, likely because of interfacial instability, 
resulting in poor electrochemical performance; 
whereas, PL-CAB-10% improved interfacial 
stability during cycling owing to the introduction of 
CAB. 
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Fig. 9 Electrochemical performances of LiFePO4/PL-CAB-10%/Li: (a, b) Cycling performance at 1.0C and corresponding 
charge/discharge voltage profiles at different cycles, respectively; (c, d) Rate performance from 0.2C to 3.0C and 
corresponding charge/discharge voltage profiles at different rates, respectively; (e) Long-term cycle performance at 
1.0C 
 

The rate performance of the LiFePO4/PL- 
CAB-10%/Li cell was evaluated within the range of 
0.2C−3.0C, as shown in Fig. 9(c). The specific 
capacities obtained at 0.2C, 0.5C, 1.0C, 2.0C,   
and 3.0C were 156.1, 141.8, 138.7, 134.9, and 
128.2 mA·h/g, respectively. As illustrated in Fig. 9(d), 
the discharge plateaus of LiFePO4/PL-CAB-10%/Li 
gradually decreased with the increase in the current 
density from 3.0C to 0.2C, whereas the charging 
plateaus gradually increased, indicating increased 

electrochemical polarization. However, even when 
the current density returned to 0.2C, the specific 
capacity remained stable at 149.6 mA·h/g, with a 
relatively high retention rate of 95.8% compared 
with the initial discharge specific capacity. 
Furthermore, LiFePO4/PL-CAB-10%/Li exhibited  
a discharge capacity of over 100 mA·h/g at a high 
rate of 5.0C (Fig. S9 in Supplementary Information). 
When the rate returned to 0.5C, a retention rate as 
high as 93.7% was achieved, indicating that the rate 
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performance of LiFePO4/PL-CAB-10%/Li was 
favorable. 

Furthermore, the long cycling life of LiFePO4/ 
PL-CAB-10%/Li was measured and presented in 
Fig. 9(e). LiFePO4/PL-CAB-10%/Li maintained a 
discharge capacity of approximately 110 mA·h/g 
after 500 cycles, with a capacity retention rate of 
70%. The corresponding CE remained about 100%, 
indicating outstanding long cycling performance. 
Moreover, the cycling performance of LiFePO4/PL- 
CAB-10%/Li was superior to those of previously 
reported electrolyte materials (Table S1 in 
Supplementary Information). The improved 
electrochemical performance of PL-CAB-10% can 
be primarily attributed to the addition of Cu−Al 
bimetallic MOF, which provides abundant Lewis 
acid metal sites and regular pore channels, leading 
to increased Li+ transference number, ionic 
conductivity, and interfacial stability during  
cycling. Figure 10 briefly illustrates the influence 
mechanism of PL-CAB-10% incorporated through 
molecular grafting. 

 
3.5 Molecular dynamics simulation 

Molecular dynamics simulation (MDS) is a 
crucial and reliable technique for analyzing the 
macroscopic physicochemical properties and micro- 
scopic mechanisms of solid-state electrolytes [56,57]. 
MDS snapshots of PL and PL-CAB are plotted   
in Fig. S1(d) (Supplementary Information) and 
Fig. 11(a), respectively. The amorphous segments 
and Li+ diffusivity of the SPEs system can be 
determined by evaluating the value of Tg. The 
average densities of the SPEs system were 
calculated under temperature variations from 400 to 
160 K, with intervals of 20 K, using the MDS 
module. The variations in the specific volume of the 

PL and PL-CAB systems with changes in temperature 
are depicted in Fig. S10 in Supplementary 
Information and Fig. 11(b), respectively. The 
specific volume increased with the increase of 
temperature, but the variation rates differed 
throughout the temperature range. Tg of the system 
was evaluated by determining the slope of the 
specific volume versus temperature curve that 
represented the transition of the solid-state 
electrolyte from the glassy state to the rubbery state. 
The calculated Tg value of PL-CAB was 218.57 K 
(−54.58 °C), generally consistent with the DSC 
results of −49.31 °C. Furthermore, the Tg value of 
PL-CAB was considerably lower than that of PL 
(Tg=241.25 K), indicating a larger number of 
amorphous segments in PL-CAB [58,59]. This can 
be attributed to the introduction of CAB, which 
effectively increased the amorphous regions in the 
PEO polymer, thereby enhancing Li+ transport in 
PL-CAB. 

The mean square displacement (MSD) was 
calculated based on the Einstein formula (Eq. S(5) 
in Supplementary Information) to further track 
ionic motion in the solid-state electrolyte system. 
The MSD represents the distance between the initial 
position and the position at any moment during ion 
diffusion in the system. The diffusion coefficient  
(D) value is obtained as one-sixth of the slope of 
the MSD function. Figures S11 and S12 in 
Supplementary Information display the MSD 
curves of PL and PL-CAB at different temperatures, 
respectively; the slops of the MSD curves were 
obtained through linear fitting. As illustrated     
in Fig. 11(c), incorporating CAB significantly 
increased the D value of PL-CAB. Additionally,  
the ionic conductivities (σ) of PL and PL-CAB can 
be calculated using the Nernst−Einstein equation  

 

 
Fig. 10 Mechanism diagram of Cu−Al bimetallic MOFs reinforced PEO solid electrolyte 
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Fig. 11 MDS snapshot of PL-CAB (a), fitted glass transition temperature simulations of PL-CAB (b), comparison of 
diffusion coefficients (c) and ionic conductivity (d) of PL and PL-CAB obtained by calculation, and comparison of 
Li−O (e) and Li−O−S (f) RDF curves for PL and PL-CAB (r is atom spacing) 
 
(Eq. S(6) in Supplementary Information), as shown 
in Fig. 11(d). The ionic conductivity of both PL and 
PL-CAB increased with the increase of temperature, 
indicating the significant influence of temperature 
on ionic conductivity. This was consistent with  
the variation in the ion diffusion coefficient    
with temperature (Fig. 11(c)). Notably, the ionic 
conductivity of PL-CAB was substantially higher 
than that of PL at all temperatures. At 333.15 K, the 
ionic conductivity of PL-CAB was as high as 

3.67×10−4 S/cm, indicating that the PL-CAB system 
was not damaged, and the interfacial channels 
formed between the CAB and PEO polymer were 
maintained even at high temperatures. 

The radial distribution function (RDF, g(r)) 
analysis was conducted to evaluate the interaction 
between Li and O in the PEO chain segment (Li−O) 
or the lithium salt (Li−O−S). Corresponding to the 
Li−O interaction (Fig. 11(e)), a strong peak was 
observed in the PL-CAB system at approximately 
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1.9 Å, significantly higher than that in the PL 
system. Hence, the interaction between Li and O in 
the PEO chain segment in the PL-CAB system is 
more likely than that in the PL system. This can be 
attributed to the addition of Cu−Al bimetallic MOF, 
which reacts with the lithium salt to dissociate more 
Li+ in the PEO electrolyte. Moreover, the interfacial 
regions formed by CAB and PEO provided unique 
pathways for Li+ motion, increasing the density   
of Li+ carriers in the PEO chain segment. 
Consequently, the chance of interaction between Li 
and O in the PEO chain segment was enhanced 
after adding CAB. A strong peak was observed in 
the RDF curve of Li−O−S system, indicating a 
higher probability of interaction between Li and 
TFSI− and a lower Li+ concentration in the system. 
In terms of the Li−O−S interaction (Fig. 11(f)), a 
peak at around 2.0 Å in the PL-CAB system was 
lower than that in the PL system, indicating that the 
dissociation of LiTFSI was enhanced after the 
addition of CAB. This finding was consistent with 
the Raman spectra (Fig. 5(e)). 
 
4 Conclusions 
 

(1) A polymer solid electrolyte comprising 
Cu−Al bimetallic MOF, LiTFSI and PEO was 
developed through molecular grafting. Furthermore, 
the incorporation of CAB improved the ionic 
conductivity, lithium-ion transference number, 
electrochemical window, thermoelectric stability, 
and mechanical strength of the as-prepared 
electrolyte. 

(2) PL-CAB-10% exhibited optimal electro- 
chemical performances. A symmetric Li−Li cell 
with PL-CAB-10% exhibited stable performance 
over 1000 cycles at 0.1 mA/cm2, and an asymmetric 
LiFePO4/PL-CAB-10%/Li cell exhibited a high 
discharge capacity of 155.9 mA·h/g with a higher 
retention rate of approximately 70% after 500 
cycles. 

(3) The enhanced physicochemical properties 
can be attributed to the interaction between the 
Lewis acidic sites of CAB and LiTFSI, the grafting 
effect of CAB on PEO chains, and the confinement 
effect of TFSI− anions in the pore structure of CAB. 
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摘  要：为了提高聚环氧乙烷(PEO)基电解质的离子电导率，通过分子接枝工程制备了一种由 Cu−Al 双金属有机

框架(CAB)、锂盐(LiTFSI)和聚环氧乙烷 PEO 组成的复合固体电解质。实验和分子动力学模拟结果表明，含有

10% CAB(质量分数)的电解质(PL-CAB-10%)具有较高的离子电导率(60 ℃时为 8.42×10−4 S/cm)、较大的 Li+转移数

(0.46)、较宽的电化学窗口(4.91 V)、良好的热稳定性和优异的力学性能。此外，PL-CAB-10%在 Li−Li 对称电池和

Li/PL-CAB-10%/LiFePO4 非对称电池中均表现出优异的循环稳定性。其性能提升主要归因于多功能 CAB 的引入。

CAB 中的丰富金属位点可以通过 Lewis 酸碱相互作用与 TFSI−和 PEO 反应，这既促进了 LiTFSI 的解离，又提高

了离子电导率。同时，CAB 中的规则孔洞为阳离子均匀涂覆提供了均一的分散位点。 

关键词：聚环氧乙烷；铜铝双金属有机框架；固体锂金属电池；分子接枝；离子电导率 
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