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Abstract: A composite solid electrolyte comprising a Cu—Al bimetallic metal-organic framework (CAB), lithium salt
(LiTFSI) and polyethylene oxide (PEO) was fabricated through molecular grafting to enhance the ionic conductivity
of the PEO-based electrolytes. Experimental and molecular dynamics simulation results indicated that the electrolyte
with 10 wt.% CAB (PL-CAB-10%) exhibits high ionic conductivity (8.42x107*S/cm at 60 °C), high Li" transference
number (0.46), wide electrochemical window (4.91 V), good thermal stability, and outstanding mechanical properties.
Furthermore, PL-CAB-10% exhibits excellent cycle stability in both Li—Li symmetric battery and Li/PL-CAB-
10%/LiFePO4 asymmetric battery setups. These enhanced performances are primarily attributable to the introduction of
the versatile CAB. The abundant metal sites in CAB can react with TFSI” and PEO through Lewis acid-base
interactions, promoting LiTFSI dissociation and improving ionic conductivity. Additionally, regular pores in CAB
provide uniformly distributed sites for cation plating during cycling.

Key words: polyethylene oxide; Cu—Al bimetallic metal-organic framework; solid lithium metal battery; molecular
grafting; ionic conductivity

Furthermore, the limited theoretical capacity of
liquid LIBs fails to satisfy the high energy density
requirements of advanced applications [7,8]. By

1 Introduction

Lithium-ion batteries (LIBs) are applied in
various electronic products, electric vehicles, and
large-scale energy storage systems owing to
their lightweight characteristics and good cyclic
stability [1-3]. However, conventional liquid LIBs
employ highly volatile and flammable organic
electrolytes, leading to inadequate stability, low
ion selectivity and significant safety hazards [4—6].
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contrast, solid-state batteries (SSBs) exhibit higher
energy density and are safer and more suitable for
high-energy storage devices [9—11]. However, the
commercialization of SSBs is hindered by the
low ionic conductivity of solid electrolytes (SEs),
and unsatisfactory interfacial contact between
the electrolyte and the electrode [12—14]. Thus,
most studies on SSBs have primarily focused on
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improving the ionic conductivity of SEs and the
electrolyte—electrode interface contact.

Solid-state  polymer electrolytes (SPEs),
particularly, polyethylene oxide (PEO), have
attracted extensive attention owing to their high
flexibility, high interfacial compatibility, and
ease of preparation [15,16]. However, the inferior
mechanical strength and low ionic conductivity of
SPEs restrict their practical application [17—19].
Researchers have attempted to address these issues
through approaches such as cross-linking [14],
copolymerization [20,21], and filler incorporation
[22—24]. Among various methods, adding fillers
(TiO; [25], SiOs [26], AlLOs [27], Mg:B20s [28],
BaTiO; [29], and Gdo.1Ceo901.9s [30]) to prepare
composite SPEs results in the most substantial
improvements in the mechanical strength and ionic
conductivity of composite SPEs. Nonetheless,
incorporating inorganic fillers may deteriorate the
interfacial contact and stability of SPEs [31].

Being composed of metal ions and organic
ligands, metal-organic frameworks (MOFs) are
extensively used to modify SPEs owing to their rich
porosity, large specific surface area, and inorganic—
organic hybrid properties [32—34]. Compared with
binary metal oxides, bimetallic MOFs offer several
benefits for SPEs, which can be summarized as
follows. Firstly, the metal content of bimetallic
MOFs can be varied to accurately tune their
physicochemical and electrochemical properties,
including stability and conductivity [35,36].
Secondly, the controllable porous structures of
bimetallic MOFs serve as ion sieves that
preferentially facilitate cation transfer [37]. Thirdly,
the large specific surface area of bimetallic
MOFs promotes sufficient contact with other
components [37,38]. Fourthly, the regular pores of
bimetallic MOFs provide uniformly distributed
metal sites, ensuring the uniformity of cation
plating and the formation of stable interfacial layers
during cycling, thus enhancing the cycle stability
of SSBs [37,39]. Moreover, bimetallic MOFs with
different active metal sites exhibit superior
physicochemical properties and synergistic effects
compared with their monometallic counterparts
[40—42]. When selecting metal nodes for bimetallic
MOFs, factors such as electronegativity, valency,
Lewis acidity, and adsorption energy towards
lithium salt anions must be considered [37]. For
example, the high electronegativity of Cu?'

facilitates the formation of more covalent bonds
with thermodynamic stability compared with other
metals such as Mn?*, Zn?*, Cd*", and Pb*' [43,44].
Because of its high valency and Lewis acidity,
AI** effectively restricts the movement of lithium
salt anions, thereby enhancing the dissociation
of lithium bis(trifluoromethanesulphonyl) imide
(LiTFSI) and improving the ionic conductivity of
SPEs [45,46]. When appropriate metal nodes
are selected, bimetallic MOFs with controllable
structures and compositions can exhibit high
stability, good conductivity, and exposed active
sites [37]. At present most studies on bimetallic
MOFs have been focused on their application in
supercapacitors and electrocatalysis [47,48]; their
applicability in SPEs has yet to be explored.

In the present study, molecular grafting was
used to develop a novel and flexible PEO-based
composite solid electrolyte film composed of
Cu—Al bimetallic metal-organic framework (CAB)
and LiTFSI to enhance the ionic conductivity and
mechanical strength of SPEs. A series of composite
solid electrolytes with varying amounts of CAB
were prepared and characterized to investigate the
effects of CAB content on the properties of SPEs.
The influence mechanism of CAB in polymer
electrolytes was analyzed through physicochemical
characterization and molecular dynamics simulation
(MDS). By using Cu—Al bimetallic MOF, this
molecular grafting strategy offers an innovative
approach for designing and developing high-
performance SSBs.

2 Experimental

2.1 Synthesis of Cu—Al bimetallic MOF's materials

The Cu—Al bimetallic MOFs were synthesized
through a hydrothermal method, as depicted in
Fig. 1 and Fig. S1 in Supplementary Information.
Firstly, 9 mmol of Cu(NOs),-:3H.O (AR, National
Medicine) and 1.5 mmol of AI(NOs)3-9H,O (AR,
National Medicine) were dissolved in ultrapure
water and stirred magnetically until a homogeneous
solution, referred to as Solution A, was obtained.
Simultaneously, 6 mmol of homophthalic acid (H;BTC,
Macklin) and a small amount of cetyltrimethyl
ammonium bromide (Macklin) were dissolved in
anhydrous ethanol and stirred to form a transparent
solution, referred to as Solution B. Subsequently,
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Solutions A and B were mixed and stirred for
30 min, then transferred to a Teflon-lined
stainless-steel autoclave and heated at 120 °C for
24 h. The resulting precipitate was washed by
centrifugation with ethanol and ultrapure water to
obtain a light blue crystallite, which was then dried
in a vacuum drying oven at 100 °C for 12 h. The
dried blue crystallite was ground into a powder and
activated in a vacuum drying oven at 150 °C to
obtain Cu—Al bimetallic MOFs.

2.2 Preparation of composite solid electrolyte

As depicted in Fig. 2, the Cu—Al bimetallic
MOFs, featuring abundant and highly Lewis acidic
sites, reacted with the oxygen in PEO and TFSI
anions to form a composite solid electrolyte.
Firstly, 0.4 g of LiTFSI (99.99%, Aladdin), 0.92 g
of poly(propylene oxide) (PEO, relative molecular
mass of 6x10°, Macklin) and the desired amount of

H,BTC
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CAB were weighed and dissolved to 20 mL of
anhydrous acetonitrile solution (AR, National
Medicine). The mixture was stirred until complete
dissolution. The resulting solution was poured
into a container lined with a Teflon membrane
and allowed to the rest 24 h to ensure that
the acetonitrile solvent evaporated. Subsequently,
it was transferred to a vacuum drying oven at
40 °C for 12h to remove any residual solvent.
The resulting solid electrolyte film was obtained
and cut into small discs with a diameter of 19 mm
for cell assembly. A control sample composed of
the PEO polymer electrolyte without CAB was
prepared. The composite electrolytes with mass
fractions of CAB (0%, 1%, 5%, 10%, 15%) were
denoted as PL, PL-CAB-1%, PL-CAB-5%,
PL-CAB-10%, and PL-CAB-15%, respectively. All
these processes were conducted in an Ar-filled
glove box.

Cu—Al bimetallic MOF

Fig. 1 Schematic diagram of fabrication of Cu—Al bimetallic MOF
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Fig. 2 Schematic diagram of synthesis of PL-CAB
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3 Results and discussion
3.1 Physicochemical Cu—Al
bimetallic MOF

The crystal structures of the synthesized
materials were examined using X-ray diffraction
(XRD). As depicted in Fig. 3, the characteristic
peaks of the synthesized materials resembled those
of Cu-based MOF (HKUST-1) reported in previous
studies [49,50], indicating the consistency in the
crystal structure. Furthermore, no impurity peaks
associated with Al compounds were observed in
the spectra, suggesting the successful incorporation
of the Al element into the crystal structure
of HKUST-1 without disrupting the original
arrangement of the crystal structure.

The microcosmic morphology of CAB was
characterized using scanning electron microscopy
(SEM), as illustrated in Fig. 4(a). The synthesized
material exhibited a regular octahedral shape with a

properties  of

(222)

200(°)

side length of approximately 40 um. A closer
inspection of the partially magnified SEM image
(Fig. 4(b)) revealed that the octahedron was formed
by self-assembled tiny primary particles, resulting
in a porous structure. This porous structure
enhanced the contact area with the polymer
electrolyte, while the exposed metal active sites on
the pore walls of CAB facilitated the binding of
lithtum salt anions in the pore channels. This
binding promotes the transport of Li" along the
interfacial channels formed between PEO and the
CAB filler. Energy spectrum analysis revealed
that Cu, AL, and O were uniformly distributed
throughout the octahedral CAB rather than being
aggregated at specific locations, confirming that
the Cu—Al bimetallic MOF was successfully
synthesized using the hydrothermal method.

3.2 Physicochemical

solid electrolytes

The incorporation of CAB can reduce the
crystallized region of the PEO matrix and enhance
Li" migration ability, as indicated by XRD and
differential scanning calorimetry (DSC) results.
As shown in Fig. 5(a), PL-CAB-10% exhibited
characteristic PEO peaks after the addition of CAB,
indicating that the composite solid-state electrolyte
PL-CAB-10% was stable during the preparation
process. Notably, the peaks corresponding to PEO
in PL-CAB-10% were considerably weaker than
those corresponding to PEO in PL, suggesting a
reduction in the crystallinity of PEO after the
addition of CAB, which improved its ability
for ionic migration. Additionally, differential
scanning calorimetry (DSC) analysis was performed

properties of composite

Fig. 4 SEM image (a) and partial magnification SEM image and element mapping (b) of Cu—Al bimetallic MOF
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Fig. 5 XRD patterns of PL and PL-CAB-10% (a), DSC curves of PEO, PL and PL-CAB-10% (b), thermogravimetric
curves of PL-CAB-10% (c), Raman spectra of PL and PL-CAB-10% (d), Raman spectra of PL-CAB-10% fitted with F1
and F2 bands (e), and stress—strain curves of PL and PL-CAB-10% (f)

to determine the glass transition temperature (7;)
and melting point (7w) of the polymeric materials.
As depicted in Fig. 5(b), the decreasing order of
T, and T, values was PEO (7,=41.35°C,
Tw=61.58 °C) > PL (T,=—43.83 °C, Tn=41.57 °C) >
PL-CAB-10% (7,=—49.31 °C, Tx=37.13 °C). Thus,
the addition of LiTFSI and CAB can synergistically
lower T; and T, of PEO, thereby enhancing its
ionic conductivity. Furthermore, the proportion of
crystallized regions was calculated using the
melting enthalpy of the polymer materials obtained
from the DSC test and Eq. (S1) in Supplementary
Information [51]. The proportion of crystallized

regions in PL-CAB-10% was 11.1%, lower than
that of PL. Hence, incorporating CAB can improve
the amorphous region in the polymeric materials,
consistent with the XRD results. The decrease in
the crystallized region increases the conductivity by
facilitating the motion of active chain segments.
Thermogravimetric analysis (TGA) tests under
an Ar atmosphere were conducted to investigate the
thermal stability of the SPEs. The samples exhibited
mass loss at temperatures lower than 200 °C, likely
because of the desorption of surface-adsorbed water
or bound water. The thermal decomposition of
PEO (Fig. S2(a) in Supplementary Information) and
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CAB (Fig. S2(b) in Supplementary Information)
occurred within the temperature ranges of 340—420
and 280-365°C, respectively. As shown in
Fig. S2(c) in Supplementary Information, the TGA
graph of PL indicated excellent stability at
temperatures lower than 325 °C compared with
combustible organic liquid electrolytes [52,53].
However, PL underwent an irreversible thermal
decomposition occurred between 325 and 450 °C.
The initial thermal decomposition temperature of
PL was lower than that of pure PEO, which can be
attributed to the introduction of lithium salt. By
contrast, the influence of CAB on the thermal

stability of PL was minimal, as depicted in Fig. 5(c).

Nevertheless, a significant mass loss was observed
within the temperature range of 315—445°C,
corresponding to three stages of thermal
decomposition. The mass loss observed in
PL-CAB-10% between 315 and 345 °C can be
attributed to the decomposition process of CAB.
The thermal decomposition of PEO and CAB
predominated between 345 and 385 °C, while the
thermal decomposition of PEO and LiTFSI
dominated within the range of 385-445°C.
Ultimately, PL-CAB-10% exhibited a final residual
mass fraction of 15%, higher than that of PL (8%).
These TGA results indicated the excellent thermal
stability of PL-CAB-10%.

Raman spectroscopy revealed characteristic
peaks of —CF3; and —SO; spectra within the
range of 1000—1400 cm ™!, as illustrated in Fig. 5(d).
The characteristic peaks of —CFs; and — SO,
considerably were weakened after the addition of
CAB and can be attributed to the interaction
between CAB and TFSI". As shown in Fig. 5(e)
and Fig. S3 in Supplementary Information, the
dissociation degree of lithium salts in PL and
PL-CAB-10% was determined through Raman
spectroscopy. The Lorentzian fitting curves of F1
and F2 correspond to the free TFSI™ and ion cluster
[Li(TFESI),]", respectively. The percentage of free
TFSI™ was calculated using Eq. (S2) in Supplementary
Information [54]. The dissociation degree of lithium
salt in PL-CAB-10% was 82.59%, remarkably
higher than that in PL (49.74%). This increase can
be primarily attributed to the addition of CAB,
which possesses abundant unsaturated Cu/Al site,
restricting the formation of [Li(TFSI),]  aggregates
through Lewis acid-base interactions and thereby
increasing the availability of Li* and TFSI".

The mechanical properties of solid-state
electrolytes notably influence the safety performance
of SSBs [55]. Typically, solid-state electrolyte
films with poor mechanical strength are prone to
puncture upon collisional deformation of the battery,
leading to short circuits. The tensile strength of
PL-CAB-10% reached 6.2 MPa (Fig. 5(f)), with a
maximum strain of 1002%, surpassing that of PL
(0.97 MPa, 845%), demonstrating good plastic
flexibility. Hence, the mechanical properties of the
composite solid electrolyte improved
substantially upon the addition of CAB. Furthermore,
the excellent flexibility of PL-CAB-10% effectively
reduced the susceptibility of the electrolyte film
to rupture under external forces. Additionally,
PL-CAB-10% can prevent the breakage of the solid
electrolyte film due to the growth of lithium
dendrites, thereby enhancing the long-cycle
stability and safety performance of SSBs.

The effects of CAB filler on the morphological
characteristics of the PEO-based PL and PL-CAB-10%
polymer samples were analyzed through SEM.
Figure 6(a) and the corresponding inset indicate
uneven areas and wrinkles on the surface of
the PL film. However, after incorporating CAB,
PL-CAB-10% exhibited a more even, smoother,
and almost wrinkle-free surface morphology, as
depicted in Fig. 6(b). This even, smooth surface
facilitated interface contact with the positive and
negative electrodes, resulting in the uniform
deposition of Li*, and enhanced battery stability
during long cycling. Furthermore, numerous holes
were observed on the cross-section of the
PL-CAB-10% solid electrolyte film (Fig. 6(c)),
providing interfacial channels for efficient lithium-
ion transport and enhancing transport efficiency.
Hence, the addition of CAB improves the internal
structure of the original electrolyte film. Element
mappings (Fig. 6(d)) indicated the uniform
distribution of Cu, N, C, Al, S, O, and F elements
throughout the composite electrolyte, indicating
that CAB was evenly dispersed within the polymer
electrolyte rather than aggregated into clusters.

The enhancement of ionic conductivity in
SPEs upon the addition of CAB was investigated
through AC impedance tests conducted using
blocking cells at temperatures ranging from 30 to
60 °C. The AC impedance spectra of SPEs with
varying filler contents are presented in Fig. 7(a) and

WEre
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Fig. 6 SEM images of PL (a) and PL-CAB-10% (b), cross-sectional SEM image of PL-CAB-10% (c), and cross-
sectional mappings of PL-CAB-10% (d)
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Fig. 7 AC impedance spectra of PL-CAB-10% at different temperatures (a), comparison of ionic conductivity of
different samples at different temperatures (b), chronoamperometry profile of Li/PL-CAB-10%/Li symmetrical cell
(inset: AC impedances of corresponding symmetric cell before and after polarization) (c), and electrochemical window
curves of different samples (d)
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Fig. S4 (Supplementary Information). The resistance
of all SPEs decreased with increasing temperature
because of the decrease in the crystallized region in
the polymer matrix and the accelerated chain
segment motion of the PEO chain segment at high
temperatures. These factors favor the migration of
lithium ions, thereby reducing the interfacial
resistance of the SPEs. Conductivity tests revealed
that Cu—Al bimetallic MOFs are superior to
Cu-based monometallic MOF, as shown in
Fig. S5 in Supplementary Information. Within
the temperature range from 30 to 60 °C, the
Cu—Al Dbimetallic MOFs exhibited higher
ionic conductivity compared with the Cu-based
monometallic MOF (HKUST-1). The bimetallic
MOF with a Cu—Al molar ratio of 6:1 exhibited the
highest ionic conductivity. Therefore, the Cu—Al
bimetallic MOF with a molar ratio of 6:1 was
selected as the optimal material for subsequent
experiments. Figure 7(b) displays the calculated
ionic conductivities of SPEs with different CAB
filler contents using the AC impedance spectra
at different temperatures according to Eq.(S3)
in  Supplementary Information. The ionic
conductivities of the composite SPEs with CAB
fillers were higher than that of the SPEs without
CAB. Moreover, the composite solid electrolytes
filled with 10% CAB filler (PL-CAB-10%) exhibited
the highest ionic conductivity within the temperature
range from 30 to 60 °C. However, the variation of
ionic conductivity was not always linearly related to
the increase in CAB filler content. The ionic
conductivity of the SPEs with 10% CAB filler was
the highest. However, the conductivity decreased
with further increases in the CAB filler content
(e.g., 15%) because of an excess of CAB filler,
which aggregates and blocks the Li" migration
pathway, thereby decreasing the ionic conductivity.
The composite SPEs filled with 10% CAB filler
exhibited optimal conductivities of 6.06x107> S/cm
at 30°C and 8.42x10* S/cm at 60 °C, which
were considerably higher than those of PL
(1.19x10°S/cm at 30°C and 3.77x10*S/cm at
60 °C). These results indicated that adding suitable
amounts of CAB filler can effectively reduce the
interface resistance of the PEO-based polymers and
improve their ionic conductivities.

Lithium-ion transference number (#i) is an
important indicator of the electrochemical
performance of SPEs. Li—Li symmetric cells were

assembled using polymer electrolytes with varying
CAB contents, and their transference number was
calculated. Additionally, the polarization current
and impedance were measured before and after
polarization. By utilizing Eq. (S4) in Supplementary
Information, the #; values of PL (Fig. S6(a) in
Supplementary Information), PL-CAB-1% (Fig. S6(b)
in  Supplementary Information), PL-CAB-5%
(Fig. S6(c) in Supplementary Information), PL-
CAB-10% (Fig. 7(c)) and PL-CAB-15% (Fig. S6(d)
in Supplementary Information) were 0.24, 0.38,
0.40, 0.46, and 0.42, respectively. The variations in
ti of the polymer electrolytes were consistent with
the changes in ionic conductivity (Fig. 7(b)). The
interfacial channels for lithium-ion in the polymer
electrolytes may be obstructed by the aggregation
of excessive CAB filler, which hinders lithium-ion
transport. However, an appropriate amount (10%)
of CAB can facilitate lithium salt decomposition,
restrict TFSI migration, and increase the lithium-ion
transference number.

Linear scanning voltammetry (LSV) tests were
conducted to determine the electrochemical window
of the prepared electrolytes. As depicted in Fig. 7(d),
the electrolytes were gradually oxidized with the
increase in voltage. Pure PEO oxidized at about
4.13 V, whereas the SPEs with addition of CAB
underwent oxidative decomposition at higher
voltages, reaching 4.91 V. Hence, the addition of
CAB can enhance the internal structure of the SPEs,
enabling them to withstand high voltages without
causing structural damage and widening the
electrochemical window.

3.3 Cycle stability of Li—Li symmetric cells

The inhibitory effects of CAB on lithium
dendrites and the stability of the solid—solid
interface were analyzed through cycling tests using
Li—Li symmetric cells. The stability of the output
voltage under corresponding conditions indicated
that the interface between the electrolyte and the
electrode was stable during cycling. As illustrated
in Fig. 8(a), the voltage of the Li—Li symmetric cell
assembled with PL fluctuated drastically after
300 cycles at 0.1 mA/cm? indicating inferior
interface stability. This phenomenon can be
attributed to unsatisfactory interfacial contact and
poor mechanical strength of the PL electrolyte. As
cycling progressed, the Li" accumulated at the
interface, resulting in lithium dendrites, decreased



Liu-bin SONG, et al/Trans. Nonferrous Met. Soc. China 34(2024) 2943-2958 2951

N
~

e
o

Voltage/V
[e=]

-0.2

-04 . . . s . .
0 50 100 150 200 250 300 350
Cycle number
0.4
(b)
0.2}
2
5]
)
2 of
S
>
-0.2+
-04 I 1 1 L
0 200 400 600 800 1000
Cycle number
04 (©) 0.3 mA/cm?
o2l 0.2 mA/cm?* ||
2 0.1 mA/cm? 0.1 mA/cm?
Y
S
>
=02 i
-04 s s . . . . s
20 40 60 80 100 120 140

Cycle number
Fig. 8 Cycle performance of Li—Li symmetrical cells
based on PL (a) and PL-CAB-10% (b) at current
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interface stability, restricted Li* insertion/extraction,
and increased interface resistance. By comparison,
the Li—Li symmetric cell assembled with
PL-CAB-10% (Fig. 8(b)) maintained a voltage of
approximately 100 mV for 1000 cycles at
0.1 mA/cm?, indicating superior interface stability
primarily because of the incorporation of CAB. The
initial voltage of the PL-CAB-10% symmetric
cell was approximately 100 mV, but gradually
decreased and stabilized at 70-80mV with
increasing cycles. This initial behavior can be
attributed to the inadequate and unstable interfacial
contact between the solid electrolyte and the
electrodes during the initial cycling, which requires
activation through subsequent cycles. As illustrated
in Fig. 8(c), the Li—Li symmetric cell assembled

with PL-CAB-10% was stable at different current
densities of 0.1, 0.2, and 0.3 mA/cm?. This can be
attributed to the uniform cation plating and the
generation of stable interfacial layers during the
charge—discharge process, thereby enhancing the
cycle stability of SSBs.

3.4 Electrochemical performance of asymmetric
cells

Two asymmetric cells, LiFePO4/PL/Li and
LiFePO4/PL-CAB-10%/Li were assembled with
LiFePO, as the cathode and metallic lithium as the
anode to assess the practical applicability of PL and
PL-CAB-10% in SSBs. Constant-current charging
at 1.0C (1.0C=170 mA/g) to 3.8V followed by
constant-voltage charging resulted in high charging
efficiency and reduced charging time, without
overcharging or damage of the battery at high
currents. The current density of the battery during
constant-current discharging was 1.0C. As shown in
Fig. S7(a) in Supplementary Information, the
LiFePO4/PL/Li cell exhibited substantial capacity
degradation after approximately 10 cycles, with a
capacity retention rate of only 59% after 100 cycles.
Additionally, its coulombic efficiency (CE)
fluctuated considerably during cycling, indicating
poor cycling stability. By contrast, the LiFePO./
PL-CAB-10%/Li cell exhibited an initial discharge
capacity of 155.9 mA-h/g, with a capacity retention
rate of 92.7% after 100 cycles, as shown in Fig. 9(a).
Furthermore, the charge/discharge voltage plateau
of the LiFePO4/PL-CAB-10%/Li cell remained
stable throughout cycling (Fig. 9(b)), with a smaller
voltage of approximately 0.20 V compared with
PL (about 1.05V in Fig. S7(b) in Supplementary
Information), indicating excellent cyclic stability
and reduced electrochemical polarization.

The interfacial stability of the LiFePO4/PL/Li
and LiFePO4/PL-CAB-10%/Li cells after 100 cycles
was analyzed through AC impedance tests, as
illustrated in Figs. S8(a) and S&(b) in Supplementary
Information, respectively. The resistance of the
LiFePO4/PL-CAB-10%/Li cell was lower than
800 Q after 100 cycles. By contrast, the resistance
of the LiFePO4/PL/Li cell was in the order of tens
of ohms, likely because of interfacial instability,
resulting in poor electrochemical performance;
whereas, PL-CAB-10% improved interfacial
stability during cycling owing to the introduction of
CAB.
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corresponding charge/discharge voltage profiles at different rates, respectively; (e¢) Long-term cycle performance at

1.0C

The rate performance of the LiFePO4/PL-
CAB-10%/Li cell was evaluated within the range of
0.2C-3.0C, as shown in Fig.9(c). The specific
capacities obtained at 0.2C, 0.5C, 1.0C, 2.0C,
and 3.0C were 156.1, 141.8, 138.7, 134.9, and
128.2 mA-h/g, respectively. As illustrated in Fig. 9(d),
the discharge plateaus of LiFePO4/PL-CAB-10%/Li
gradually decreased with the increase in the current
density from 3.0C to 0.2C, whereas the charging
plateaus gradually increased, indicating increased

electrochemical polarization. However, even when
the current density returned to 0.2C, the specific
capacity remained stable at 149.6 mA-h/g, with a
relatively high retention rate of 95.8% compared
with the initial discharge specific capacity.
Furthermore, LiFePO4/PL-CAB-10%/Li exhibited
a discharge capacity of over 100 mA-h/g at a high
rate of 5.0C (Fig. S9 in Supplementary Information).
When the rate returned to 0.5C, a retention rate as
high as 93.7% was achieved, indicating that the rate
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performance of LiFePO4/PL-CAB-10%/Li was
favorable.

Furthermore, the long cycling life of LiFePO4/
PL-CAB-10%/Li was measured and presented in
Fig. 9(e). LiFePO4/PL-CAB-10%/Li maintained a
discharge capacity of approximately 110 mA-h/g
after 500 cycles, with a capacity retention rate of
70%. The corresponding CE remained about 100%,
indicating outstanding long cycling performance.
Moreover, the cycling performance of LiFePO4/PL-
CAB-10%/Li was superior to those of previously
reported electrolyte materials (Table S1 in
Supplementary  Information). The improved
electrochemical performance of PL-CAB-10% can
be primarily attributed to the addition of Cu—Al
bimetallic MOF, which provides abundant Lewis
acid metal sites and regular pore channels, leading
to increased Li" transference number, ionic
conductivity, and interfacial stability during
cycling. Figure 10 briefly illustrates the influence
mechanism of PL-CAB-10% incorporated through
molecular grafting.

3.5 Molecular dynamics simulation

Molecular dynamics simulation (MDS) is a
crucial and reliable technique for analyzing the
macroscopic physicochemical properties and micro-
scopic mechanisms of solid-state electrolytes [56,57].
MDS snapshots of PL and PL-CAB are plotted
in Fig. S1(d) (Supplementary Information) and
Fig. 11(a), respectively. The amorphous segments
and Li* diffusivity of the SPEs system can be
determined by evaluating the value of 7, The
average densities of the SPEs system were
calculated under temperature variations from 400 to
160 K, with intervals of 20 K, using the MDS
module. The variations in the specific volume of the

Li-ion battery

Cu—Al bimetallic
MOF

Fig. 10 Mechanism diagram of Cu—Al bimetallic MOFs reinforced PEO solid electrolyte

PL and PL-CAB systems with changes in temperature
are depicted in Fig.S10 in Supplementary
Information and Fig. 11(b), respectively. The
specific volume increased with the increase of
temperature, but the variation rates differed
throughout the temperature range. 7, of the system
was evaluated by determining the slope of the
specific volume versus temperature curve that
represented the transition of the solid-state
electrolyte from the glassy state to the rubbery state.
The calculated 7, value of PL-CAB was 218.57 K
(—54.58 °C), generally consistent with the DSC
results of —49.31 °C. Furthermore, the 7, value of
PL-CAB was considerably lower than that of PL
(T#=241.25 K), indicating a larger number of
amorphous segments in PL-CAB [58,59]. This can
be attributed to the introduction of CAB, which
effectively increased the amorphous regions in the
PEO polymer, thereby enhancing Li" transport in
PL-CAB.

The mean square displacement (MSD) was
calculated based on the Einstein formula (Eq. S(5)
in Supplementary Information) to further track
ionic motion in the solid-state electrolyte system.
The MSD represents the distance between the initial
position and the position at any moment during ion
diffusion in the system. The diffusion coefficient
(D) value is obtained as one-sixth of the slope of
the MSD function. Figures S11 and S12 in
Supplementary Information display the MSD
curves of PL and PL-CAB at different temperatures,
respectively; the slops of the MSD curves were
obtained through linear fitting. As illustrated
in Fig. 11(c), incorporating CAB significantly
increased the D value of PL-CAB. Additionally,
the ionic conductivities (o) of PL and PL-CAB can
be calculated using the Nernst—Einstein equation

PEO

Lewis acid—base
interation

®.~—» Cu—Al bimetallic
oo

& 03— TFSI”
3 oo o Li*
Pore channel
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(Eq. S(6) in Supplementary Information), as shown
in Fig. 11(d). The ionic conductivity of both PL and
PL-CAB increased with the increase of temperature,
indicating the significant influence of temperature
on ionic conductivity. This was consistent with
the variation in the ion diffusion coefficient
with temperature (Fig. 11(c)). Notably, the ionic
conductivity of PL-CAB was substantially higher
than that of PL at all temperatures. At 333.15 K, the
ionic conductivity of PL-CAB was as high as

3.67x107*S/cm, indicating that the PL-CAB system
was not damaged, and the interfacial channels
formed between the CAB and PEO polymer were
maintained even at high temperatures.

The radial distribution function (RDF, g(r))
analysis was conducted to evaluate the interaction
between Li and O in the PEO chain segment (Li—O)
or the lithium salt (Li—O—S). Corresponding to the
Li—O interaction (Fig. 11(e)), a strong peak was
observed in the PL-CAB system at approximately
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1.9 A, significantly higher than that in the PL
system. Hence, the interaction between Li and O in
the PEO chain segment in the PL-CAB system is
more likely than that in the PL system. This can be
attributed to the addition of Cu—Al bimetallic MOF,
which reacts with the lithium salt to dissociate more
Li" in the PEO electrolyte. Moreover, the interfacial
regions formed by CAB and PEO provided unique
pathways for Li* motion, increasing the density
of Li" carriers in the PEO chain segment.
Consequently, the chance of interaction between Li
and O in the PEO chain segment was enhanced
after adding CAB. A strong peak was observed in
the RDF curve of Li—O—S system, indicating a
higher probability of interaction between Li and
TFSI™ and a lower Li" concentration in the system.
In terms of the Li—O—S interaction (Fig. 11(f)), a
peak at around 2.0 A in the PL-CAB system was
lower than that in the PL system, indicating that the
dissociation of LiTFSI was enhanced after the
addition of CAB. This finding was consistent with
the Raman spectra (Fig. 5(¢)).

4 Conclusions

(I) A polymer solid electrolyte comprising
Cu—Al bimetallic MOF, LiTFSI and PEO was
developed through molecular grafting. Furthermore,
the incorporation of CAB improved the ionic
conductivity, lithium-ion transference number,
electrochemical window, thermoelectric stability,
and mechanical strength of the as-prepared
electrolyte.

(2) PL-CAB-10% exhibited optimal electro-
chemical performances. A symmetric Li—Li cell
with PL-CAB-10% exhibited stable performance
over 1000 cycles at 0.1 mA/cm?, and an asymmetric
LiFePO4/PL-CAB-10%/Li cell exhibited a high
discharge capacity of 155.9 mA-h/g with a higher
retention rate of approximately 70% after 500
cycles.

(3) The enhanced physicochemical properties
can be attributed to the interaction between the
Lewis acidic sites of CAB and LiTFSI, the grafting
effect of CAB on PEO chains, and the confinement
effect of TFSI™ anions in the pore structure of CAB.
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