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Abstract: The Ni-coated carbon nanotubes (Ni@CNT) composite was synthesized by the facile “filtration + calcination”
of Ni-based metal—organic framework (MOF) precursor and the obtained composite was used as a catalyst for MgH,.
MgH, was mixed evenly with different amounts of Ni@CNT (2.5, 5.0 and 7.5, wt.%) through ball milling. The
MgHo—5wt.%Ni@CNT can absorb 5.2 wt.% H; at 423 K in 200 s and release about 3.75 wt.% H» at 573 K in 1000 s.
And its dehydrogenation and rehydrogenation activation energies are reduced to 87.63 and 45.28 kJ/mol (H,). The
in-situ generated Mg>Ni/Mg,NiHy exhibits a good catalytic effect due to the provided more diffusion channels that can
be used as “hydrogen pump”. And the presence of carbon nanotubes improves the properties of MgH, to some extent.
Key words: Mg-based hydrogen storage material; activation energy; Ni-loaded carbon nanotubes; catalyst; mechanism

1 Introduction

The excessive use of fossil fuels in recent
years has provoked increasing global concern.
Fossil energy is nonrenewable and its consumption
leads to the emission of carbon dioxide, which
exacerbates the greenhouse effect, contributing to
the melting of Arctic glaciers and elevated sea
levels [1]. From this viewpoint, seeking novel
energy consumption solutions in an effort to resolve
the aforementioned challenges faced by the
exploitation of fossil energy is urgent. The current
novel energy sources include biomass, wind, solar,
and hydrogen energies [2]. These energy sources
are clean, renewable, and do not cause secondary
environmental pollution. Among these sources of
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energy, nuclear power produces nuclear waste, and
wind, solar, and tidal energies are time sensitive.
Given the constraints of weather and time, these
alternative sources of energy cannot possibly
replace fossil energy within the foreseeable
future [3]. Comparatively, hydrogen energy, with
its clean and efficient applications, stands out
as a unique alternative energy source [4,5]. Since
the 1970s, countries all over the world have
attempted to conduct research on hydrogen energy.
Technologies for hydrogen production, storage,
transportation, and application have evolved with
time and have become the focus of research in the
21st century [6,7].

Effective and secure hydrogen storage is
critical for increasing hydrogen energy and
achieving carbon peaking and carbon neutrality. In
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recent years, high-pressure  gaseous, low-
temperature liquid, and solid-state hydrogen storage
have become subjects of extensive research [8].
Among these types, solid-state hydrogen storage
materials exhibit superior safety performance,
exceptional storage capacity per unit volume, and
small footprint [9]. Mg-based hydrogen storage
materials stand out among several solid-state
hydrogen storage materials due to their advantages
of abundant earth storage capacity, low material
cost, and excellent hydrogen storage capacity
(7.6 wt.%) [10]. However, the prospects of MgH> as
an onboard energy source are limited by their slow
kinetics and high operating temperatures [11].

Current studies have been focused on
enhancing the hydrogen storage properties of MgH>
through nanoconfinement, alloying, and catalyst
addition [12—14]. Transition group metals, which
serve as the predominantly-employed catalysts
(particularly Ni-based catalysts), exhibit excellent
catalytic effects. Pure Ni nanoparticles (NPs) can
store H, via physical adsorption after treatment.
ZHOU et al [15] prepared nonporous Ni with a
specific surface area of 120.5 m*g using SiO,
aerogel as the template. Special nonporous Ni can
store 0.45 wt.% H> under 4.5 MPa H, at ambient
temperatures. The hydrogen storage capacity of
physical adsorption was considerably lower than
that of metal hydride. Similarly, studies involving
Ni as catalysts have shown that Ni can enhance
the hydrogen storage properties of MgH,. YANG
et al [16] used wet chemical ball milling to create
flaky Ni NPs. According to experimental results,
onset hydrogen release temperature was reduced to
180 °C, and the hydrogen absorption capacity
can reach 4.6 wt.% in 20 min at 125°C. The
in-situ synthesized Mg,Ni/Mg:NiH4 can act as a
“hydrogen pump” to accelerate hydrogen diffusion.
However, the Ni particles agglomerated with each
other during the experimental cycle.

Therefore, a method to prevent Ni particles
from agglomeration was required to increase the
cycle performance. GAO et al [17] first added a
novel Ni-based metal—organic framework (Ni-MOF)
to MgHo, and the results demonstrated the excellent
catalytic activity of MOFs. The MgH,—5wt.%Ni—
MOF can absorb about 5.7 wt.% H; at 150 °C and
release 6.4 wt.% H> at 300 °C. The remarkable
performance was attributed to the synergistic
catalytic action of MgNi/Mg:NiHs, MgO, and

amorphous C. These results demonstrated that the
introduction of carbon materials can promote
catalytic performance of Ni-based -catalyst.
HUANG et al [18] synthesized Ni NPs coated with
carbon (Ni/C) via pyrolysis of MOFs. The MgH,—
6wt.%Ni/C can release 6.1 wt.% H; at 250 °C and
can uptake 5.0 wt.% H at 100 °C within 20 s.
Compared with pure Ni catalysts, the doped carbon
can effectively inhibit the aggregation of catalysts
by attaching to the surface of catalyst particles.
LAN et al [19] reported that the Ni@reduced
graphene oxide (rGO) catalyst was more effective
than pure Ni and pure graphene addition. YAO
et al [20] successfully dispersed Ni NPs uniformly
on rGO. The results revealed that the initial hydrogen
release temperature of MgH>—10wt.%Nis@rGOs
was reduced from 251 °C (pure MgH,) to 190 °C.
The rGO diffused Ni more evenly and enhanced
the specific surface area of the catalyst. Carbon
materials with two and three-dimensional structures
exhibit a higher specific surface area than those
with a shell structure. REYHANI et al [21]
produced Ni via a hydrothermal reduction and
employed a chemical technique to deposit Ni NPs
onto carbon nanotubes (CNTs) to obtain a greater
surface area and distribute Ni NPs. By combining
Ni  with CNTs, the composite successfully
achieved a high specific surface area. However,
the Ni particles were exposed on the surface of
CNTs, which may have led to unsatisfactory
agglomeration. Several investigations have revealed
that Ni particles agglomerate during cycling, which
decreases the effectiveness of catalysts. Previous
studies implied that CNT structures can be formed
under the catalytic effect of Ni. SUN et al [22] grew
CNT structures on the graphene surface by direct
pyrolytic synthesis. Ni NPs wrapped in carbon
films were uniformly dispersed on the CNT
chamber and graphene surfaces. This method
limited the formation of agglomerates. However,
this process used graphene as a carbon source to
generate  CNTs. Some Ni particles remained
exposed on the surface of graphene, which
weakened the catalytic effect. Under this condition,
optimization of the preparation process involved the
introduction of carbon materials. This process is the
best available method to prevent Ni particles from
agglomerating, increasing the specific surface area
of composites.

In this work, the preparation process of
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metallic and carbon materials was improved.
Compared with the previous complex synthesis
approaches, Ni@CNT composite was synthesized
using a simple “filtration + calcination” method. In
this process, Ni-MOF precursor was synthesized by
filtration, and vermiform CNTs were catalyzed by
calcination in the presence of Ni. CNT provided
some degree of protection to the metallic material
and curbed the oxidation. The Ni@CNT composite
synthesized using this simple method may provide
new ideas for the synthesis of future transition-
group metal composite carbon materials.

2 Experimental

2.1 Materials

N,N-dimethylformamide (DMF) was got from
Sinopharm Chemical Reagent Co. Ltd. (China).
Nickel acetate tetrahydrate (Ni(CH3COO), -4H,0),
p-phthalic acid (CsHsQ4) and triethylamine (CsH sN)
were purchased from Macklin Reagent. All reagents
were used according to the received standard.

2.2 Synthesis of MgH/Ni@CNT
2.2.1 Synthesis of Ni@CNT

The Ni@CNT composite was first synthesized
by the sol-gel method. The experimental
process is shown in Fig. 1. Firstly, 11.25 mmol
Ni(CH3COO),4H,O was dissolved in 125 mL
DMF and magnetically stirred for 0.5 h (Liquid A).
Secondly, 9 mmol CsH¢Os (terephthalic acid) and
2.125 mL C¢HisN (triethylamine) solution were
magnetically stirred in 100 mL DMF solution for
0.5 h (Liquid B). Then, Liquid B was slowly poured
into Liquid A and stirred for 1 h. Following stirring,
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Fig. 1 Schematic diagram of preparation of Ni@CNT
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the precursor gel was vacuum filtered and washed
with DMF. The sample was calcined in a tube
furnace using argon gas for 10 h in the final step of
the experiment. The heating rate is 5 °C/min. The
powder obtained after natural cooling can be used
without further treatment.
2.2.2 Synthesis of MgH,—xwt.%Ni@CNT

In this experiment, Ni@CNT -catalyst was
added into MgH> by high-energy ball milling. 2.5, 5
or 7.5wt.% catalyst was added. The total mass
of the sample was 2 g, and the mass of the
stainless-steel ball was 60 g. This operation had to
be run at 450 r/min for 12 h, with 15 min breaks
every 45 min. At the end of the mill, samples were
collected in a glove box filled with protective gas.

2.3 Characterizations

X-ray diffraction (XRD, Shimadzu XRD—-7000)
with Cu K, radiation was used to determine the
crystal structure. The scan speed was 6 (°)/min, and
26 ranged from 20° to 90°. The morphology and
microstructure of the samples were determined by
scanning electron microscope (SEM, JEOLJSM-
7610F, Japan) and transmission electron micro-
scope (TEM, JEOLISM—2100f, Japan). The degree
of graphitization was performed by Raman
spectroscopy (Raman, Olympus, Lmplfln5). The
X-ray photoelectron spectroscopy (XPS, Thermo
Scientific K-Alpha, USA) was used to conduct the
compositional analysis and elemental analysis. N
adsorption and desorption curves were measured by
a surface analyzer, and specific surface area and
pore size distributions were obtained by Brunauer—
Emett—Teller (BET) method and Barrett—Joyner—
Halenda (BJH) method.

Magnetic Washing u .qn
stirring for 1 h with DMF
700 °C, 10 h \
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The kinetics curves of MgH,—Ni@CNT
composites were measured by heating them to
test temperature under the condition of complete
dehydrogenation. The hydrogen absorption and
dehydrogenation were carried out under a pressure
of 5.0 MPa and —0.0001 MPa, respectively. The
pressure—composition—temperature (PCT) curves
were tested at 673, 648 and 623 K to calculate the
thermodynamic performance. The cyclic stability
test was conducted at a stable temperature of 673 K.
The dehydrogenation pressure is —0.0001 MPa and
the hydrogen absorption pressure is 5.0 MPa.

3 Results and discussion

3.1 Characterization of prepared Ni@CNT

The XRD pattern (Fig.2(a)) was used to
determine the phase composition of the Ni@CNT
composite. The diffraction peaks detected at
20=44.5°, 51.8°, and 76.4° are attributed to the
(111), (200), and (220) crystal planes of cubic Ni
(FCC, PDF# 04-0850), respectively. The peak
centering at 26=26° corresponds to the graphite
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structure of CNT, which is different from the
amorphous carbon with a broad diffraction peak. As
a result, it is believed that the presence of Ni in this
work serves as a catalyst to facilitate the catalysis
of CNT. Figure 2(b) shows the Raman spectrum
with prominent D and G peaks at 1348.5 and
1568.2 cm™!, respectively. The ratio of Ip/Ig can be
used to determine the graphitization degree of the
composites. The calculated value of In/lg is 0.91,
which proves the presence of several defects in the
carbon composites. This result further proves the
existence of amorphous carbon. This feature
facilitates the nucleation of Mg/MgH, in the
hydrogen absorption and desorption cycles [23].
ZHOU et al [24] reported that hydrogen absorption
may be related to defects in carbon materials. The
maintenance of defects may benefit hydrogen
transportation during cycling. Typical type-IV N,
absorption—desorption isotherms can be determined
and the curves are shown in Fig. 2(c). When P/Py is
in the range of 0.5—1.0, the adsorption amount of
N is less than desorption amount, indicating that
Ni@CNT displays mesoporous characteristics. The
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Fig. 2 XRD pattern (a), Raman spectrum (b), nitrogen absorption—desorption isotherms (c) and pore-size distribution (d)

of Ni@CNT composite
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BET surface area of the Ni@CNT is determined to
be 79.01 m*g (Fig.2(c)), which is substantially
greater than that of the Ni/C composite obtained in
previous work [22]; this finding demonstrates that
the CNTs lead to an increase in the specific surface
area. Figure 2(d) shows the pore size distribution
curve and a porous structure of 2—5 nm, which are
primarily attributed to the generation of CNTs. The
high specific surface area can cause the even
dispersion of the catalyst, thus enhancing the
catalytic effect. The surface chemical compositions
and valence state of Ni@CNT are revealed by
XPS measurements. Figure 3(a) displays the full
XPS spectrum of this catalyst, and the peaks
corresponding to Cls and Ni2p are easily
identifiable. As shown in Fig. 3(b), Ni 2p spectrum
exhibits the core energy levels of Ni2ps;», and
Ni 2pin: the peaks at 853.48 and 870.48 eV are
typically characterized as Ni°, and peaks at
855.08/871.68 and 856.38/873.48 eV are attributed
to Ni?* and Ni*" [25], respectively, and caused
by the inevitable oxidation in the sample transfer
and test process. Moreover, by comparing the
peak positions, the peaks located at 861.70 and
879.70 eV correspond to the satellite peaks of Ni*
and Ni**, respectively [26]. As displayed in Fig. 3(c),
the binding energy peaks centering at 284.8, 285.4,
and 290.3 eV in the C s spectrum of Ni@CNT
belong to the groups of C—C, Ni—C, and C=0
bonds, respectively [27]. The results demonstrated
the successful synthesis of the Ni@CNT composite.

Figure 4 displays the microstructures of the
Ni@CNT composite. The microstructures in
Figs. 4(a,b) confirm that Ni@CNT NPs are
produced by “filtration + calcination” approach. Ni
particles with a size of 100 nm agglomerate, and
CNTs extend to the surface at the edge of the
particles, exhibiting a vermiform-like morphology.
Figures 4(c, d) display the elemental mappings of
Ni@CNT NPs. C and Ni are distributed evenly, and
Ni particles can be observed in Fig. 4(d). However,
C content is lower in the Ni-rich area, indicating
that the CNTs may cover around the Ni NPs.

The microstructures of Ni@CNT composite
were analyzed in detail by TEM, and the results
are shown in Fig. 5. Figure 5(a) shows the dense
distribution of nanotube structures surrounding the
spherical particles, similar to the findings of SEM
images. To determine the phase composition of
nanotubes, the lattice stripes were obtained from the
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Fig. 3 XPS spectra of Ni@CNT: (a) Survey spectrum;
(b) High-resolution spectrum of Ni2p; (c) High-
resolution spectrum of C 1s

high-resolution TEM images (Fig. 5(b)). The lattice
spacing of the nanotubes grown at the edge of
particles is 0.3500 nm, corresponding to the C (003)
crystal plane (the standard crystal plane spacing is
0.3480 nm), indicating the existence of CNTs. After
lattice measurement in the NPs region (Fig. 5(¢)),
the plane spacing of the inner black region
in Fig. 5(d) is measured to be 0.2300 nm, which
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Fig. 4 SEM images (a, b) and elemental mappings (c, d) of Ni@CNT

s
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010)

Fig. 5 TEM image of Ni@CNT (a), TEM and HRTEM images of CNT (b), and TEM (c) and HRTEM (d) images of
core area
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coincides with the standard spacing of 0.2302 nm in
the Ni (010) plane. The lattice spacing of the outer
structure is 0.3500 nm, corresponding to the (003)
plane of C with a standard spacing of 0.3480 nm.
This phase reveals that when metals, such as Ni,

e [28], and Co [29], are present in carbon source,
CNT structures are produced at high temperatures;
this phenomenon is consistent with the results
obtained in this work. The above results demonstrate
that Ni@CNT composite is successfully synthesized
by the “filtration + calcination” method. The CNTs
are encapsulated in the surface layer of the Ni
particles and grow outward under the catalytic
effect of Ni particles.

3.2 Characterization of MgH—xwt.%Ni@CNT

Figure 6 displays the XRD patterns of MgH,—
Ni@CNT in different conditions: ball milled,
dehydrogenated, and rehydrogenated. As presented
in Fig. 6(a), the weak diffraction peaks at around
20=44° and 76° belong to Ni (PDF# 04-0850). The
diffraction peaks of Ni become more apparent with
the increase in the content of Ni@CNT in the
composite. The dominating diffraction peaks at
26=27°, 36°, and 54° can be ascribed to MgH,
(PDF# 12-0697). These findings demonstrate that
no reactions occur in the ball-milling process.
Moreover, a diffraction peak centered at 26=43°
corresponds to MgO, and the same diffraction peak
appears in Figs. 6(b, c). The appearance of MgO
can be attributed to oxidation, which inevitably
occurs due to its contact with air during the testing
process [30]. Figure 6(b) indicates that the peaks
of dehydrogenated MgH,—Ni@CNT composite
are indexed to Mg (PDF# 35-0821) and Mg,Ni
(PDF# 35-1225). The above results indicate that
during hydrogen release, Ni reacts with MgH, and
is transferred in-situ to Mg;Ni and H,. As shown in
Fig. 6(c), the diffraction peaks at 26=24°, 39°, and
62° should be identified as Mg:NiHs (PDF#
37-1414). The phase transition between MgH, and
Ni during the absorption—desorption processes can
be elaborated as follows:

2M gH2+Ni=M gzNi+2H2=M gzNiH4 ( 1 )

Furthermore, these results confirm the
existence of reversible phase transitions between
Mg/MgH, and Mg,Ni/Mg;NiHa.

The isothermal hydrogenation—dehydrogenation
curves of the MgH,—Ni@CNT composites were
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recorded at different temperatures to further
determine the catalytic effect of Ni@CNT. As
displayed in Figs. 7(a, c, e), all samples display
remarkable rapid hydrogen absorption kinetics
above 423 K. Ni@CNT can enhance the hydrogen
absorption rate of MgH,. By comparison, the
hydrogenation rate and the capacity of MgH,—
Swt.%Ni@CNT are optimal at 423 K. This material
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can absorb at least 5.2 wt.% H, at 423 K in 200 s
(Fig. 7(c)). MgH>—2.5wt.%Ni@CNT and MgH,—
7.5wt.%Ni@CNT composites can uptake 4.7 wt.%
and 4.1 wt.% Ha, respectively. Figures 7(b, d, f)
show the hydrogen release properties of the
composites. In comparison with other samples,
5wt.% Ni@CNT exhibits the best -catalytic
effect on kinetics. As shown in Fig. 7(d), MgH,—
Swt.%Ni@CNT can release 3.75 wt.% H» at 573 K
in 1000 s. However, MgH>—2.5wt.%Ni@CNT and
MgH>—7.5wt.%Ni@CNT can only release 2.3 and

2.25 wt.% hydrogen under the same conditions,
respectively. These performances demonstrate that
the rates of hydrogenation and dehydrogenation are
enhanced with the increase in temperature. The
Mg—Ni/TCN composite prepared by LI et al [31]
can only release and uptake 1.01 and 3.5 wt.% H, at
573 and 423 K in 500 s, respectively. The sample
added with 5 wt.% Ni@CNT can absorb 5.2 wt.%
H; and desorb 1.85 wt.% Hzin this work. AN and
DENG [32] synthesized Ni@C, and 4 wt.% Ni@C
exhibits the best catalytic properties. The composite
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can absorb approximately 5 wt.% H, in 500 s at
543 K; in contrast, the composite in this work can
absorb more hydrogen. For a more visual
comparison, Fig. 8(e) shows the hydrogen release
capacity of the three samples at different
temperatures for 10 min. The experimental results
demonstrate that the addition of 5 wt.% Ni@CNT
to the composite allows it to achieve optimal
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hydrogen release properties, especially at low
temperatures. These results reveal that 5.0 wt.%
Ni@CNT maximizes the performance of MgH».

To demonstrably explain the influence of
Ni@CNT additive on dehydrogenation kinetics, the
activation energy (E.) was calculated using the
Johnson—Mehl-Avrami—-Kolmo model, which is
written in Eq. (2):
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At time ¢, the conversion ratio of MgH: is a, &
denotes the effective kinetic parameters, and #
denotes the Avrami index. The lines of In[—In(1-a)]
versus In¢ can be drawn through the isothermal
kinetics data at 353, 423, 473, 523, 573, 623,
and 673 K, from which the values of # and Ink
can be calculated (Figs. S1-S3 in Supplementary
Information (SI)). Subsequently, the Arrhenius
equation, which is shown in Eq. (3), can be used to
calculate the activation energy (£.):

In k=EJ/(RT)+In 4 3)

where A4, R, and T represent a temperature-
independent coefficient, the molar gas constant,
and thermodynamic temperature, respectively. As
shown in Fig. 8(a), the calculated hydrogenation E,
values of MgH,—xwt.%Ni@CNT (x=2.5, 5.0, 7.5)
composites are determined to be 51.83, 45.28, and
62.26 kJ/mol H,, respectively. The dehydrogenation
activation energies are 114.94, 87.63, and
97.95 kl/mol H; (Fig. 8(b)). Figure 8(f) presents the
comparison of E, values. MgH,—5wt.%Ni@CNT
composite exhibits the lowest dehydrogenation £,
indicating that it possesses the fastest kinetics.
The value is notably lower than that of pure
MgH, (155 kJ/mol H») [33]. AN and DENG ([32]
determined that the dehydrogenation FE, of
MgH>—4wt.%Ni@C was as high as 112 kJ/mol (H»).
DAN et al [34] reported that the ultrafine Ni NPs
synthesized from the precursor Ni acetylacetonate
via H, plasma reduction process exhibited a high
dehydrogenation E, value of 112.1 kJ/mol (Ha).
Compared with the above studies, the sample
doped with 5 wt.% Ni@CNT exhibits the lowest
activation energy. To ensure the accuracy of
calculations, the differential scanning calorimetry

Zi-yin DAI, et al/Trans. Nonferrous Met. Soc. China 34(2024) 2629-2644

(DSC) curves of MgH,—5wt.%Ni@CNT were
determined (Fig. 8(c)). The value was calculated
based on Kissinger’s equation [35] (Eq. (4)):

In[B/T3=C—E./(RT,) 4)

where S, Tp, and C represent the heating rate, peak
temperature, and a constant, respectively. DSC
experiments were performed at heating rates of 5,
10, and 15 °C/min to calculate E, (Fig. 8(c)). The
DSC curves of MgH,—5wt.%Ni@CNT reveal the
presence of a primary endothermic peak on the
curves above 520 K, which is primarily attributed
to the dehydrogenation of Mg,NiHy earlier in the
process and the accelerated dehydrogenation of
MgH, caused by the generation of Mg,Ni. This
phenomenon causes the DSC desorption peaks
of MgH, and Mg,NiH4 to nearly overlap; thus,
each curve exhibits an endothermic peak [36].
The FEq. calculated from Kissinger’s equation is
91.18 kJ/mol (H), which differs slightly from
87.63 kJ/mol (H,) (Fig. 8(d)). Table 1 compares the
hydrogen absorption—desorption activation energies
and initial hydrogen release temperatures of the Mg
complex system [37—40].

Figure 8(d) displays the curves obtained from
the temperature programmed desorption (TPD)
test; these findings were used to investigate the
dehydrogenation properties of pure MgH, and
MgH, with catalysts. Pure MgH, was processed
through high-energy ball milling before use to
ensure that the MgH, particle size was the same as
that of the doped catalyst sample. The initial
hydrogen emission temperatures of the composites
decrease substantially after the addition of the
catalyst. The lowest dehydrogenation temperatures
of MgH,—xwt.%Ni@CNT (x=2.5, 5, 7.5) are
reduced by 91, 176, and 48 K. The peak hydrogen

Table 1 Comparison of hydrolysis property of Mg-based materials

Dehydrogenation starting

Material Ea/(kI'mol™) Eq4e/(kJ-'mol™") temperature/°C Source

MgH,—5wt.%Ni@CNT 45 88 230 This work
MgH,—NizS,@C—4 40 115 241 Ref. [12]
MgH,~Co@CNT - 130 268 Ref. [14]
Mgo.03Alp.07—5wt.%LaF; 65 78 - Ref. [37]
MgH>—10wt.%V.C - 112 225 Ref. [38]
MgH,—10wt.%CoB/CNT - 89 240 Ref. [39]
MgH,—10wt.%TiFe 57 13 180 Ref. [40]
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emission temperature corresponding to MgH,—
Swt.%Ni@CNT is 563 K, which is considerably
lower than that of pure MgH». The small platforms
in the TPD curve are a result of uneven distribution
of particles. These results indicate that the hydrogen
absorption and desorption kinetics of MgH, can be
effectively improved by the addition of Ni@CNT.
To investigate the role of the catalyst in
enhancing the kinetics properties of MgH», the
microstructures were characterized via SEM.
Figures 9(a—c) display the particle morphologies of
the composite during ball milling, dehydrogenation,
and rehydrogenation. The size of the large particle
is approximately 2—3 pm, and some small particles
are uniformly dispersed around the large particle
after careful observation. Figures 9(d—f) reveal the
elemental mappings of MgH,—5wt.%Ni@CNT after
ball milling. The elemental mappings demonstrate
excellent coincidence of C, Mg, and Ni. This result
reveals that Ni@CNT particles are broken into
smaller-sized particles [27], indicating that the
small particles are Ni@CNT, and they are equally
scattered on the surface of MgH, in the SEM
images. However, MgH,—5wt.%Ni@CNT exhibits
no change in microscopic morphology or particle
size after dehydrogenation and rehydrogenation

reactions. Figures S4 and S5 (in SI) reveal that
the microstructure of MgH,—2.5wt.%Ni@CNT and
MgH,—7.5wt.%Ni@CNT in the cyclic process is
similar to the conclusions above. XRD and SEM of
the composites reveal that the catalyst experiences
no variation in the physical phase during ball
milling. The Ni particles are uniformly distributed
on the surface of MgH, with the help of carbon
materials, which can more effectively exert the
catalytic effect. In addition, the carbon material
attenuates the aggregation of hydrogen storage
material during ball milling, hydrogen absorption,
and release. The above data indicate that the
presence of MgNi/Mg:NiH4 and CNTs provides
more active sites and hydrogen diffusion channels
for the whole system.

The kinetic isotherm curves reveal the
improved kinetic properties of MgH». To investigate
the impact of the catalyst on the thermodynamic
performance of MgH,, PCT measurements were
applied at 623, 648, and 673 K (Fig. 10(a)). The
different platforms represent the phase change of
Mg/MgH, [41]. The values of the platform pressure
of hydrogenation at 623, 648, and 673 K are 0.605,
0.988, and 1.757 MPa, respectively. The hydrogen
desorption values are 0.462, 0.784, and 1.320 MPa

Fig. 9 SEM images of MgH,—5.0wt.%Ni@CNT in different conditions of ball-milled (a), dehydrogenated (b) and
rehydrogenated (c); Element mappings of ball-milled MgH>—5.0wt%Ni@CNT (d—f)
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Fig. 10 PCT curves (a), Van’t Hoff plots (b), cycling stability (c) and capacity retention rate (d) of MgH>—

5.0wt.%Ni@CNT composite

at 623, 648, and 673 K, respectively. According to
the data measured by PCT, the enthalpy of the
composites can be calculated using the Van’t Hoff
formula. Through calculation, the fitting formula
of the hydriding composite is obtained as In P=
21.1272-9.2014/T, R* is 0.99494, the enthalpy (AH)
1s —76.5klJ/mol, and the results are shown in
Fig. 10(b). The fitted formula of the dehydriding
composite is In P=20.27491-8.81289/T with a
linear fit of 0.99938; the enthalpy is 73.3 kJ/mol.
The enthalpy obtained in this experiment is close
to that of pure MgH, (—75.7 kJ/mol (H)). The
enthalpy of hydrogen release for MgH,—
Twt.%nano-VH, sample was 74.0 kJ/mol H,, which
was experimentally obtained by ZHANG et al [42].
MENG et al [43] introduced V4Nb;3Oss as a catalyst
to MgH, and obtained result similar to that of
the present work with an enthalpy change of
75.4 kJ/mol (Hz). Thus, the addition of catalyst does
not affect the thermodynamic properties of MgH,.
Recent studies have shown that reducing the size of
Mg-based hydrogen storage materials can improve

the thermodynamic properties. MgH> with a size of
approximately 4—5 nm was prepared via ultrasonic
solid-phase complexation following the work of
ZHANG et al [44]. Notably, the enthalpy change of
dehydrogenation was reduced by 22% (59.5 kJ/mol
(Hz)). This result is not an exception as
nanoconfinement approaches can also improve
thermodynamic properties. MA et al [45] used CoS
nanoboxes as a confining material to reduce the
enthalpy change of hydrogen absorption and
dehydrogenation of the composite to 65.6 and
68.1 kJ/mol (H»), respectively. The thermodynamic
instability is mainly attributed to the “nano-size
effect” of nanoconfined Mg/MgH, crystals. To
gain further insights into the cyclic stability of
the optimal sample, the 10 cycle performances
of de/hydrogenation at 673 K under 5.0 and
—0.0001 MPa H, pressure were tested. As shown
in Figs. 10(c,d), the hydrogen retention and
absorption rates of the optimal sample are 97% and
95% after 10 cycles, respectively, representing its
excellent cycle stability.
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Fig. 11 Schematic illustration of catalytic mechanism of Ni@CNT composite

The schematic diagram in Fig. 11 is derived
from XRD, SEM, TEM, and performance testing
of the MgH»>-Ni@CNT system. The catalytic
mechanisms of Ni@CNT are as follows: Firstly, the
Ni@CNT catalyst is added to MgH, by ball milling.
During the ball-milling process, the collision of
stainless steel pellets cause Ni@CNT to break and
distribute evenly around MgH,. Secondly, along
with the conversion of MgH» into Mg via the initial
dehydrogenation, parts of Ni and Mg in-situ
generate MgoNi. Lastly, MgNi is converted to
MgoNiH, after hydrogen absorption. In this work,
Mg,Ni and Mg:NiHy serve as a “hydrogen pump”.
The weak volume expansion and contraction effects
caused by the Mg,Ni/Mg:NiHs phase transition
near the Mg nucleus can provide diffusion paths
and increase the diffusion rate of hydrogen
atoms [46,47]. The broken CNT also provides
more diffusion channels for H, and prevents the
agglomeration of particles [48]. Therefore, the
multiphase MgH,—-Ni@CNT composite system
with multiphase grain boundaries can enhance
hydrogen absorption and desorption kinetics by
providing sufficient active catalytic sites and
uninterrupted channels to accelerate hydrogen
diffusion.

4 Conclusions

(1) The addition of Ni@CNT considerably
improves the hydrogen storage property of pure
MgHz.

(2) MgH>—5wt.%Ni@CNT exhibits the best
kinetic performance. The hydrogen absorption
capacity of the MgH,—5wt.%Ni@CNT composite

rapidly reaches 5.2 wt.% within 200 s at 423 K and
the dehydrogenation capacity reaches 3.75 wt.%
within 1000 s at 573 K.

(3) The in-suit generated Mg,Ni and Mg,NiH,4
act as a “hydrogen pump”, providing more diffusion
channels and shortening the hydrogen diffusion
distance in the cycle.

(4) The presence of CNT protects the Ni
particles from oxidation and agglomeration. In
addition, under the action of ball milling, the
broken CNTs attach to the outer layer of MgHo,
providing more active sites while reducing the
agglomeration of Mg during the cycling process.
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— Mk Ni-MOF BIR{A & pk B A% R IR S
Ni@CNT LS MgH,; HIfiE S 1t 5

RFE!, # k', Hideo KIMURA', H ! x4 4 &1
FAEAE Y, FhFE !, KEF, M, T2, A H BER!

1. WEKE BIESME TS, WG 264005;
2. dEEFIE R RS MERES TS S REHME SR EBE SRR =, Jbag 100191

7 E: BEESE-AYAELMOF)RTIK AT “auE+Bbe” 1RE 75k B EE NIRYIKE NI@CNT)E
AR FHAER MgHa BT . R ERES MeH, 5AF RS 2300 Ni@CNT (2.5%- 5.0%- 7.5%)315)1
£ MgH-5%Ni@CNT E&MELRIE R FHITERE, 423 K B N LIFE 200 s WIREH 5.2% (FEaE0 A
A, FHTES7T3K T 1000 s PRI LARTNZ) 3.75% (B E)NES, HEMRIBER FH S E0E 58 7 3 1 B
87.63 A1 45.28 kJ/mol (H2)» JELL A K I1 MgoNi/MgoNiHs RILH R IF ISR, /BN “AE" NRGERMETELH
SV HOEIE . RAPKRE AERTE— B R R3S MgHa M RE
KHEIR: BEMEEMEL BUEEE; BAEIRYUKRE; ) P
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