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Abstract: The coupling effects of electrical pulse, temperature, strain rate, and strain on the flow behavior and plasticity 
of 5182-O aluminum alloy were investigated and characterized. The isothermal tensile test and electrically-assisted 
isothermal tensile test were performed at the same temperature, and three typical models were further embedded in 
ABAQUS/Explicit for numerical simulation to illustrate the electroplastic effect. The results show that electric pulse 
reduces the deformation resistance but enhances the elongation greatly. The calibration accuracy of the proposed 
modified Lim−Huh model for highly nonlinear and coupled dynamic hardening behavior is not much improved 
compared to the modified Kocks−Mecking model. Moreover, the artificial neural network model is very suitable to 
describe the macromechenical response of materials under the coupling effect of different variables. 
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1 Introduction 
 

Aluminum alloy is considered as one of the 
most competitive lightweight materials in aerospace, 
transportation and other fields due to its excellent 
comprehensive mechanical properties, such as low 
density, high specific strength and high specific 
stiffness [1]. The poor formability of 5182-O 
aluminum alloy at room temperature leads to 
defects such as cracks and springback during  
plastic deformation. Therefore, hot forming is used 
to satisfy the increasing requirements of the 
complicated shape and enhanced performance of 
complex components. However, problems, such as 
high energy consumption, long production cycle, 
complex working conditions, and high temperature 
resistant mold materials, significantly increase the 
manufacturing cost of hot forming [2,3]. Therefore, 
in order to improve the forming efficiency and 
quality, the advanced electrically assisted processing 

(EAP) to replace the traditional hot forming method 
is the best choice to achieve energy-saving     
and high-efficiency production [4]. EAP has a 
significant effect on reducing the difficulty of 
manufacturing complex components, optimizing 
material microstructure, and improving the 
comprehensive mechanical properties and surface 
quality [5,6]. 

The electroplastic effect is that the electrical 
pulse makes it easier for dislocations to slip in   
the material lattice [7,8]. During the plastic 
deformation of metals, the deformation resistance is 
sharply reduced and the plasticity is greatly 
improved [9]. Electrons transfer energy to 
microstructural defects, such as dislocations under 
the interaction between electrons and dislocations 
to promote local diffusion rates and local    
heating [10]. It has been proved that the drifting 
electrons can effectively improve the thermal 
activation process of dislocation motion in  
metallic materials, thus the dislocation motion is 
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promoted [11−14]. EAP has achieved many 
contributions as a high-density energy input method 
in the aspects of microstructure control of metallic 
materials, improvement of mechanical properties 
and formability, and development of new advanced 
forming technologies [15−18]. Electricity is applied 
to reducing the springback during deformation, and 
SALANDRO et al [19] significantly reduced the 
springback rate by up to 77% in electrically assisted 
air bending. 

In recent years, many constitutive models have 
been proposed or improved to describe the plastic 
behavior of aluminum alloys [20,21]. The artificial 
neural network (ANN) model is an emerging 
phenomenological model with extensive applications 
in the crystal plasticity [22], rate-dependent   
plasticity [23−25], isotropic plasticity [26−28], and 
path-dependent plasticity [29−31]. LI et al [32] 
introduced the effective aging time as a state 
variable to describe the effect of different strain 
rates on the dynamic hardening behavior, and the 
determined ANN model could predict the nonlinear 
plastic and fracture responses of DP780. For the 
highly nonlinear dynamic hardening behavior of 
coupling effect, SHANG et al [33] conducted a 
comprehensive study on the factors that affect the 
prediction accuracy and numerical calculation 
efficiency of ANN model. JIA et al [34] studied the 
deformation behavior of 304 austenitic stainless 
steel over a wide range of strain rates and 
temperatures. 

The objective of this work is to investigate the 
effect of electrical pulse on the dynamic mechanical 
responses of 5182-O aluminum alloy and its 
analytical modelling approached for numerical 
simulation. The corresponding stress−strain curves 
were obtained at the same initial temperature by 

electrically-assisted isothermal tensile test (EAITT) 
and isothermal tensile test (ITT). The modified 
Kocks−Mecking (MKM) model and the proposed 
modified Lim−Huh (MLH) model were used to 
calibrate the experimental results, respectively. In 
addition, a single hidden layer ANN model was 
used to describe the highly nonlinear experimental 
results considering the numerical calculation time. 
Finally, all models were implemented in numerical 
simulations to predict the reaction forces at 
different strain rates and temperatures. The accurate 
simulation based on ANN model is beneficial to the 
optimization of process and structure in the EAP. 
 
2 Experimental 
 
2.1 Mechanical properties testing 

The 5182-O aluminum alloy sheet with a 
thickness of 1.25 mm is cut by laser along the 
rolling direction to obtain the dogbone specimen 
with a parallel length of 60 mm. The length of the 
virtual extensometer for stroke measurement is 
30 mm for the dogbone specimen. Based on the 
principle of digital image correlation (DIC), a 3D 
XTOP DIC system is used to measure the relative 
position changes of random black spots on the 
specimen surface without contact. The synchronous 
acquisition signals of force and displacement are 
adjusted for different stretching speeds so that the 
camera can clearly capture 100−200 images. 

The schematic diagram of dynamic tensile 
equipment is shown in Fig. 1. In order to achieve 
the strain rates of 0.001, 0.01 and 0.1 s−1, uniaxial 
tensile tests are carried out at crosshead speeds of 
3.6, 36 and 360 mm/min, respectively. The tensile 
tests are divided into ITT and EAITT according to 
the heating method. For the ITT, hot air around the  

 

 
Fig. 1 Schematic diagrams of test: (a) ITT test; (b) EAITT test 
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resistance wire is blown into the environmental 
chamber to achieve convection, and then the specimen 
is stretched after the specified temperature is 
reached, as shown in Fig. 1(a). The temperature of 
the specimen during the tensile test is monitored  
by the UTi260B infrared thermal imaging camera 
(ITIC). The temperature range is from 258 to 823 K 
and the thermal sensitivity is less than 0.05 K. 
Because the accuracy of the temperature measured 
by the ITIC is greatly affected by the emissivity, 
there is a deviation when the temperature is 
measured through the glass of the environmental 
chamber. The emissivity is calibrated by the 
temperature of three measuring points in the gauge 
length of the specimen by K-type thermocouples. 

The schematic diagram of the device for 
tensile test with pulsed electric current is shown in 
Fig. 1(b). When an electric field is applied to the 
dogbone specimen in the EAITT, the kinetic energy 
of the drifting electrons is accelerated and 
converted into the internal energy of the metal, 
resulting in an increase in the temperature of the 
specimen. The temperature measured by the ITIC is 
also corrected by three K-type thermocouples. In 
order to achieve the insulating effect, a self-made 
insulating clamp is inserted with mica sheets 
in-between to ensure that the current only passes 
through the sample during the test. Continuous 
electrical pulses are generated by a commercial 
pulsed power supply with a rated output current of 
1 kA, a voltage of 5 V, a frequency of 50 Hz and a 
pulse duty cycle of 50%. When a closed loop is 
formed, the specimen is rapidly heated by the Joule 
heating effect until the Joule heating and heat loss 
reach a dynamic equilibrium. The temperature of 
the specimen reaches a relatively stable value, 
where the heat loss includes heat conduction with 
the clamped electrode, convective heat exchange 
with the surrounding air, and heat radiation from the 
heating material. The current amplitude is then held 
constant throughout the tensile test to induce a 
constant nominal current density based on the initial 
cross-sectional area [6]. 
 
2.2 Microstructure characterization 

The microstructures of the specimens near  
the fracture are characterized by X-ray diffraction 
(XRD) and transmission electron microscopy 
(TEM). The XRD analysis of the 5182-O specimens 
under different conditions is carried out on a D8 

Advance diffractometer with Cu Kα radiation at a 
voltage of 40 kV. Rapid scans are performed from 
35° to 105° with a 0.02 (°)/s step and 0.02 s/step 
acquisition time to analyze the critical phase 
composition. The TEM samples are mechanically 
ground and polished to about 70 μm with 400#− 
2000# grit SiC papers and subsequently punched 
into 3 mm discs. Finally, TEM foils are prepared by 
twin-jet electropolishing in a mixed solution of 
30 vol.% nitric acid and 70 vol.% methanol at 
−30 °C. The microstructures of the prepared 
samples are further characterized by a JEOL 
JEM-F200 with an accelerating voltage of 200 kV. 
The fractographs of tensile specimens are examined 
by scanning electron microscope (SEM), and the 
fracture mechanisms of 5182-O aluminum alloy 
under different loading conditions are studied.  
The test specimens are polished by standard 
metallographic methods and electrolytically 
polished for electron backscatter diffraction (EBSD) 
observation with the accelerating voltage of 20 V 
and the scanning step size of 0.2 μm. EBSD 
microstructures and pole figures are obtained by 
orientation imaging microscopy (OIM) analysis 
software. 
 
3 Experimental results 
 
3.1 Mechanical properties 

Figure 2 shows the temperature and strain 
distributions of the dogbone specimen at 423 K 
with a strain rate of 0.1 s−1. The specimen is 
stretched when it is heated to 423 K by EAITT, and 
the equivalent strain distributions at different 
displacements are compared. The experimental 
force−displacement curves of the two test regimes 
at four different temperatures and three different 
loading speeds are compared in Fig. 3. Then, the 
 

 
Fig. 2 Temperature and strain distribution of dogbone 
specimen 
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Fig. 3 Force−displacement curves of different samples at different temperatures and loading speeds (a, c−h), and current 
density in EAITT (b): (a) Room temperature; (c, e, g) ITT; (d, f, h) EAITT 



Hong-chun SHANG, et al/Trans. Nonferrous Met. Soc. China 34(2024) 2455−2475 2459 

true stress−plastic strain curves of 5182-O 
aluminum alloy are calculated according to the 
force−displacement curves before the maximum 
force and shown in Fig. 4. In order to achieve the 
corresponding initial temperature tests, the current 
densities are approximately adjusted to 8.96, 14 and 
17.2 A/mm2, as shown in Fig. 3(b). Repeated 
experiments under different loading conditions are 
verified and the selected one is shown below. 

The Lüders platform and Portevin–Le 
Chatelier (PLC) effect can be clearly seen from the 

uniaxial tensile results of 5182-O aluminum alloy in 
Fig. 3. From the enlarged view of the Lüders 
platform in Fig. 3, it can be found that the length of 
the Lüders platform of the two heating methods is 
approximately the same when the temperature is 
323 K. But the Lüders platform disappears above 
373 K. It can be concluded that the acceleration 
effect of temperature on the diffusion of solid 
solution atoms and dislocation slip is more obvious 
in the yield platform stage than the effect of 
electron wind. 

 

 
Fig. 4 Experimental stress−strain curves of samples under different conditions: (a) 323 K; (c) 373 K; (e) 423 K; (b) 0.001 s−1; 
(d) 0.01 s−1; (f) 0.1 s−1 



Hong-chun SHANG, et al/Trans. Nonferrous Met. Soc. China 34(2024) 2455−2475 2460 

It can be found that the amplitude of the stress 
drop gradually increases with the increase of the 
strain for most of the tensile curves such as at room 
temperature, and the type of PLC serration is type 
B+C [35]. There are special cases like the ITT test 
at 300 K and 0.001 s−1, where the front part is 
smooth but suddenly the stress drop is very large at 
a displacement of about 3.5 mm with the PLC 
serration of type C. The physical explanation is that 
the higher the density of accumulated dislocations 
is, the larger the scale of collective depinning 
occurs. But under the same condition, the curve 
obtained by the EAITT is smooth even under large 
strain. The contrasting results between the two sets 
of curves indicate that the electrical pulse has an 
independent contribution to the reduction of 
dislocation density. The electrical pulse promotes 
the stability of the plastic region and plays a 
dominant role in the suppression of serrated flow. 

The comparison results of the true stress− 
strain at the same temperature are shown in 
Figs. 4(a, c, e). It is observed in Fig. 4(a) that the 
stress intensity of the 5182-O aluminum alloy 
measured at 323 K decreases with increasing strain 
rate for both test methods. The effect of electrical 
pulse on stress intensity is not obvious due to the 
small current density. This negative strain rate 
effect can be explained by the mechanism of 
dynamic strain aging (DSA) which is the dynamic 
interaction between mobile dislocations and solid 
solution atoms under specific loading conditions, 
such as Mg in Al−Mg based alloys. Figure 4(c) 
shows that the stress intensity at the strain rate of 
0.01 s−1 is the largest in the ITT results, while the 
stress intensities of 0.01 and 0.1 s−1 are relatively 
close in the EAITT results. Therefore, the electrical 
pulse can promote the 5182-O aluminum alloy to 
exhibit positive strain rate effect above 373 K. Both 
test results show positive strain rate effect at 423 K, 
but the stress intensities of ITT test are generally 
higher under the same conditions. It is obvious that 
the necking strain increases with the increase of the 
strain rate at 423 K, indicating that high strain rate 
can improve the formability. In summary, the 
electrical pulse promotes the positive strain rate 
effect at low current density, and the measured 
stress intensity at high current density is lower than 
that of the ITT test. 

Finally, experimental results at different 
temperatures under the same strain rate are 

compared as shown in Figs. 4(b, d, f). It can be seen 
from Fig. 4(b) that the softening effect of the 
EAITT at the strain rate of 0.001 s−1 is more 
obvious than that of the ITT test, and the change 
between different temperatures is larger for EAITT. 
The stress amplitudes at different temperatures and 
the strain rate of 0.1 s−1 do not change much in 
Fig. 4(f). The reason is that the slow stretching rate 
leads to a long acting time of the electrical pulse. 
The necking strains obtained by the EAITT and the 
ITT at 423 K with the strain rate of 0.001 s−1 are 
0.07 and 0.16, respectively, which indicates that the 
large current density has a more obvious effect on 
the necking. It is concluded that the effect of 
electric pulse on softening and necking strain is 
stronger at low strain rate, and the effect is not 
obvious at high strain rate. 
 
3.2 Microstructure  

Figure 5 shows the TEM bright-field images of 
the dogbone specimens stretched at 423 K with 
different heating methods and strain rates. The 
dislocation is observed at the crystal boundary and 
inside. Dynamic recovery can be triggered easily 
for aluminum alloys during deformation due to their 
high stacking fault energy, which leads to the 
rearrangement and annihilation of dislocations to 
form well-defined dislocation cells or subgrains. 

Figures 5(a, b) show dislocation distributions 
at different strain rates under the EAITT. It is  
found that the dislocation density at the strain rate 
of 0.1 s−1 is significantly larger than that at the 
strain rate of 0.001 s−1, so the strain rate has a 
significant effect on the dislocation distribution. 
The deformation time shortens as the strain rate 
increases, so the dislocations do not have enough 
time to annihilate and rearrange. The suppressed 
dynamic recovery leads to the accumulation of 
dislocations at the crystal boundaries [36,37]. The 
dislocation density increases with increasing strain 
rate, which is consistent with the dislocation density 
calculated by XRD pattern in Fig. 6(b). 

Moreover, dislocations tend to be parallel at 
high strain rates, and this phenomenon is more 
obvious at higher strain rates. Due to the reduction 
of dislocation tangles, the local concentrated 
deformation of the stretching process is alleviated 
and the plastic strength of the material is improved. 
In addition, it can be found that obvious Moiré 
patterns appear on the surface of some particles in 
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Fig. 5 TEM bright-field images of specimens stretched at 423 K with different heating methods and strain rates:      
(a, d) EAITT, 0.001 s−1; (b, e) EAITT, 0.1 s−1; (c, f) ITT, 0.1 s−1 
 

 
Fig. 6 XRD patterns of 5182-O aluminum alloy: (a) Before deformation; (b) After deformation 
 
the dislocation tangles in Fig. 5(a). This may be a 
semi-coherent relationship caused by dislocations 
cutting through the particles and periodic dislocations 
of atoms inside the particles [38]. 

From the comparison of the results of  
Figs. 5(b, c), it is found that the dislocation density 
of the EAITT is lower than that of the ITT at the 
same strain rate. High density dislocation tangles 
occur near crystal boundaries during ITT in an 
environmental cabinet. This indicates a higher 
frequency and magnitude of interactions between 
solute atoms and mobile dislocations. The 

enhancement of solute atomic diffusion induced by 
the electric current thus leads to an increase in 
mobile dislocation locking, which provides clear 
evidence for the suppression of the PLC effect at 
relatively low temperatures [39]. 

The XRD patterns (Fig. 6(a)) of the 5182-O 
aluminum alloy before deformation by different 
heating methods show sharp diffraction peaks    
of aluminum (PDF: No. 04-0787). XRD relative 
intensities of major peaks show a significant 
decreasing trend with the increase of temperature. It 
is obvious from the comparison that the relative 
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intensities obtained by the EAITT at 423 K are 
significantly lower than those obtained by the ITT. 
Since the peak width of the EAITT is lower than 
that of the ITT at the corresponding temperature, 
the independent contribution of current to the 
reduction of dislocation density is confirmed [40]. 
The precisely scanned XRD patterns (Fig. 6(b)) of 
the specimens after deformation exhibit weak 
diffraction peaks for Mg (PDF: No. 35-0821), Al6Mn, 
and FeMn4 precipitates (PDF: No. 39-0952, 03-1180, 
respectively). At the same temperature and strain 
rate, the relative intensities of EAITT are 
significantly lower than those of ITT. Precipitates in 
supersaturated solid solutions are suppressed due to 
the electromigration effect induced by the electric 
current, thereby weakening the interaction between 
precipitated phase and dislocations [39]. Moreover, 
the relative intensities of EAITT at 0.1 s−1 are 
significantly higher than those at 0.001 s−1 at the 
same temperature. This is due to the fact that as the 
strain rate increases, the drift electrons in the metal 
have shorter time under the action of the current, 
resulting in a more pronounced effect at lower 
strain rates. 

The Al6Mn dispersoids precipitate after tensile 
deformation of the sample under different 
conditions, which is confirmed in the electron 
diffraction patterns of Fig. 7(c) [41]. The 
distributions of different elements (Al, Mn, Mg, Fe, 
and Cu) obtained by EDS mapping of the 5182-O 
aluminum alloy precipitates tested by EAITT at 
423 K are shown in Figs. 7(e−i). This semi- 
quantitative or qualitative method of compositional 
analysis by EDS is used to characterize the 
microstructure. It can be found that the segregation 
of Al and Mn is accompanied by the depletion of 
Mg. This indicates the existence of Al-rich and 
Mn-rich precipitates in the sample, and the molar 
ratio is close to 6:1. At the same time, it is 
accompanied by the precipitation of a small amount 
of Fe and Cu. In conclusion, the dislocation density 
obtained by EAITT is lower than that obtained   
by ITT at the same initial temperature, and the 
dislocation density increases with the increase of 
the strain rate. This is consistent with the 
experimental results in Fig. 3, because dislocation 
density is positively correlated with deformation 
resistance. 

 

 
Fig. 7 Characterization of 5182-O aluminum alloy after EAITT or ITT: (a, b) EDS results of precipitated phase and 
substrate, respectively; (c) Selected area electron diffraction pattern with electron beam parallel to 〈001〉Al zone axis;  
(d) TEM image; (e, f, g, h, i) EDS mappings for distribution of Al, Mn, Mg, Fe and Cu, respectively 



Hong-chun SHANG, et al/Trans. Nonferrous Met. Soc. China 34(2024) 2455−2475 2463 

To further determine the phases present in the 
5182-O aluminum alloy, TEM samples are prepared 
near the fracture tip of the tensile specimen 
subjected to 17.2 A/mm2 with a strain rate of 0.1 s−1. 
The TEM images and the corresponding EDS maps 
in Fig. 8 show that there are some phases with the 
size of tens of microns in the matrix. It can be seen 
that the number of Al6Mn phases is more than that 
of Mg and FeMn4 phases, which is consistent with 
XRD results in Fig. 6. 

Figures 9(a) and (b) show the EBSD micro- 
structures of the undeformed region and the  
fracture location by EAITT at 423 K and a strain 
rate of 0.1 s−1, respectively. The random orientation 
distribution can be observed in Figs. 9(a) and (b), 
which shows that the grains elongate in the  
loading direction with the increase of tensile strain. 
The microstructure evolution during material 
deformation is further reflected by texture property. 
The texture evolution of 5182-O aluminum alloy 

 

 
Fig. 8 TEM image (a) and element distributions of Al (b), Mg (c), Mn (d), Fe (e) and Cu (f) obtained by EAITT test at 
423 K and strain rate of 0.1 s−1 
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Fig. 9 EBSD microstructures (a, b) and pole figures (c, d) of 5182-O aluminum alloy heated to 423 K with strain rate of 
0.1 s−1 by EAITT: (a, c) Undeformed region; (b, d) Fracture location 
 
before and after plastic deformation is shown in 
Figs. 9(c) and (d), respectively. The random texture 
is observed in the undeformed state in Fig. 9(c), and 
the texture is found to be enhanced after tensile 
deformation in Fig. 9(d) where the maximum pole 
density increases to 4.512. 

Figure 10 shows the SEM fractographs of the 
tensile specimens at 423 K under the three loading 
conditions. The fracture surface in Fig. 10(c) is 
nominally flat compared to the other two fracture 
surfaces, and there is an obvious necking at the 
fracture of the specimen in Fig. 10(b). Mixed 
dimples and tearing edges in the three tensile 
specimens at a finer scale indicate ductile fracture. 
The dimples are generally produced by the 
nucleation, growth, and coalescence of micro-voids, 
and tearing edges ought to be formed by the 
coalescence of micro-voids or the connection of 
micro-voids. The fracture morphology in Fig. 10(a) 
shows many blade-type edges and coalescent 
dimples. The dimples in Fig. 10(b) are larger and 
deeper than those in Fig. 10(a) and tend to coalesce. 
The identifiable tearing edges indicate that 
electroplasticity facilitates the diffusion and transfer 
of dimples, whereby the expansion of microscopic 
dimples under this deformed condition promotes 
high elongation. Figure 10(c) shows the fracture 
morphology of the sample heated to 423 K by 
EAITT at a strain rate of 0.001 s−1. It can be found 

that the increase of the strain rate can increase the 
number of dimples and reduce their size and depth 
from the comparison results of Figs. 10(c) and (e). 
The enhanced tearing edges and flat fracture 
surfaces mean that increasing the strain rate reduces  
necking and elongation. In addition, the second 
phase particles are easily found inside some 
dimples observed under magnification, and these 
active sites for void nucleation adversely affect 
ductility. 
 
3.3 Calculation of dislocation density 

The broadening of the full width at half 
maximum (FWHM) in the XRD spectrum is widely 
used to characterize the dislocation density of 
peak-aged alloys. The dislocation density of the 
sample under different conditions is calculated by 
the modified Williamson−Hall (MWH) equation 
according to FWHM [42], as shown below: 
 

( )
1/22 2

1/2 1/2 21π
2

M bγK KC o K C
D

ρ
 

∆ ≈ + + 
 

   (1) 

 
where ∆K(=βcos θ/λ) is the peak width (β is the 
FWHM of diffraction peak, λ(=0.15405 nm) is the 
wavelength, and θ is the diffraction angle); D is the 
crystallite size; b is the magnitude of the Burgers 
vector (0.286 nm); ρ is the dislocation density; γ is 
the shape factor and takes the value of 0.9 when the 
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Fig. 10 SEM fractographs of tensile specimens at 423 K under different loading conditions: (a, b) ITT, 0.001 s−1;     
(c, d) EAITT, 0.001 s−1; (e, f) EAITT, 0.1 s−1 
 
FWHM method is used in the analysis [43]; M1 is a 
dimensionless constant with a value between 1.0 
and 2.0 in the deformed material and is known as 
the dislocation distribution parameter [38]; K is the 
magnitude of diffraction vector and is defined as 
K=2sin θ/λ; 2( )o K C  represents the deviation from 
this approximation; C is the dislocation contrast 
factor of cubic crystal materials as a function of the 
Miller indices and can be determined by applying 
the method given below [44]: 
 

2
00 ( )1hC C qH= −                         (2) 

 
where 00hC  is the average contrast factor 
corresponding to the (h00) reflection; q is a 
proportional coefficient that depends on the elastic 

constant of the material and the ratio of edge 
dislocation and screw dislocation. H2 is represented 
as [45] 
 
H2=(h2k2+k2l2+h2l2)/(h2+k2+l2)2                       (3) 
 
where h, k, and l are the Miller indices of each peak. 
Equations (1) and (2) are combined to obtain the 
following equation [42]: 
 

2 2 2 2 2
00 1(( / ) / ( ))1 π / 2hK γ D K C qH M b ρ∆ − ≅ −   (4) 

 
The proportional coefficient q is equal to the 

inverse ratio of the slope to the intercept of the 
(∆K−γ/D)2/K2 vs H2 curve. For aluminum alloy, the 
q value changes between 0.33 and 1.31, and the 

00hC  values change between 0.182 and 0.199 [46]. 
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Then, ∆K vs 1/2KC  calculated according to the 
above equations can be linearly fitted according to 
Eq. (1), as shown in Fig. 11(a). The values of 

1 π /2bM ρ  are equal to the slope. Finally, the 
calculated dislocation density values are shown in 
Fig. 11(b). 
 

 
Fig. 11 Linear fitting results of ∆K versus 1/2KC  (a) 
and calculated dislocation densities (b) at different 
temperatures 
 

It is evident from Fig. 11 that the initial 
dislocation density in the specimen decreases   
with the increase of temperature, but the effect of 
electric pulse on the initial dislocation density is 
more obvious. The dislocation density decreases 
significantly with the increase of current density, 
and the dislocation density at 423 K reduces to 
2.09×1013 m−2 for EAITT test. It should be noted 
that the values of some parameters, such as M1, are 
difficult to obtain accurately, so the actual 
dislocation density is only a rough estimate. 
However, the results indicate that the annihilation 
of dislocations is promoted by the electromigration 
effect and Joule heating induced by the electrical 
pulse [47]. 

 
4 Evaluation and numerical simulation of 

three typical constitutive models 
 
4.1 Constitutive model 
4.1.1 MKM model based on dislocation density 

Work hardening and dynamic recovery 
softening lead to the rearrangement and annihilation 
of dislocations during thermal deformation of 
metals. The mechanical response is independently 
related to the evolution of the microstructure [48], 
so the accumulation of dislocations can increase  
the ability to working-harden while the recovery  
of dislocations increases plastic instability. The 
average dislocation density ρ, as a structure- 
dependent variable, describes the dynamic 
hardening behaviors of metals according to 
different loading conditions [6]. The Kocks− 
Mecking model based on dislocation−dislocation 
interactions is applied to describing the flow stress 
of metals during plastic deformation. In previous 
studies, the generalized Kocks−Mecking model was 
used to describe the stress−strain curves obtained 
from solution-treated, naturally aged, and current- 
assisted samples. TIWARI et al [49] extended this 
model to describe the effect of electrical pulse, and 
there is the following relationship between the flow 
stress (σ) and ρ:  

1/
0= ( / ) mσ MαGb ρ ε ε                      (5) 

 
where M is the Taylor factor, G is the shear 
modulus (MPa), ε  is the strain rate, and m is the 
exponent describing the strain rate dependence, and 

0ε  and α are material constants of work hardening. 
The evolution of dislocation density is given by  

( )1 2
d
d

ρ M K ρ K ρ
ε
= −                     (6) 

 
where K1 and K2 are coefficients to describe 
Stage II and Stage III work hardening, respectively. 

Since dynamic recovery in metals during  
State III recovery is rate dependent, the coefficient 
K2 can be modelled as follows:  

( ) 1/
2 20 0/ nK K ε ε −=                         (7) 

 
where K20 and n are material constants to describe 
the temperature dependence. 

The material constants α and n are considered 
to be temperature and strain rate dependent. The 
above parameters should vary with current density 
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(J) in the EAITT due to the effect of the electrical 
pulse on the strain rate as follows [50]:  

3 52 4
0 1

1
= ββ βα α β T J

β
βε

 
+ 

 
                  (8) 

 
7 98

6
6

= β βn β T J
β

β 
+ 

 
                      (9) 

 
where α0 and β1−β9 are fitting coefficients. K2 and α 
adjust the stress variation with temperature and 
strain rate, and β embodies the temperature- 
decoupled electroplastic effect. 

The fixed hardening rate for Stage II hardening 
is defined by the constant K1. The constant K2 
describes the dynamic recovery or annihilation of 
dislocations in Stage III hardening. Equation (6) 
can be directly integrated to yield  

1 2 1
0

2 2
exp

2
K MK Kρ ρ
K K

ε
   = − − +   

  
      (10) 

 
Substituting Eq. (10) into Eq. (5)  

1/
1 2 1

0
0 2 2

= exp
2

m
K MK Kσ MαGb ρ
K K

ε ε
ε

      − − +            





           (11) 
where ρ0 is the initial dislocation density when ε=0. 
The main advantage of the MKM model is that the 
parameters are directly related to the deformation 
mechanism. It should be emphasized that the MKM 
model takes into account the electroplastic effect  
on flow stress through the variables n and α, 
respectively. The coefficients of the MKM model 
are calibrated as listed in Table 1. 
4.1.2 Newly proposed MLH model 

Modelling the current-assisted flow stresses 
remains challenging because of the differences in 
the action mechanisms in the EAITT and ITT.    
In addition, the 5182-O aluminum alloy exhibits a 

slightly negative strain rate effect at room 
temperature due to DSA, while the strain rate effect 
becomes positive with increasing temperature. For 
the highly nonlinear hardening behaviors, the 
phenomenological constitutive model needs to be 
constructed to reflect the contribution of different 
effects to the flow stress. CAO et al [21] considered 
Joule heating and strain rate effect, dynamic strain 
aging and electronic wind effect in the model. The 
Lim−Huh (LH) model [51], which can accurately 
express the strain rate effect, is additively extended 
to the MLH model to describe the flow stress under 
different current densities: 
 

RK lh ns ew[ ( ) ( )( ,  ,  ) , , ) ],   (σ T σ T σ T σ Jε ε λ ε ε ε= + +  

                 (12) 
 

The Young’s modulus ratio (λRK) is neglected 
due to little variation over the test temperature 
range. The first term σlh represents the combined 
contribution of strain, strain rate, and temperature to 
the flow stress, and the σns and σew represent the 
DSA and electronic wind effects, respectively. σlh 
takes the form of LH model as follows: 
 

lh r 0=[ ] [ , ]( ) ( ) ([ , ] () )n
Tσ σ σ σ T Aεε ε ε ε ε ε⋅ ⋅ = + ⋅



   
 

( )( )
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ε
ε ε
ε ε

    −+  ⋅ −    −+      


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     (13) 

 
where A and n are the strain hardening coefficients, 
q(ε)=q1/[(ε+q2)q3], p(ε)=p1/[(ε+p2)p3], 1( )=m mε +  

2 rln( / )m ε ε  , rε ε>   and Tr≤T≤Tm (q, q2, q3, p1, p2, 
p3, m1, and m2 are material constants; Tr is the room 
temperature, and Tm is the melting point). 

DSA is the result of dynamic pinning/ 
unpinning caused by the interaction of moving 
solute atoms and dislocations in the metal. The 
occurrence of DSA largely depends on the difference 

 
Table 1 Material coefficients of constitutive models 

Model M α0 G/MPa b/nm m K1 K20 0ε /s−1 

MKM 3 0.8078 27000 0.286 −0.0537 136407 22.21 1.47×10−14 

Model β1 β2 β3 β4 β5 β6 β7 β8 β9 

MKM 7.909 0.0410 0.1742 −1.97×10−12 −74.94 2.6185 0.5057 0.0035 3.0659 

Model A ε0 n q1 q2 q3 p1 p2 p3 

MLH 514.2 0.0052 0.3033 0.0557 −0.0011 0.2099 3.55×10−11 4.81×10−19 2.7875 

Model m1 m2 
ns
0σ  transε  D3 maxε  MTavlor b/nm Kew 

MLH 0.927 0.2141 2.3261 76.58 0.0089 106 2.5 0.286 −0.0644 
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between the waiting time of the dislocations at the 
local obstacle and the time for diffusion of the 
solutes to the mobile dislocations [52]. Therefore, it 
is important for modelling that the flow behavior 
should be limited by strain rate and temperature. 
Semi-physical formulation [53] is used to model the 
σns in the equation for combined accuracy and 
practicality.  

( ) ns trans
ns 0, lgσ T σ ε

ε
ε

  = ⋅ ⋅  
  







 

( ) ( )3 m max/1 lg /D T T ε ε −  

 
            (14) 

 
where ns

0σ  is the reference stress drop due to DSA, 
D3 is the interaction coefficient between strain  
rate and temperature, transε  is the transition strain 
rate between positive and negative strain rate 
effects, and maxε  is the maximum allowable strain 
rate of the material. 

The electron−dislocation interactions due to 
the electron wind are considered in the last stress 
component σew. The moving electrons are assumed 
to promote the slip of dislocations directly through 
momentum transfer, and the relationship between 
electron wind stress and current density is as 
follows.  

Taylor
ew ew=

M
σ K J

b
                      (15) 

 
where Kew is the electron wind coefficient, and 
MTaylor is the Taylor orientation factor. The 
coefficients of the calibrated MLH model are 
shown in Table 1. 
4.1.3 Neural network model 

Machine learning was applied in EAP to 
evaluate the influence of electroplastic effect on 
flow stress and plasticity. The structure diagram of 
the ANN model is shown in Fig. 12. The strain, 
temperature and strain rate are used as inputs to 
reflect the coupled effects of strain hardening, 
temperature softening and strain rate hardening. It 
is worth noting that different current densities are 
input in order to differentiate the effect of electrical 
pulse on EAITT and ITT. In order to obtain high- 
quality input samples, appropriate mathematical 
transformations are performed to more accurately 
capture the characteristics of the data. Therefore, 
the corresponding ranges of the four inputs of   
ε, ε , T and J in Fig. 12 are [0, 0.4], [lg 300, lg 423], 
[lg 0.001, lg 0.1], and [ln(e0+1), ln(e17.2+1)], 
respectively. 

 

 
Fig. 12 ANN model architecture 
 

It is necessary to comprehensively consider the 
structure and parameters of the ANN model in order 
to achieve the optimal combination of prediction 
accuracy and numerical calculation efficiency. In 
previous work [33], it is confirmed that the 
computation time of the numerical simulation is 
positively correlated with the number of neurons 
(the sum of weights and thresholds). The number of 
neurons in the first hidden layer has a dominant 
effect on the prediction accuracy under the same 
number of parameters. The number of neurons in 
the first layer less than the number of input 
variables may lead to the loss of input information, 
while too many neurons increase the burden of 
numerical simulation. The prediction error can 
reach a plateau after the inflection point, and the 
prediction accuracy is not improved significantly 
with the complexity of the network structure. In 
addition, the prediction error of the ANN optimized 
by the PSO algorithm can quickly reach a lower 
level after the structure of the network is determined. 
Finally, the single-hidden-layer PSO−BP network 
with 20 neurons is chosen to fully exploit its 
potential of high prediction accuracy and low 
computation time. The ANN model with a structure 
of 4×20×1 has a total of 121 parameters and the 
combination of activation functions is tansig + 
purelin. The number of epochs is adjusted to 3000, 
and the iterative update is performed by the 
Levenberg−Marquardt algorithm with a learning 
rate of 0.01 and a momentum of 0.9. 

There are many input variables and the strain 
rate interval is large, so it is difficult to ensure that 
the prediction results beyond the experimental 
values are also satisfactory only based on the 
limited experimental data. The experimental data 
are enriched by the analytical model to provide 
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large data samples for ANN training. Due to the 
flexible power-law relationship between strain and 
strain rate in Ford model, it is found that the 
prediction accuracy is relatively high by comparing 
with the LH and other models. Therefore, the Ford 
model is selected to calibrate and enrich the 
experimental values. Then, two sets of virtual 
experimental results are generated by interpolating 
between each set of strain rates, which ensures 
smooth surfaces and reasonable prediction results in 
the presence of many surface intersections. The 
expression for the Ford model is as follows:  

1 1
1 0( , )= + + [1 exp( )] + ( )G GEσ A B C D Fε ε ε ε ε ε−− −    

 (16) 
where A1, B, C, D, E, F and G1 are the calibrated 
parameters. Four sets of curves are interpolated 
among the three sets of strain rates, and a total of 28 
sets of curves are obtained by interpolating the 
seven surfaces calibrated by the Ford model. The 
calibrated 2296 virtual experimental points are used 
to enrich the experimental data, and finally a total 
of 7762 sample data including experimental data 
are obtained. Then, 6985 data points accounting for 
90% of the sample data are selected as the training 
set, and the remaining 10% are used as the test set 
to evaluate the predictability of the model. The 
speed and position of the particles in the PSO 
algorithm are iteratively updated until the ANN 
model training reaches the target error level. 

4.2 Calibration of hardening curves 
Figures 13 and 14 reflect the degree of 

agreement between the predicted surfaces of the 
constitutive models and the experimental results 
represented by the red solid symbols at different 
strain rates and temperatures. From the overall 
prediction results in Fig. 13, it can be seen that the 
predicted surfaces are relatively smooth and the 
trend reflects the strain hardening effect. Both the 
MKM model and the MLH model describe the 
thermal softening effect, but the predicted surfaces 
are relatively monotonic and rigid. The intersection 
of two colors on the surfaces predicted by ANN 
model indicates its high flexibility. The strain of 
0.03 corresponds to the highest stress by EAITT at 
373 K among different experiments with a strain 
rate of 0.01 s−1, which is exactly reflected by the 
convexity of the surface predicted by the ANN 
model. Therefore, the ANN model can adjust the 
surfaces according to the experimental stress 
amplitudes and the predictions are still smooth 
between different strain rates. The RMSE predicted 
by the ANN model is only 1.9676. The prediction 
errors of the MKM and MLH models are 14.7915 
and 14.2207, respectively, which are 7.5 times that 
of the ANN model. The three models are compared 
separately at each temperature, which can clearly 
express the prediction of the trend under large strain 
and the prediction results of the intermediate strain 
rate not to be covered by the experiment. 

 

 
Fig. 13 Comparison between calculated flow stress and experimental data: (a) MKM model; (b) MLH model; (c) ANN 
model; (d) RMSEs of three models 
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Fig. 14 Calibration results of three models at same temperature for ITT (a, c, e) and EAITT (b, d, f): (a, b) 323 K;    
(c, d) 373 K; (e, f) 423 K 
 

Figure 14 shows the prediction errors of the 
three models and the calibration results at each 
temperature, respectively. There are a lot of 
overlaps between the three models for small strains, 
but it can be clearly seen that only the ANN model 
can accurately calibrate the hardening curve under 
large strains, especially the results at 423 K by 
EAITT. For the stresses obtained by EAITT at 
373 K, there is a large difference at different strain 
rates, which can only be calibrated by ANN model. 
The ANN model can accurately reflect different 
hardening responses measured and all the predicted 
surfaces have no additional peaks or troughs outside 
the experimental data. 
 
4.3 Numerical prediction of force−displacement 

curves 
The MKM, MLH and ANN models are 

implemented in the commercial software Abaqus/ 
Explicit to perform numerical simulations under 
different experimental conditions. A quarter model 
of the dogbone specimen is applied to saving 
running time due to the symmetry of the boundary 
conditions. It is assumed that the temperature 
remains constant throughout the simulation depending 
on the employment of first-order solid elements 
(C3D8R from Abaqus library). The comparison 
between the experimental results and the force 
displacement curves of the dogbone extracted by 
numerical simulations are shown in Figs. 15 and 16. 
It is found that the characteristics of the three 
models are relatively obvious. The MKM model is 
based on the description of dislocation−dislocation 
interactions, so the predictions of large dislocation 
densities resulting from the strain rate of 0.1 s−1   
is the most accurate. The prediction results of the  
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Fig. 15 Comparison of numerical simulation results of MKM and MLH models with experimental results (EXP) for 
dogbone specimens: (a, b) 323 K; (c, d) 373 K; (e, f) 423 K 
 
MKM model for low strain rates are unsatisfactory, 
especially for the prediction results of 0.001 s−1 
under the EAITT which are very different from the 
experimental values. The MLH model can reflect 
the general trend of each set of force−displacement 
curves, but most of the simulation results have a 
certain deviation from the experimental values. 
Good prediction results are attributed to the fact 

that the variation range of stress with different 
strain rates is relatively small at 323 K, but the large 
variation of stress amplitude leads to a large 
deviation at 423 K. It can be seen from Fig. 15(b) 
that the force−displacement curve with a strain rate 
of 0.001 s−1 is above the curve with a strain rate of 
0.1 s−1 under the same heating mode, so the MLH 
model can slightly capture the negative strain rate  
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Fig. 16 Force−displacement curves predicted by ANN model for dogbone specimen: (a) 323 K; (b) 373 K; (c) 423 K;  
(d) Extracted force at displacement of 2 mm as function of strain rate 
 
effect of 323 K. Even though the overall calibration 
errors of the two models are roughly the same, the 
MLH model that directly considers the coupling 
effects of different factors is more flexible and 
applicable. 

The prediction results in Fig. 16 show that the 
calibration accuracy of the ANN model is obviously 
the best. It can accurately simulate the coupling 
effects of various effects and highly nonlinear 
special phenomena, such as the negative strain rate 
effect at 323 K, the maximum stress for the EAITT 
at 0.1 s−1 and the ITT at 0.01 s−1 and 373 K, and 
positive strain rate effects at 423 K. Different 
current densities are used as inputs to reflect the 
difference between EAITT and ITT, and the 
nonlinear results can be clearly distinguished   
and accurately predicted. In addition, computing 
efficiencies are compared under the same parameter 
settings and computer configuration (AMD Ryzen 7 
4800HS with Radeon Graphics 2.90 GHz; 8.00 GB 
RAM; 4 CPUs for all the simulations). It is found 
that taking the EAITT at a strain rate of 0.01 s−1 and 

373 K as an example, the MKM and MLH models 
take 3.12 min while the ANN model takes 
10.45 min. The calculation time of the ANN model 
is roughly 3.35 times that of the analytical models, 
which is within the acceptable range compared to 
the irreplaceable prediction accuracy. 

Figure 17 visually shows the comparison 
between the prediction results of the three models 
and the experimental results. The overall calibration 
errors of MKM and MLH are similar, but the MKM 
prediction results of several sets of numerical 
simulations are very outrageous. Therefore, the 
prediction effect of the MLH model is better than 
that of the MKM model to avoid intolerable 
calibration errors under certain conditions. The 
prediction results of the ANN model are 
concentrated on the diagonal line, but the prediction 
of the yield and fracture position is not as  
accurate as the hardening interval. In summary, the 
ANN model is an emerging phenomenological 
model, which exhibits great advantages in the 
characterization of electroplastic coupling effects. 
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Fig. 17 Comparison of predicted force with experimental 
one 
 
5 Conclusions 
 

(1) The elongation increases sharply and the 
flow stress decreases when electric pulse is applied 
to the deformation process. The 5182-O aluminum 
alloy exhibits a negative strain rate effect at 323 K, 
but electrical pulse can promote it to exhibit a 
positive strain rate effect above 373 K. The effect of 
electrical pulse on softening and necking strain is 
relatively large at low strain rates. 

(2) The independent contribution of the 
electrical pulse to the inhibition of serrated flow 
promotes the stability of the plastic region. The 
XRD and TEM analysis shows that the dislocation 
density obtained by EAITT is lower than that 
obtained by ITT at the same initial temperature. 

(3) The limited scope of application of the 
MKM and the MLH models makes the prediction 
errors relatively large. The ANN-based hardening 
model can accurately capture negative strain rate 
effects, non-monotonic temperature effects and 
electroplastic effects. The ANN model is able to 
numerically simulate the plastic response before 
necking with excellent accuracy compared to the 
other two analytical models. 

(4) The modeling and characterization of 
electroplastic effects under different coupling 
effects are of great significance for improving 
accuracy of forming simulation, reducing 
manufacturing difficulty and improving surface 
quality in EAP. The rational application of various 
effects or mechanisms can break through the 
manufacturing bottleneck of difficult-to-form 
materials and promote the development of 
advanced manufacturing technologies. 
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摘  要：研究并表征电脉冲、温度、应变速率和应变耦合效应对 5182-O 铝合金流动行为和塑性的影响。在相同

温度下进行等温拉伸试验和电辅助等温拉伸试验，并将 3 种典型模型嵌入 ABAQUS/Explicit 中进行数值模拟以阐

明电塑性效应。结果表明，电脉冲能显著降低合金的变形抗力但提高伸长率。与修正的 Kocks−Mecking 模型相

比，所提出的修正 Lim−Huh 模型对高度非线性动态硬化行为的标定精度无明显提高。此外，神经网络模型非常

适合描述不同变量耦合作用下的宏观力学响应。 
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