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Abstract: A basket grinder was used as mechanochemical activation equipment to study low-grade lead—zinc oxide
ores in the Lanping area, China and a mechanochemical leaching (MCL) process combining grinding with NaOH
solution leaching was proposed for zinc leaching. The effects of leaching temperature, NaOH concentration, leaching
time, liquid—solid ratio, and stirring speed on zinc leaching rate were investigated. Experimental results show that under
the optimal conditions, the zinc leaching rate of MCL reaches 92.3%, which is 7.2% higher than that of conventional
stirring leaching (CSL). And small difference in energy consumption is observed between the two processes, indicating
the superiority of MCL. The strengthening mechanism of mechanochemical activation was investigated by analyzing
the zinc phase of raw ore, and XRD, SEM—EDS, EPMA and particle size analyses were conducted on leaching residues

from different processes under the optimal conditions.
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1 Introduction

Zinc is an important strategic base metal and
is the third most consumed nonferrous metal
following aluminum and copper [1,2]. At present,
the zinc smelting industry is dominated by zinc
sulfide [3]. With the continuous consumption of
high-grade zinc sulfide ore, the growing demand for
zinc has become difficult to meet, and the
development and utilization of zinc oxide ore
resources has become increasingly important [4].
Although China has abundant zinc oxide ore
resources, especially Lanping Lead—Zinc Mine in
Yunnan Province, the distribution characteristics
of zinc oxide ore resources and their own
characteristics (such as difficult to concentrate, high
silicon, and high iron) lead to difficulty in relevant

processing and smelting technologies [2,5]. Thus,
methods for the economic and effective development
and utilization of zinc oxide ores are of great
significance.

The hydrometallurgical technology of zinc
oxide ores can be divided into acid, ammonia, and
alkali leaching [6—8]. Sulfuric acid leaching is the
most feasible and widely applied in the industry;
however, it is unsuitable for low-grade zinc oxide
ores mainly because these ores contain large
amount of impurity metals (such as iron and
aluminum), alkaline gangue (such as CaO and
MgO), and silicate components that increase the
consumption of sulfuric acid and generate silica
gel, which affects separation and complicates
purification [2,9]. Although ammonia leaching has
low zinc leaching rate when zinc silicate ore is
leached [1], this process can avoid the shortcomings
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of sulfuric acid leaching. For example, zinc
leaching has no silica gel problem and can achieve
selective zinc leaching. However, this method is
associated with large ammonia loss and poor
operating environment due to the volatility of
ammonia. The relevant process is still immature and
remains in the laboratory research and development
stage. Alkali leaching mainly refers to NaOH
leaching. Although its process flow is similar to
that of sulfuric acid leaching, it can avoid the
shortcomings of acid leaching. Alkali leaching has
the advantages of slow equipment corrosion, simple
solid—liquid separation, and easy leaching solution
purification. In contrast to ammonia leaching, alkali
leaching will not cause environmental pollution;
however, the low leaching rate of zinc silicate
restricts further application of alkaline leaching for
zinc oxide ores [7,10]. Therefore, an enhanced
leaching method is urgently needed to improve the
alkaline leaching efficiency of zinc oxide ores.

With the development of mechanochemistry,
researchers have gradually realized that adding
mechanical energy to minerals can change their
physical and chemical properties and thereby
enhance their reactivity [11,12]. As a pretreatment
method, mechanical activation is widely used in the
intensive leaching of minerals to improve the
leaching rate of valuable metals [13—16]. XIANG
et al [17] significantly improved the vanadium
leaching efficiency and made the production
process cleaner by combining mechanical activation
pretreatment, calcification roasting, and two-step
acid leaching of vanadium bearing converter slag.
The mechanical activation of chalcopyrite can
improve the copper extraction rate. Thus, scholars
have studied the leaching behavior and mechanism
of chalcopyrite [18—21]. FAN et al [22] used a
planetary mill to mechanically activate indium-
bearing zinc ferrite and employed SO, as a reducing
and leaching agent. The results showed that
mechanical activation can reduce the activation
energy of zinc and indium. However, these studies
used mechanical activation for mineral pretreatment
and did not combine it with leaching. ZHANG and
ZHAO [23] found that the zinc leaching effect of
mechanochemical leaching (simultaneous grinding
and leaching) is better than that of mechanical
activation and subsequent leaching of sphalerite
with alkaline solution containing PbCO;. ZHAO
et al [24] extracted zinc from hemimorphite by

mechanochemical leaching in NaOH solution and
achieved zinc leaching rate as high as 93.6% under
the optimal conditions.

In this work, low-grade lead—zinc oxide ores
from Lanping, Yunnan Province, China, were used
as raw materials, and NaOH solution was used as a
leaching agent. A basket grinder was employed as
mechanochemical activation equipment to improve
the alkaline leaching efficiency of zinc oxide ores
through grinding while leaching. The process
conditions were optimized. Compared with
conventional stirring leaching (CSL), mechano-
chemical leaching (MCL) can shorten leaching time,
reduce reaction conditions, and improve zinc
leaching rate. The strengthening mechanism of
MCL was explored through leaching experiment,
XRD, SEM-EDS, particle size analysis, and EPMA
characterization analysis of leaching residues.

2 Experimental

2.1 Materials

The samples used in this experiment were raw,
brown-yellow, low-grade lead-zinc oxide ores
collected from Lanping area, Yunnan Province,
China. The raw ore samples were crushed by a jaw
crusher, dried in an oven, finely ground by a crusher,
and sieved until the particle size was less than
150 um. The main chemical composition of the
lead—zinc oxide ore powder was detected using
chemical analysis methods, and the result is
presented in Table 1. Zinc phase distribution was
determined using selective dissolution method as
shown in Table 2. Analytical reagent (NaOH) was
purchased from Tianjin Zhiyuan Chemical Reagent
Co., Ltd., China.

The related characterization results of the raw
ores are shown in Fig. 1. The main metal minerals
in the lead—zinc oxide ores are smithsonite,
cerussite, galena, and magnetite, and the gangue
components are calcite and quartz (Fig. 1(a)). The
particle size distribution diagram of the raw ores is
shown in Fig. 1(b), and the specific granularity data
are displayed in Table 3. The average particle size

Table 1 Chemical composition of lead—zinc oxide ores
(wt.%)

Zn Fe Pb S SiO; ALO3; MgO CaO Others

10.47 10.54 9.09 1.07 10.22 0.94 0.34 13.25 44.08




1978

Table 2 Phase distribution of zinc in lead—zinc oxide

ores
Phase Zinc Phase composition
composition content/wt.% proportion/%

ZnCO; 8.96 85.58
Zn,Si04 0.47 4.49

ZnS 0.79 7.54
ZnFe;04 0.25 2.39

Znr 10.47 100

of the raw ores is 56.624 um, and the specific
surface area is 0.852 m?/g. The micromorphology
is different; the sample appear as a block with
irregular form or in long strips and diamond, and
the particle surface is relatively smooth (Figs. 1(c)
and (d)). The SEM-EDS analysis results of raw
ores are shown in Fig. 2. Various elements are
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irregularly distributed in the raw ore. Some long
crystals are composed of CaCOs and Fe;Os (Point
A), and zinc exists in the form of ZnCO; (Point B).
On the basis of the EDS analysis of Point C,
plumbum exists in the forms of PbCOs and PbS and
silicon exists in the form of SiO; (Fig. 2(a)). The
EDS mapping analysis of the raw ores is shown in
Fig. 2(b). The distribution of C, O, Si, S, Ca, Fe, Zn,
and Pb in the raw ore is uneven, revealing the
complex composition of the sample.

2.2 Experimental procedure

MCL and CSL experiments were carried out
under atmospheric pressure using a basket grinder
as the mechanical activation device. The working
principle of the device is to stir, disperse, and remix
the solution and mineral powder in the barrel with
the help of the agitator. The mixed materials were

(a)

1 — Calcite

2 — Quartz

3 — Smithsonite
4 — Cerussite

5 — Galena

6 — Magnetite

Frequency/%

s[®

4t

3L

2t

]

. nnrrnﬂﬂmﬂﬂﬂﬂm””””m”” . I
100 10! 102

Particle ize/ pum

Fig. 1 Related characterization results of raw ores: (a) XRD pattern; (b) particle size distribution diagram; (c, d) SEM

images

Table 3 Particle size distribution and specific surface area of raw ores

D]o/},tm Dso/},tm Dgo/},lm

D3,2/um

Dy 3/pm SG/(mz'g’l)

3.711 56.624 193.057

7.042 78.149 0.852

Do, Dso and Dy are the particle sizes corresponding to the cumulative particle size distribution of the sample reaching 10%, 50%, and 90%,
respectively; Dspand Dajare the surface area moment mean diameter and the volume moment mean diameter, respectively; Sc is specific

surface area



Yu-sen YU, et al/Trans. Nonferrous Met. Soc. China 34(2024) 1976—1993 1979

Point 4
Element wt.% at%
C 320 9.39
(0] 480 10.56
Si 0.12 0.16
S 021 0.23
Ca 89.36  78.48
Fe 1.28 0.81
Zn 0.55 0.29
Pb 048 0.08

Fe  7Zn - i i " i
6 8 10 12 14 16 18 20
Energy/keV
Point B Point C
Zn [e]
Element wt.% at.% Element wt.% at%
C 10.84 23.80 C 16.70 31.54
O 32.18 53.04 o 33.44 4742
o Si 0.11  0.10 Si 2.06 1.66
N 0.50 041 Ca S 0.70  0.50
Ca 1.22  0.80 Ca 14.40 8.15
Fe 1.65 0.78 Fe 2141 8.70
Zn 51.64 20.83 b o Zn 337  1.17
, Pb 1.86 0.24 e Sig N Pb 7.92 087
C Pb n Zn
cllsis Ca Fe lZn F.e Z."
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Energy/keV Energy/keV

Fig. 2 SEM—EDS analysis results of raw ores: (a) Point scanning; (b) Mappings

sucked into the grinding basket through the suction
pump wheel. Under the high-speed operation of the
motor-driven rotating shaft and transmission shatft,
the internal paddle moved the zirconia balls to
rotate at high speed in the grinding basket chamber
to achieve high-energy ball milling and refining.
The refined materials were then discharged from
the bottom of the grinding basket through the
micropores in the separator and reentered the barrel.
This process was repeated to achieve grinding while
leaching. The schematic diagram of the device is
shown in Fig. 3. In MCL, a fixed amount of zirconia

balls were added to the grinding basket to serve as
the grinding medium. By contrast, in CSL, no
grinding medium was added. A series of comparative
experiments were carried out under the same
conditions to compare the performance of MCL and
CSL. In brief, 150 g of d2 mm zirconia ball was
placed into the grinding basket and 900 mL. NaOH
solution was added into the barrel. Different factors
affecting zinc leaching were optimized: leaching
temperature (45—85 °C), concentration of NaOH
solution (1-5 mol/L), leaching time (10—90 min),
liquid—solid ratio (5:1—15:1 mL/g), and stirring speed
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NaOH solution

Fig. 3 Schematic diagram of basket grinder (1—Radiator;
2—FElectromotor; 3—Rotating shaft; 4—Vacuum pressure
gauge; 5—Charging barrel; 6—FElectric heating sleeve;
7-Temperature control device; 8—Grinding control
device; 9—Grinding basket; 10—Drive shaft; 11—Separator;
12—Raw ore powder; 13—Agitator; 14—Grinding basket
chamber; 15—Suction pump wheel; 16—Zirconia ball)

(200—1000 r/min). After the leaching was completed,
the sample was filtered while hot. The filter residue
was washed with distilled water three times to
obtain clean leached residue. An appropriate
amount of leached solution was obtained for the
detection of zinc concentration. Finally, the leached
residue was dried at 100 °C for 24 h and subjected
to XRD, SEM, particle size analysis, and EPMA
characterization.

2.3 Characterization and analysis

The concentration of zinc in the solid samples
and solutions was measured against the national
standard. High zinc content was determined by
EDTA volumetric method, and low zinc content
was determined by atomic absorption spectrometry
(AAS). The surface microstructure of the solid
phase was evaluated using a scanning electron
microscopy (SEM, Tescan Mira Lms, Czech
Republic) and energy dispersive spectroscopy
(EDS, Oxford). The particle size distribution of the
solid samples was determined by particle size
analyzer (Malvern 2000). The main element
distribution of leaching residue was determined by
EPMA (JXA-8530F Plus). The working energy
consumption in the leaching process was measured
with a power meter (PY-G8). Zinc leaching rate
was calculated by Eq. (1). The zinc extraction
efficiency was calculated by Eq.(2) [19].

According to different processes, this index can be
divided into the grinding efficiency of MCL and the
leaching efficiency of CSL:

L= 100% 1)
ma)Zn
c
e 2
=5 (2)

where L is the zinc leaching rate, C is the Zn
concentration in leaching solution (g/L), V is the
volume of the corresponding filtrate after leaching
(L), m is the mass of sample (g), wz is the zinc
content in sample (%), # is the zinc extraction
efficiency and can be divided into MCL grinding
efficiency or CSL leaching efficiency (g/(L-h-kW),
P is the rated working power of the basket grinder
(kW), and ¢ is the grinding time or leaching time
(h).

The mineral compositions of lead—zinc oxide
ores and leaching residue were characterized by
X-ray diffractometer (XRD, Cu K,; wavelength of
J=1.5406 A; step size of 0.02°; time per step: 3 s;
scanning range: 10°-90° scan speed: 8 (°)/min;
Panalytical, Netherlands). After the XRD patterns
were deconvoluted by Jade6, the peak intensity and
full width at half maximum (FWHM) were obtained
through data analysis [25,26]. The amorphization
degree (4) of mechanochemical leaching residue
(MCLR) was calculated by Eq. (3) [11,26—28]:

Ul
AleO—X:IOO—(MJXIOO (3)

X700

where X is the degree of crystallinity, Uy and Uy are
the background intensities of non-activated (raw
ore) and activated (MCLR) samples, respectively,
and /o and Iy are the integral intensities of non-
activated (raw ore) and activated (MCLR) samples,
respectively.

3 Results and discussion

The effects of leaching temperature, NaOH
concentration, leaching time, liquid—solid ratio, and
stirring speed on zinc leaching rate in MCL and
CSL were studied, as shown in Fig. 4. The effects
of different leaching conditions on zinc extraction
efficiency in MCL and CSL were also determined,
as shown in Fig. 5.
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Fig. 4 Effects of different leaching conditions on zinc leaching rate: (a) Leaching temperature; (b) NaOH concentration;

(c) Leaching time; (d) Liquid—solid ratio; (e) Stirring speed
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3.1 Effect of leaching temperature

Temperature is a key factor affecting leaching.
According to leaching kinetics, an increase in
temperature can accelerate the leaching reaction
rate, which is beneficial to easily reaching chemical
reaction balance. A comparative study on the effect
of leaching temperature on zinc leaching was
carried out under MCL and CSL. XRD analysis of
leaching residue was also performed to investigate
the effect of leaching temperature on the leaching of
lead—zinc oxide ores (Fig. 6).

The experiment was conducted under the
following conditions: NaOH concentration of
3 mol/L, leaching time of 60 min, liquid—solid ratio
of 10:1, and stirring speed of 800 r/min. Figure 4(a)
shows the comparative study of the effects of MCL
and CSL on the zinc leaching rate at different
leaching temperatures. In MCL and CSL, the zinc
leaching rate increased with the increase of
temperature. MCL was always better than CSL.
With the increasing temperature, the grinding
efficiency of MCL and the leaching efficiency of
CSL both increased (Fig. 5(a)). Compared with
CSL, MCL reduced the reaction temperature to
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achieve the same zinc extraction effect as CSL.
When the temperature was continuously increased
to 85°C, the zinc leaching rate under MCL
remained unchanged but that under CSL continued
to increase at a slow rate. This phenomenon
occurred because chemical reaction equilibrium
was attained at 85 °C in MCL but not in CSL.
The energy consumption must be correspondingly
increased when the temperature was increased. In
conclusion, the optimal leaching temperature was
set to be 75 °C.

The phase types of MCLR and conventional
stirring leaching residue (CSLR) were the same at
different temperatures (Figs. 6(a) and (b)) and were
mainly composed of calcite, quartz, galena, and
magnetite. Smithsonite and cerussite in the raw ores
disappeared, which was consistent with the high
zinc leaching rate. The main reaction equations
during leaching can be described by Egs. (4) and
(5). With the XRD data as basis, the A and FWHM
were investigated with the strongest peak of
leaching residue, that is, the main peak of calcite
phase. With increasing the temperature, the peak
intensity of MCLR and CSLR showed a downward

(b) | 1 — Calcite
, o 2—Q4uartz 85 °C
21 2 A1 o2 ol 133 a1 a3 233
3 — Galena
) 3 . 75 °C
2 1,32 142 1 ol 1123 3 11 213 1 233
4 — Magnetite
; ) 65 °C
13 14 Dol 1233 45 2131 233
. . 55°C
1,32 By 42 ol 11233 11 2131 233
- 45°C
210 2 B o Lol i3 i3 ms
1 1 1 1
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200(°)
0.16 28
(d) FWHM under MCL
XN FWHM under CSL
0.14 + —— A
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012}
S
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0.10 | 1s0
x W XX
IR NN
s LN NN LN N

45 55 65 75 85
Leaching temperature/°C

Fig. 6 XRD patterns of alkali leaching residue at different temperatures: (a) MCLR; (b) CSLR; Comparison chart of
alkali leaching residue data at different temperatures: (c) Peak intensity; (d) FWHM and amorphization degree (A4)
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trend and was lower in the former (Fig. 6(c)). With
increasing the temperature, the FWHM increased in
MCLR and CSLR and was greater in the former
than in the latter. Moreover, the A of MCLR showed
an upward trend overall (Fig.6(d)). Increasing
temperature can accelerate the mass transfer
rate of the solution, induce the reaction between
the solution and minerals, and strengthen the
dissolution effect of zinc-containing components.
Compared with the conventional process,
mechanochemical activation can refine lead—zinc
oxide mineral particles, destroy the grain integrity,
produce lattice distortion, and increase the degree of
amorphization, thereby improving the zinc leaching
rate.

ZnCO3+4NaOH=NaQZn(OH)4+Na2C03 (4)
PbCO3+4NaOH=Na2Pb(OH)4+Na2C03 (5)

3.2 Effect of NaOH concentration

A comparative study on the effect of NaOH
concentration on zinc leaching was carried out
under MCL and CSL. XRD analysis of the leaching
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residue was also performed to investigate the effect
of NaOH concentration on the leaching of lead—zinc
oxide ores (Fig. 7). The experiment was conducted
under the following conditions: leaching temperature
of 75 °C, leaching time of 60 min, liquid—solid ratio
of 10:1, and stirring speed of 800 r/min. With
increasing the NaOH concentration, the change
trend of zinc leaching rate was similar between
MCL and CSL, but the former was always better
than the latter (Fig. 4(b)). When the concentration
of NaOH was increased from 1 to 5 mol/L, the zinc
leaching rate increased, but the increase rate
gradually decreased. With increasing the NaOH
concentration, the grinding efficiency of MCL and
the leaching efficiency of CSL were similar, that is,
they both increased but the increase rate gradually
decreased (Fig. 5(b)). MCL reduced the NaOH
concentration to achieve the same zinc extraction
effect as CSL. When the NaOH concentration
reached 3 mol/L, the zinc leaching rate under MCL
was 92.3%, and that under CSL was 85.1%. When
the NaOH concentration was further increased to
5 mol/L, the zinc leaching rate only slightly increased.
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Fig. 7 XRD patterns of alkali leaching residue at different NaOH concentrations: (a) MCLR; (b) CSLR; Comparison
charts of alkali leaching residue data at different NaOH concentrations: (c) Peak intensity; (d) FWHM and

amorphization degree (4)
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Hence, the optimal alkalinity level was 3 mol/L
NaOH.

When the NaOH concentration was 1 mol/L,
the XRD patterns of MCLR and CSLR in Figs. 7(a)
and (b) showed the zincite phase and the
disappearance of the smithsonite phase in the raw
ores. According to the low zinc leaching rate
(Fig. 4(b)), NaOH at this concentration was
insufficient to completely dissolve zinc in minerals.
Hence, the reaction of Eq.(6) may occur. With
further increase in NaOH concentration, the zincite
phase in the leaching residue disappeared. When the
concentration of NaOH was sufficient, the soluble
zinc components in the raw ores were almost
completely dissolved and entered the alkali solution
to form sodium zincate. When the concentration of
NaOH was continuously increased to 5 mol/L, the
XRD spectra of MCLR and CSLR showed the
portlandite phase. At extremely high NaOH
concentration, the solubility of CaCO; was greater
than that of Ca(OH),, and the solid phase structure
of calcite was unstable [29]. In this regard, reversed
causticizing reaction may occur as indicated in
Eq. (7). With increasing the NaOH concentration,
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the peak intensity of MCLR and CSLR decreased,
and the FWHM of MCLR and CSLR increased
(Figs. 7(c) and (d)). Increasing the NaOH
concentration can improve the leaching rate because
high-concentration solutions are more likely to
damage minerals; MCL intensifies the damage
effect of raw ore through mechanochemical
activation, resulting in the decreased diffraction
peak intensity of the leaching residue and FWHM
broadening [15,28]. The degree of amorphization
was intensified to be evident in the 4 of MCLR
(Figs. 7(c) and (d)). In terms of macro performance,
the leaching residue particles were more delicate,
thereby strengthening the zinc leaching effect.

ZnCO3+NaOH=ZnO+NaHCO:3 (6)
CaCO;+2NaOH==Ca(OH), + Na,CO; (7)

3.3 Effect of leaching time

A comparative study on the effect of MCL and
CSL on zinc leaching at different leaching time, and
the XRD analysis of leaching residue were carried
out (Fig. 8). The experiment was conducted under
the following conditions: NaOH concentration of
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Fig. 8 XRD patterns of alkali leaching residue at different leaching time: (a) MCLR; (b) CSLR; Comparison charts of
alkali leaching residue data at different leaching time: (c) Peak intensity; (d) FWHM and amorphization degree (4)
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3 mol/L, leaching temperature of 75 °C, liquid—
solid ratio of 10:1, and stirring speed of 800 r/min.
The zinc leaching rate increased with
increasing the leaching time in both methods, but
MCL was better than CSL because soluble zinc can
be leached in a short time (Fig. 4(c)). The grinding
efficiency of MCL and the leaching efficiency of
CSL (Fig. 5(c)) exhibited a sharp downward trend
with further increase in leaching time. From 10 to
90 min, the grinding efficiency decreased sharply
from 57.99 to 7.84 g/(L-h-kW) under MCL, and
the leaching efficiency decreased from 50.86 to
7.22 g/(L-h-kW) under CSL. The reaction rate of
NaOH for leaching zinc was fast in the initial stage
and mainly controlled by diffusion in the later stage.
Extending the leaching time for zinc extraction is
of minimal significance and will increase the
production cost. MCL shortened the leaching time
to achieve the same zinc extraction effect as CSL.
The residue phase of the leaching residue mainly
consisted of gangue and insoluble metals (Figs. 8(a)
and (b)). With increasing the leaching time, the
diffraction peak intensity of MCLR and CSLR
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decreased and the FWHM increased; however, the
change trend of CSLR was not as evident as that of
MCLR, and the 4 of MCLR increased (Figs. 8(c)
and (d)). MCL destroyed the insoluble gangue layer
on the surface of zinc ore by simultaneous grinding
and leaching, accelerated the exposure of internal
zinc containing components and the reduction in
particle size, and strengthened the zinc dissolution
effect of NaOH. In consideration of the leaching
rate and production cost, the optimal leaching time
was set to be 60 min.

3.4 Effect of liquid—solid ratio

A comparative study on the effect of liquid—
solid ratio on zinc leaching was carried out under
MCL and CSL. XRD analysis was also conducted
on the leached residue to determine the influence of
liquid—solid ratio on raw ore leaching (Fig. 9). The
experiment was conducted under the following
conditions: NaOH concentration of 3 mol/L, leaching
temperature of 75 °C, leaching time of 60 min, and
stirring speed of 800 r/min. The zinc leaching rate
and liquid—solid ratio of zinc leaching showed the
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Fig. 9 XRD patterns of alkali leaching residue at different liquid—solid (L/S) ratios: (a) MCLR; (b) CSLR; Comparison
charts of alkali leaching residue data at different liquid—solid ratio: (c) Peak intensity; (d) FWHM and amorphization

degree (4)
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same trend in both methods, that is, the zinc
leaching rate increased with increasing the liquid—
solid ratio. However, MCL was always better than
CSL (Fig. 4(d)). With increasing the liquid—solid
ratio, the grinding efficiency of MCL and the
leaching efficiency of CSL both showed a
downward trend (Fig. 5(d)). When the liquid—solid
ratio was 5:1, the zinc leaching rate in MCL was
72.7%, and the grinding efficiency of MCL was
18.27 g/(L-h-kW). The zinc leaching rate in CSL
was 64.0%, and the CSL leaching efficiency was
16.09 g/(L-h-kW). When the liquid—solid ratio was
continuously increased to 10:1, the zinc leaching
rate increased to 92.3% under MCL and 85.1%
under CSL. However, the grinding efficiency of
MCL decreased to 11.61 g/(L-h-kW), and the
leaching efficiency of CSL decreased to
10.70 g/(L-h-kW). With further increase in the
liquid—solid ratio to 15:1, the zinc leaching rate of
both methods slightly increased and their zinc
extraction efficiency were further reduced. In
consideration of NaOH solution consumption, zinc
extraction efficiency, and zinc leaching rate, the
optimal liquid—solid ratio was set to be 10:1.

No difference in phase types, mainly calcite,
quartz, galena, and magnetite, was found between
MCLR and CSLR at different liquid—solid ratios
(Figs. 9(a) and (b)). With increasing the liquid—solid
ratio, the peak strengths of MCLR and CSLR
showed a downward trend. The peak strengths of
MCLR did not decline significantly but were lower
than those of CSLR (Fig. 9(c)). With increasing the
liquid—solid ratio, the 4 of MCLR showed an
increasing trend, the FWHM of MCLR and CSLR
also increased, and the FWHM of MCLR was
always greater than that of CSLR (Fig. 9(d)).
Increasing the liquid—solid ratio also increased the
contact probability between zinc ore and NaOH
solution, reduced the mass transfer diffusion resistance,
and promoted the dissolution of zinc. MCL
intensified the destruction of zinc ore particles by
mechanochemical activation, leading to a reduction
in particle size and intensification of amorphization.
This phenomenon promoted the increase in the
mass transfer rate, improved the zinc leaching
rate, and reduced the liquid—solid ratio, thereby
achieving the same zinc leaching effect as CSL.

3.5 Effect of stirring speed
A comparative study on the effect of MCL and

CSL on zinc leaching rate at different stirring
speeds, and XRD analysis of leaching residue were
carried out (Fig. 10). The experiment was
conducted under the following conditions: NaOH
concentration of 3 mol/L, leaching temperature of
75 °C, leaching time of 60 min, and liquid—solid
ratio of 10:1.

Under MCL and CSL, the zinc leaching rate
was basically consistent with the change trend of
stirring speed. At a low rotating speed, the zinc
leaching rate was also low. Increasing the rotating
speed also increased the zinc leaching rate, and
MCL was better than CSL (Fig. 4(e)). The XRD
phases of MCLR and CSLR were mainly insoluble
metals and gangue (Figs. 10(a) and (b)). The grinding
efficiency of MCL and the leaching efficiency of
CSL were not studied due to different levels of
working power of basket grinder at different stirring
speeds. Increasing the stirring speed led to the
complete mixing and dispersal of the zinc ore
powder in the NaOH solution system, thereby
thinning out the particle surface diffusion layer,
expanding the mass transfer rate, and increasing the
zinc leaching rate. However, increasing the stirring
speed also increased the energy consumption. With
increasing the stirring rate, the diffraction peak
intensity of MCLR and CSLR decreased, and the
FWHM increased. The peak intensity of MCLR and
CSLR was almost the same at 800 and 1000 r/min,
respectively, the FWHM broadening change in
CSLR was not evident, and the 4 of MCLR
continued to increase (Figs. 10(c) and (d)). Increasing
the stirring speed also accelerated the solution
dissolution of ores. Meanwhile, MCL dissolved the
zinc ores by grinding and leaching, accelerated the
exposure of internal zinc-containing components
and particle amorphization, and strengthened the
zinc leaching effect. In consideration of the
leaching rate and energy consumption, the optimal
stirring speed was set to be 800 r/min.

The optimal technological conditions for the
alkaline leaching of low-grade lead—zinc oxide ores
under MCL were as follows: leaching temperature
of 75 °C, NaOH concentration of 3 mol/L, leaching
time of 60 min, liquid—solid ratio of 10:1, and
stirring speed of 800 r/min. Under these conditions,
the zinc leaching rate reached 92.3%. Compared
with CSL, MCL enhanced the zinc leaching effect
and reduced the reaction conditions. Therefore,
MCL could be superior to CSL.
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Fig. 10 XRD patterns of alkali leaching residue at different stirring speeds: (a) MCLR; (b) CSLR; Comparison charts of
alkali leaching residue data at different stirring speeds: (c) Peak intensity; (d) FWHM and amorphization degree (4)

3.6 Enhancement mechanism of MCL

Figure 11 shows the measured energy
consumption of MCL and CSL under the optimal
condition, indicating that the difference between
them was not significant. The leaching residues
treated by MCL and CSL under the optimal
experimental conditions were characterized and
analyzed, as shown in Fig. 12. Figure 12(a) shows
the comparative XRD diagram of MCLR and
CSLR. The two leaching residues had the same
composition, mainly including gangue components
of calcite, quartz and small amount of galena and
magnetite, but no smithsonite and cerussite. For the
diffraction peak of calcite, its main peak intensity in
MCLR was smaller than that in CSLR. Hence,
MCL can effectively leach the soluble zinc in lead—
zinc oxide ores, reduce the crystallinity of minerals,
and destroy the crystal structure of minerals to
dissolve some gangue components. From a
macroscopic perspective, MCLR is light in color
and the particles are fine without graininess.
Meanwhile, CSLR is dark in color and the particles
are rough with graininess (Fig. 12(b)). In terms of

microstructure, the particle size distribution curve
of MCLR moved to the left, the fine particle size
distribution increased, and the coarse particle size
distribution decreased compared with those in
CSLR. These findings showed that the overall
particle size of the leached residue gradually shrank
(Figs. 12(c) and (d)). The specific granularity data
are shown in Table 4.

Fig. 11 Energy consumption of different leaching
processes: (a) MCL; (b) CSL

SEM characterization was carried out for
MCLR and CSLR to evaluate changes in the
leaching residues (Fig. 13). Microanalysis of the
leaching residue was also conducted through EDS
(Table 5). Coarse and smooth particles appeared in
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Table 4 Particle size distribution and specific surface
area of MCLR and CSLR samples

D]()/ D5()/ Dgo/ D3,2/ D4,3/ SG/
pm  pm  pm  pm  pm (m*g)
MCLR 0.855 6.908 50.48 239 21.669 2.51
CSLR 3.61 4547 185.125 6.831 73.016 0.878

Sample

Table 5 Contents of main elements in selected areas in
EDS analysis results of MCLR and CSLR samples in
Fig. 13 (wt.%)

Point No.

2 3 4 5 6 7 8
C  53.9829.7320.6812.9211.9921.91 5.74 11.43
O 28.65 44 47 47.34 55.6 37.7724.94 46.9
Si - 008 025 007 - - 032 -
S 0.59 1899 0.5 026 143 5.06 023 2.43
Ca 631 0.73 17.9337.9216.19 9.15 0.16 26.87 .
Fe 473 1.07 9.18 042 1.75 12.29 68.3 5.51 § } .. w8
Zn  0.74 43.72 1.82 0.52 3.92 7.06 031 3.15 Ve @ o £ o s RIDE

Pb 502 128 223 055 914 677 — 372 Fig. 13 SEM images of different leaching residues:
(a) MCLR; (b) CSLR

Element
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the microstructure of the two leaching residues, but
the particle size was small for MCLR and large for
CSLR. EDS analysis showed that the Zn content in
MCLR was lower than that in CSLR. However, the
Zn and S contents at Point 2 of MCLR were
extremely high, indicating that these two elements
existed in the form of ZnS. However, the element

content of EDS was not accurate and can only be
used for reference [30]. EPMA was conducted to
further analyze the element distribution of MCLR
and CSLR, as shown in Fig. 14. The main elements
in the leaching residue were Ca, C, Si, and O,
indicating that the main residue phases were
the gangue components of CaCO; and SiO». This

Fig. 14 EPMA images of different leaching residues: (a) MCLR; (b) CSLR
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finding was consistent with the XRD results. Small
amounts of Zn, Pb, Fe, and S remained in the
leaching residue particles. The distribution of Pb
overlapped with those of Fe, S, O, and other
elements, and Zn is mainly combined with Fe, S
and O. This finding indicated that plumbum existed
in the form of PbS and oxides. In addition, small
amounts of zinc-containing minerals in the leaching
residue existed in the form of hard soluble zinc,
such as ZnS and ZnFe;Os, and the content of Zn
was low in MCLR.

Table 2 showed that ZnCO; phase accounted
for 85.58% of the lead-zinc oxide ores, alkali
soluble zinc accounted for 90.07%, and refractory
zinc phase accounted for 9.93%. The zinc leaching
rate of MCL and CSL was increased by improving
the reaction conditions as shown in Fig. 15.
According to the characteristics of Zn—S and
Zn—O bonds [31-33], the decreasing active order
of zinc-containing phase in alkaline solution system
is: ZnCO3 > ZnO > Zn,Si04 > ZnS > ZnFe,04. For
CSL, improving the reaction conditions can
completely leach ZnCOs3, but the zinc leaching rate
is always lower than the alkali soluble zinc rate
and the refractory zinc phase is difficult to leach
by using NaOH solution under the conventional
process. However, Fig. 15 showed that the zinc
leaching rate under MCL was higher than the alkali
soluble zinc rate. This finding indicates that
mechanochemical activation dissolves some zinc
components that are difficult to leach. Given that
ZnFe;O4 is difficult to leach in NaOH solution,
ZHANG et al [23,34,35] used NaOH solution
containing lead carbonate to leach fluorescent
zinc sulfide and sphalerite under the condition of
mechanical activation and achieved relatively good
zinc leaching effect. Therefore, ZnS is the phase of
zinc that is difficult to leach, which is leached in
MCL and may cause the reaction of Eq. (8):

ZnS+PbCO;+4NaOH=Na,Zn(OH)4+PbS+Na>CO3
(®)
Given that cerussite already exists in the raw
ore composition, the zinc leaching effect can be
enhanced without introducing additional PbCOs to
react with ZnS in MCL. The leaching mechanisms
of MCL and CSL according to the leaching
experiment results and characterization analysis are
shown in Fig. 16. In CSL, with NaOH solution at
appropriate concentration, OH™ breaks through the
solid particles of lead—zinc oxide ore to reach the

reaction core, reacts with ZnCOs and PbCOs, and
generates Zn(OH); and Pb(OH); ™ into the solution.
Owing to the different solubilitities of ZnS and PbS,
adding an appropriate amount of Na,S solution is
necessary to produce Pb prior to Zn precipitation to
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Fig. 15 Effect of different experimental conditions on
zinc leaching rate: A—75 °C, 3 mol/L NaOH, 60 min, L/S
ratio=10:1 and 800 r/min; B—85 °C, 3 mol/L NaOH,
60 min, L/S ratio=10:1 and 800 r/min; C—75 °C, 5 mol/L
NaOH, 60 min, L/S ratio=10:1 and 800 r/min; D-75 °C,
3 mol/L NaOH, 90 min, L/S ratio=10:1 and 800 r/min;
E-75°C, 3 mol/L NaOH, 60 min, L/S ratio=15:1 and
800 r/min; F-75°C, 3 mol/L NaOH, 60 min, L/S
ratio=10:1 and 1000 r/min
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generate PbS. Meanwhile, Zn still exists in the
alkaline solution in the form of ions to separate lead
from zinc and recover lead from PbS precipitation
according to Refs. [36—38]. When the concentration
of NaOH is insufficient, it will react with ZnCOs
and generate ZnO in the solid particle product
layer. When the concentration of NaOH is excessive,
it will react with CaCO; in the raw ore and
generate Ca(OH), in the solid product layer on
the basis of leaching Zn(OH); and Pb(OH); .
Finally, the mechanisms underlying the mechano-
chemical activation of MCL are presented as
follows [11-13,39,40]: (1) Change the physical
properties of mineral particles, destroy the surface
of solid during the leaching, open the mineral
inclusions and refine the particles, release the Zn
and Pb, and increase the mass transfer rate, thus
strengthen the zinc leaching; (2) Change the
microstructure of mineral particles, resulting in
crystal structure defects, such as reduced diffraction
peak strength, FWHM broadening, and increased
amorphization, storing and converting part of
mechanical energy into chemical energy, thereby
improving the reactivity of materials [39,40];
(3) Change the chemical properties of mineral
particles to reduce the dependence of leaching
reaction on leaching temperature and concentration
of leaching agent, and realize the chemical reaction
that is difficult to occur under the conventional
process to dissolve the refractory zinc components
and improve the zinc leaching rate [23,39].

4 Conclusions

(1) Compared with CSL, MCL can shorten the
leaching time, reduce the reaction conditions, and
enhance the zinc leaching effect of NaOH by
destroying the mineral particle structure during
grinding while leaching. The optimal leaching
conditions were as follows: leaching temperature
of 75 °C, NaOH concentration of 3 mol/L, leaching
time of 60 min, liquid-solid ratio of 10:1, and stirring
speed of 800 r/min. Under these optimal conditions,
the zinc leaching rate was 92.3%, which was 7.2%
higher than that in CSL.

(2) The energy consumption of the leaching
process was studied under the optimal leaching
conditions. Characterization analysis (XRD, SEM—
EDS, particle size analysis, and EPMA) for the
leached residue and zinc phase analysis of the raw

ore were carried out. The XRD data were analyzed
(peak intensity, FWHM and amorphization degree
A). The results showed that the residual zinc-
containing components in the leaching residue
have difficulty leaching zinc phases such as ZnS
and ZnFe;O4. On this basis, the strengthening
mechanism of mechanochemical activation was
studied.

(3) MCL can effectively extract zinc under the
condition of low energy consumption, and the
NaOH solution after leaching can be recycled. Thus,
this method causes no pollution to the environment
and has a promising industrial prospect. A practical
reference scheme is provided to solve the problem
of resource utilization for low-grade refractory
lead—zinc oxide ores in the Lanping area. Further
optimization of equipment configuration can be
beneficial to the industrial application and
promotion of MCL in the future.
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