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Abstract: In order to improve the prediction accuracy of random forest (RF), k-nearest neighbor (KNN), gradient
boosted decision trees (GBDT) and extreme gradient boosting (XGBoost) models, a fused strategy was proposed for
predicting the glass forming ability (GFA) of bulk metallic glasses (BMGs). Feature vectors were extracted using a
trained convolutional neural network (CNN), and alloy composition information was the only variable input without
requiring various physical and chemical properties acquired from experiments. Besides, the hyperparameters of RF,
KNN, GBDT and XGBoost models were optimized by grid search method and k-fold cross validation. The obtained
results show that the accuracy of CNN—RF, CNN-KNN, CNN—-GBDT and CNN—XGBoost fused models proposed in
this work in predicting GFA is higher than that of the four machine learning models mentioned above (i.e., RF, KNN,
GBDT and XGBoost models), implying that the trained CNN could extract feature more effectively than manual feature
construction. Furthermore, compared with previously reported machine learning models and GFA criteria, the proposed
fused models could predict the GFA of BMG more accurately.
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glass types have been developed by trial-and-error
method, which is an effective and commonly
used research method with extensive experiments.
However, the process of trial-and-error method

1 Introduction

Metallic glasses (MGs), especially bulk

metallic glasses (BMGs), as a new type of structural
and functional materials, have attracted extensive
research enthusiasm since their discovery. Though
they possess many excellent mechanical, physical
and chemical properties such as extremely high
strength and hardness [1], high wear and corrosion
resistance [2], as well as their excellent magnetic [3]
and catalytic properties [4,5], the research and
development of MGs are limited due to their
macroscopic brittle nature and low glass forming
ability (GFA) [6,7]. Thus, how to improve the GFA
of MGs and produce large-size specimens has
become a hot topic.

In the past few decades, thousands of metal

usually takes a long time and consumes materials.
Some empirical criteria for gauging GFA have
been proposed to accelerate the development cycle
of MGs, such as Ty, (=Ty/Ti, T; is glass transition
temperature and 77 is liquidus temperature) [8],
AT(=TTg, Tx is onset crystallization temperature)
[91, yELATHT)) [10], ym(=QRTT)/Ty [11],
the enthalpy of mixing (AHmix) [12], the enthalpy
of formation of solid solution (AHs) [13],
configurational entropy (AS:) [14], mismatch
entropy (S,) [15], atomic size difference (5) [12],
and valence electron concentration (VEC) [16].
These criteria are lack of generality and strongly
rely on experimental measurements, which are not

Corresponding author: Zhi-lin LONG, Tel: +86-731-58298287, E-mail: longzl@xtu.edu.cn

DOI: 10.1016/S1003-6326(24)66491-5

1003-6326/© 2024 The Nonferrous Metals Society of China. Published by Elsevier Ltd & Science Press
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)



Ting ZHANG, et al/Trans. Nonferrous Met. Soc. China 34(2024) 1558—1570 1559

easy to accurately identify. So, it is necessary to
make more efforts to explore the basic properties of
MGs to exploit novel MGs with high GFA.

With the development of technology and the
accumulation of data, different machine learning (ML)
approaches, i.e. artificial neural network [17-23],
k-nearest neighbor (KNN) [20,24], support vector
machine (SVM) [19,20,24,25], convolutional
neural network (CNN) [19,21,26], decision tree
(DT) [24,27], random forest (RF) [22,24,28,29],
gradient boosted decision trees (GBDT) [30], extreme
gradient boosting algorithm (XGBoost) [29,31,32],
generative adversarial networks (GAN) [33], and
reinforcement learning [34] have been extensively
employed to accelerate the discovery of different
materials. In particular, researchers have carried out
extensive research on MGs with ML [35]. LIU
et al [36] applied four ML models, namely RF,
KNN, GBDT and XGBoost to predict GFA of
amorphous alloys, respectively. LI et al [37] used
XGBoost, artificial neural networks (ANN) and RF
to predict the magnetic properties of Fe-based MGs
with consideration of GFA. While the effectiveness
of the general ML model in materials science has
been confirmed, and the multilayer network model
with more complex structure has also been used for
research. LIU et al [38] trained a back propagation
neural network model (BPNN) based on a dataset
assembled from thousands of ternary alloys and
accurately identified the MG and non-MG
classes. SAMAVATIAN et al [39] proposed a new
correlation-based neural network (CBNN) approach
to assess critical casting thickness (Dmax), reduced
glass transition temperature, and elastic modulus.
These studies show that ML approaches have great
potential in searching for new MGs and evaluating
their properties.

In this work, a fused strategy combining CNN
model and traditional ML model is proposed. The
alloy composition information is used as the only
variable input, which takes into account the
possible combination space of 100 alloy elements
from element H to element Fm. Then, the trained
CNN model is used to extract feature vectors, and
the above feature vectors are used as the input of
traditional ML model to predict Dmax of amorphous
alloy, which avoids manual feature extraction. RF,
KNN, GBDT and XGBoost are four traditional ML
models mainly considered in this work, and they are
optimized by grid search method and k-fold cross

validation (k=10). In addition, the impact of
different features obtained from different hidden
layers of CNN on the results is explored. Finally, by
comparing the fused models with the four above-
mentioned ML models and some previous reported
models/criteria, the potential significance of our
framework in developing large MGs with GFA is
highlighted.

2 Dataset and ML framework

2.1 Dataset

The glass formation dataset used in this work
is based on the dataset of ZHANG et al [40]. 1888
amorphous alloy samples with Dmax value greater
than 1 mm include 622 Fe-, 279 Zr-, 184 Cu-, 142
Mg-, 142 Ti-, 95 La-, 80 Ni-, 67 Ca-, 58 Ce-, 56
Co-, 28 Gd-, 20 Pd-, 15 Nd-, 13 Mn-, 12 Pr-, 11 Tb-,
7 Au-, 6 Hf-, 6 CoFe-, 5 Y-, 5 Yb-, 5 Er-, 4 Ag-, 4
Ho-, 4 Sm-, 4 Pt-, 4 Cr-, 3 Dy-, 2 Tm-, 2 Sc-, 1 Mo-,
1 Be-, and 1 Zn-based alloys. Figure 1 shows the
distribution of Dma. It can be found that the
samples with Dmax between 1 and 5 mm account for
the vast majority, reaching 72.19%, the samples
with Dmnax between 5 and 20 mm account for
25.85%, and the samples with Dmac more than
20 mm only account for 1.96%. Obviously, the data
distribution is unbalanced with a positive skewness
value of 5.193. There may be intensive training for
the amorphous alloy samples with smaller Diax,
while insufficient training for samples with larger
Dhmax, resulting in overfitting or underfitting [41].
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Fig. 1 Dpax distribution in dataset

2.2 ML framework
Due to their characteristics of simple structure,
easy implementation and low computational cost,
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traditional machine learning models such as RF and
KNN have shown strong performance in different
tasks and great potential in promoting the
development of materials science. Generally, the
key and appropriate feature descriptors, which are
media that link material composition with material
properties, are extracted from the influencing
factors created based on domain knowledge, and
used as the input of ML to derive the relationship
between the feature descriptors and the target
attributes. For instance, the physical and chemical
factors, such as atomic size difference and melting
temperature are selected to predict the GFA in the
field of MGs. Thus, when the traditional ML model
is applied, the basic qualities of the corresponding
background common sense and theoretical knowledge
are strictly required for researchers to select more
appropriate feature descriptors.

The recently developed CNN is likely useful to
directly learn the most useful spatial statistics
objectively from the available data [42]. CNN is an
end-to-end learning model, which produces a more
advanced feature extraction method and can extract
more complex features from the input space. The
parameters of feature extraction are obtained
through training data learning, which avoids manual
feature extraction. CNN model has also been
proved to provide guidance for the development
and preparation of amorphous alloys in previous
studies [19,21,26,40]. Despite a costly initial
training cycle, deployment and utilization of
learned CNN models are very efficient, and the
filters learned by CNNs can be used as permanent
feature embedding with a sufficiently large
dataset [42]. Therefore, we consider combining
CNN as a feature extractor with traditional ML to
predict GFA more accurately.

Figure 2 the workflow of the
proposed the fused ML framework. The first step
is to preprocess the dataset. The percentage of
amorphous alloy elements from element H to
element Fm is taken into account and mapped to a
10x10 feature graph, which can search for possible
amorphous alloys in a wide range of spaces.
Secondly, a trained CNN model is used to extract
feature vectors from the above feature map.
Therefore, the trained CNN model is required to
accurately describe the relationship between the
dataset and the feature vectors. Finally, the

1llustrates

corresponding feature vectors are used as the input
of the traditional ML model for the fitting of Diax.
The same procedure is used for prediction.

The ML approach is implemented by using the
Scikit-learn ML framework. In order to avoid
repeated work, the trained CNN model obtained in
previous work [40] is directly adopted. Since the
ability of the trained CNN model to accurately
predict the GFA of BMGs has been verified in
previous work, the feature vectors extracted from
the hidden layer of the model certainly have the
representation ability for GFA. Besides, taking the
percentage of amorphous alloy elements as the only
input variable can reduce the demand for some
physical parameters obtained in experiment. RF,
KNN, GBDT and XGBoost are the four traditional
ML algorithms selected in this work, and their
hyperparameters will be optimized by grid search
method and A-fold cross wvalidation (4=10).
Generally, the process of grid search is time-
consuming. In order to reduce the calculation cost,
we optimize the hyperparameter values in a small
range based on the hyperparameter values in
Ref. [36]. Moreover, 10-fold cross wvalidation is
employed to evaluate the performance of ML
models in the work. As shown in Fig. 3, the dataset
is divided into 10 parts without repetition. In the kth
iteration, the kth part of dataset is used as the test
set, and the remaining data is used as the training
set. The final evaluation is given on average
according to the estimation of 10 rounds.

2.3 Model evaluation index

Three regression evaluation indexes are used
to evaluate the performance of model and expressed
as follows:
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where Emag is the mean absolute error, Eruvsk is the
root mean absolute error, R is the coefficient of
determination, » is the number of samples, p, is
the ith predicted value, y; is the ith measured value,
and y 1is the average value of all measured values.
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Fig. 2 Workflow of proposed fused ML framework
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While the closer to 0 the values of Emar and Ermse
are, the smaller the error is, and the closer to 1 the
value of R? is, the better the model is.

3 Results and discussion

3.1 Dumax prediction of fused models

The whole BMGs dataset is randomly divided
into training set and test set with a ratio of &:2,
where the training set is used for model training and
the test set is used for the predictive performance of
the model. The training set and test set are disjoint,
which ensures that the test set can objectively
evaluate the prediction performance of each trained
model. The optimal hyperparameter combination of
ML model is determined by training the model on

Ting ZHANG, et al/Trans. Nonferrous Met. Soc. China 34(2024) 1558—1570

the training set through grid search method and
10-fold cross validation. As we all know, some
hyperparameters for algorithms have more influence
on the results, while some have less influence. In
order to reduce the computational cost, only a part
of hyperparameters for algorithms are optimized
based on literature [36]. Through grid search method
and 10-fold cross validation, the hyperparameter
combinations of RF, KNN, GBDT and XGBoost
with the highest scores are shown in Table 1.

Figure 4 shows the CNN model structure
obtained in previous work [40] and the change
process of its data. The hidden layers, except for
the input layer and the output layer, are labeled as
h1l, h2, h3, h4 and hS5, respectively. And in our
code, the features of different hidden layers with the

Dataset Training set Test set Prediction
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Fig. 3 Workflow of 10-fold cross validation

Table 1 Optimal hyperparameters through grid search method for RF, KNN, GBDT and XGBoost models

Model Hyperparameter
RF n_estimators = 54 max_depth = 15
KNN n_estimators = 12 weights = ‘distance’
GBDT n_estimators = 55 learning rate = 0.11 loss = ‘lad’ max_depth = 25
XGBoost n_estimators = 18 max_depth =8 learning_rate = 0.1 reg_lambda = 0.32

Fig. 4 Structure of CNN model obtained in previous work [40] and change process of its data
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10x10 feature graphs constructed by the element
percentage as the input of CNN model are obtained
by the model.get layer() function of the Python
deep learning API named Keras. Then, these
features are converted into vectors and used as the
input of RF, KNN, GBDT and XGBoost models to
explore the impact of features with different layers
on the model.

The training and test R? values of the feature
vectors with different hidden layers for different
models are shown in Fig. 5. It was found that the R?
value of the h3 layer decreased slightly and then
gradually increased to the maximum value at the h5
layer. We suggest that although the calculation
efficiency is improved through the pooling
operation of the h3 layer, the direct reduction of the
dimension also has a certain impact on the results.
Then, the full connection layers integrate the
information, resulting in the improvement of the R?
of the next few layers. In addition, the model is
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trained as a whole, so it is obvious that the feature
vectors of the last hidden layer h5 are the most
representative and serve as the final input of the
general machine learning models.

The final fused models are called CNN—REF,
CNN-KNN, CNN-GBDT and CNN-XGBoost
models and the results of them are shown in
Figs. 6—9 and Table 2 in detail. In these figures, the
x-axis represents the predicted values of Dmax by the
above models and the y-axis represents the
measured values of Dmax. An auxiliary dotted line is
also added with the equation y=x. The closer the
point to the dotted line is, the better the prediction is.
Besides, the distributions of the residuals (Residuals
are computed as the difference between measured
Dpax and predicted Dmax) are depicted in the
corresponding subplots. The results show that these
fused models have good fitting effects with the
training R* values greater than 0.9 and the test R
values greater than 0.85.
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Fig. 5 Training and test R* values of feature vectors with different hidden layers for RF (a), KNN (b), GBDT (c¢) and

XGBoost (d) models
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3.2 Performance comparison of fused models for
predicting GFA of BMGs

In order to illustrate the advantages of the
proposed model framework, the traditional RF,
KNN, GBDT and XGBoost models are used for
prediction under the same conditions, and the
corresponding results are shown in Figs. 10—13 and
Table 3. The results show that these traditional
models also predict well, with the training R* values

greater than 0.8 and the test R® values greater
than 0.7. However, the corresponding comparison
between the tables of the two groups of models
displays that the training and test R® values of
the fused models increased by 15.67%, 17.12%,
12.95% and 14.26%, respectively, compared with
the traditional ML models. It can also be seen
intuitively from the figures that compared with the
traditional ML models, the data points of the fused
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Table 2 Values of Emar, Ermse and R? obtained for CNN—RF, CNN—KNN, CNN-GBDT and CNN—XGBoost models

Training set Test set
Model
EMAE/mm ERMSE/mm R2 EMAE/mm ERMSE/mm R2
CNN-RF 0.4319 0.7455 0.9775 0.9596 1.6948 09144
CNN-KNN 0.0471 0.2826 0.9915 0.9047 1.6965 09142
CNN-GBDT 0.1787 1.8746 0.9435 0.8889 1.9049 0.8918
CNN—-XGBoost 0.9445 2.3031 0.9305 1.2972 2.1354 0.8641
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Table 3 Values of Emar, Ermse and R? obtained for traditional ML models of RF, KNN, GBDT and XGBoost

Training set Test set
Model
EMAE/mm ERMSE/mm R2 EMAE/mm ERMSE/mm R2
RF 0.9570 2.3289 0.9298 1.8057 2.8511 0.7577
KNN 0.0471 0.2826 0.9915 1.78087 2.9361 0.7430
GBDT 0.3604 3.0467 0.9081 1.6452 2.8239 0.7623
XGBoost 1.5537 5.9877 0.8194 2.0271 3.0566 0.7215

models are more concentrated and closer to the
straight dotted line y=x in both the training set and
the test set. This proves that CNN has the function
of feature learning and extraction, and can improve
the fitting effect when combined with the traditional
ML model.

Furthermore, we can also compare the fused
models with other GFA criteria or ML methods in
the previous literature [43—46]. LONG et al [43],
DENG et al [44], MASTROPIETRO and
MOYA [45], and MAIJID et al [46] have reported
their R? values of 0.42759, 0.43244, 0.90000, and
0.57790 respectively on their entire datasets, as

shown in Table 4. We obtained four different
datasets from Refs. [43—46] and used them as inputs
of the fused models in this work, respectively. The
results are shown in Fig. 14, which shows that
the R? values of the fused models based on four

Table 4 Relevant information of previous literature

Number of BMGs Criterion R? Ref.
622 X 0.42759 [43]
665 1) 0.43244 [44]
480 Ensemble model  0.90000 [45]
349 GRNN 0.57790 [46]
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datasets are greater than 0.9 and are higher than the
R? values in the original literature. This proves that
our strategy has greater potential in predicting GFA
of BMG than other GFA criteria or ML methods.

4 Conclusions

(1) Four fused models, namely CNN-REF,
CNN-KNN, CNN-GBDT and CNN—-XGBoost
were proposed and trained to predict the GFA of
BMGs. The results show that these models possess
excellent prediction performance, with the training
R? values greater than 0.9 and the test R? values
greater than 0.85.

(2) Alloy composition is the only variable
input. Therefore, the suggested framework can be
applicable to different BMGs as long as the

constituent elements in these BMGs lie in element
range from H to Fm in the periodic table.

(3) The trained CNN models are very efficient,
and the corresponding filters can be used as feature
embedding of RF, KNN, GBDT and XGBoost
models, avoiding manual feature extraction. In
the meantime, the features extracted from the
last hidden layer of the learned CNNs are more
representative than those of other hidden layers.

(4) Compared with RF, KNN, GBDT and
XGBoost models, the prediction accuracy of
CNN-RF, CNN-KNN, CNN-GBDT and CNN-
XGBoost models increased by 15.67%, 17.12%,
12.95% and 14.26%, respectively. Compared with
the previous reported models and/or criteria, the
four proposed fused models also have better
performance in predicting the GFA of BMG.



1568

CRediT authorship contribution statement

Ting ZHANG: Conceptualization, Investigation,
Methodology, Data curation, Visualization, Writing —
Original draft; Zhi-lin LONG: Conceptualization,
Writing — Review & editing, Supervision; Li PENG:
Data curation.

Declaration of competing interest

The authors declare that they have no known
competing financial interests or personal relationships
that could have appeared to influence the work reported
in this paper.

Acknowledgments

This research was supported by the National Natural
Science Foundation of China (No.51971188), and the
Postgraduate Scientific Research Innovation Project of
Hunan Province, China (No. CX20200649). All these
supports are acknowledged.

References

[1] DUN Chao-chao, LIU Hai-shun, HOU Long, XUE Lin,
DOU Lin-tao, YANG Wei-ming, ZHAO Yu-cheng, SHEN
Bao-long. Ductile Co—Nb—B bulk metallic glass with
ultrahigh strength [J]. Journal of Non-Crystalline Solids,
2014, 386: 121-123.

[2] KHAN M M, NEMATI A, RAHMAN Z U, SHAH U H,
ASGAR H, HAIDER W. Recent advancements in bulk
metallic glasses and their applications: A review [J]. Critical
Reviews in Solid State and Materials Sciences, 2018, 43(3):
233-268.

[31 LIHX,LUZC,WANGSL,WUY, LU Z P. Fe-based bulk
metallic glasses: Glass formation, fabrication, properties and
applications [J]. Progress in Materials Science, 2019, 103:
235-318.

[4] YANG Wei-ming, WANG Qian-qian, LI Wen-yu, XUE Lin,
LIU Hai-shun, ZHOU Jing, MO Jin-yong, SHEN Bao-long.
A novel thermal-tuning Fe-based amorphous alloy for
automatically recycled methylene blue degradation [J].
Materials & Design, 2019, 161: 136—146.

[5] JIA Zhe, DUAN Xiao-guang, QIN Peng, ZHANG
Wen-chang, WANG Wei-min, YANG Chao, SUN Hong-qi,
WANG Shao-bin, ZHANG Lai-Chang. Disordered atomic
packing structure of metallic glass: Toward ultrafast
hydroxyl radicals production rate and strong electron transfer
ability in catalytic performance [J]. Advanced Functional
Materials, 2017, 27(38): 1702258.

[6] HUANG Yong-jiang, NING Zhi-liang, SHEN Zhe, LIANG
Wei-zhong, SUN Hai-cao, SUN Jian-fei. Bending behavior
of as-cast and annealed ZrCuNiAl bulk metallic glass [J].
Journal of Materials Science & Technology, 2017, 33(10):
1153-1158.

[71 SUN B A, WANG W H. The fracture of bulk metallic glasses

(8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

Ting ZHANG, et al/Trans. Nonferrous Met. Soc. China 34(2024) 1558—1570

[J]. Progress in Materials Science, 2015, 74: 211-307.
TURNBULL D. Under what conditions can a glass be
formed? [J]. Contemporary Physics, 1969, 10(5): 473—488.
INOUE A, ZHANG T, MASUMOTO T. Glass-forming
ability of alloys [J]. Journal of Non-Crystalline Solids, 1993,
156: 473—480.

LU Z P, LIU C T. A new glass-forming ability criterion for
bulk metallic glasses [J]. Acta Materialia, 2002, 50(13):
3501-3512.

DU X H, HUANG J C, LIU C T, LU Z P. New criterion of
glass forming ability for bulk metallic glasses [J]. Journal of
Applied Physics, 2007, 101: 086108.

INOUE A. Stabilization of metallic supercooled liquid and
bulk amorphous alloys [J]. Acta Materialia, 2000, 48(1):
279-306.

MIEDEMA A R, de BOER F R, BOOM R. Model
predictions for the enthalpy of formation of transition metal
alloys [J]. Calphad, 1977, 1(4): 341-359.

RAMAKRISHNA RAO B, GANDHI A S, VINCENT S,
BHATT J, MURTY B S. Prediction of glass forming ability
using thermodynamic parameters [J]. Transactions of the
Indian Institute of Metals, 2012, 65(6): 559—563.
MANSOORI G A, CARNAHAN N F, STARLING K E,
LELAND T W Jr. Equilibrium thermodynamic properties of
the mixture of hard spheres [J]. The Journal of Chemical
Physics, 1971, 54(4): 1523-1525.

GUO S, LIU C T. Phase stability in high entropy alloys:
Formation of solid-solution phase or amorphous phase [J].
Progress in Natural Science: Materials International, 2011,
21(6): 433-446.

ISLAM N, HUANG W J, ZHUANG H L. Machine learning
for phase selection in multi-principal element alloys [J].
Computational Materials Science, 2018, 150: 230—-235.
CASSAR D R, de CARVALHO A C, ZANOTTO E D.
Predicting glass temperatures using neural
networks [J]. Acta Materialia, 2018, 159: 249-256.

ZHOU Zi-qing, ZHOU Ye-ju, HE Quang-feng, DING
Zhao-yi, LI Fu-cheng, YANG Yong. Machine learning guided
appraisal and exploration of phase design for high entropy
alloys [J]. NPJ Computational Materials, 2019, 5: 128.
HUANG W J, MARTIN P, ZHUANG H L. Machine-
learning phase prediction of high-entropy alloys [J]. Acta
Materialia, 2019, 169: 225-236.

LU Fei, LIANG Yong-chao, WANG Xing-ying, GAO
Ting-hong, CHEN Qian, LIU Yun-chun, ZHOU Yu, YUAN
Yong-kai, LIU Yu-tao. Prediction of amorphous forming

transition

ability based on artificial neural network and convolutional
neural network [J]. Computational Materials Science, 2022,
210: 111464.

AYDIN F, DURGUT R. Estimation of wear performance of
AZ91 alloy under dry sliding conditions using machine
learning methods [J]. Transactions of Nonferrous Metals
Society of China, 2021, 31(1): 125-137.

QUAN Guo-zheng, ZHANG Pu, MA Yao-yao, ZHANG
Yu-qing, LU Chao-long, WANG Wei-yong. Characterization
of grain growth behaviors by BP-ANN and Sellars models



[24]

[25]

(26]

[27]

(28]

(29]

[30]

(31]

[32]

[33]

[34]

[35]

Ting ZHANG, et al/Trans. Nonferrous Met. Soc. China 34(2024) 1558—1570

for nickel-base superalloy and their comparisons [J].
Transactions of Nonferrous Metals Society of China, 2020,
30(9): 2435-2448.

MACHAKA R. Machine learning-based prediction of phases
in high-entropy alloys [J]. Computational Materials Science,
2021, 188: 110244.

JAHED ARMAGHANI D, ASTERIS P G, ASKARIAN B,
HASANIPANAH M, TARINEJAD R, HUYNH V V.
Examining hybrid and single SVM models with different
kernels to predict rock brittleness [J]. Sustainability, 2020,
12(6): 2229.

ZENG Shu-ming, ZHAO Yin-chang, LI Geng, WANG
Rui-rui, WANG Xin-ming, NI Jun. Atom table convolutional
neural networks for an accurate prediction of compounds
properties [J]. NPJ Computational Materials, 2019, 5: 84.
WARD L, AGRAWAL A, CHOUDHARY A, WOLVERTON
C. A general-purpose machine learning framework for
predicting properties of inorganic materials [J]. NPJ
Computational Materials, 2016, 2: 1-7.

LI Zhuang, LONG Zhi-lin, LEI Shan, ZHANG Ting, LIU
Xiao-wei, KUANG Du-min. Predicting the glass formation
of metallic glasses using machine learning approaches [J].
Computational Materials Science, 2021, 197: 110656.

LI Xin, SHAN Guang-cun, ZHAO Hong-bin, SHEK C H.
Domain knowledge aided machine learning method for
properties prediction of soft magnetic metallic glasses [J].
Transactions of Nonferrous Metals Society of China, 2023,
33(1): 209-219.

LIU X W, LONG Z L, ZHANG W, YANG L M. Key feature
space for predicting the glass-forming ability of amorphous
alloys revealed by gradient boosted decision trees model [J].
Journal of Alloys and Compounds, 2022, 901: 163606.

LU Zhi-chao, CHEN Xin, LIU Xiong-jun, LIN De-ye, WU
Yuan, ZHANG Yi-bo, WANG Hui, JIANG Sui-he, LI
Hong-xiang, WANG Xian-zhen, LU Zhao-ping. Interpretable
machine-learning strategy for soft-magnetic property and
thermal stability in Fe-based metallic glasses [J]. NPJ
Computational Materials, 2020, 6(1): 187.

XIONG lJie, SHI San-qiang, ZHANG Tong-yi. Machine
learning prediction of glass-forming ability in bulk metallic
glasses [J]. Computational Materials Science, 2021, 192:
110362.

PRYKHODKO O, JOHANSSON S V, KOTSIAS P C,
ARUS-POUS J, BJERRUM E J, CHEN H M. A denovo
molecular generation method using latent vector based
generative  adversarial  network  [J].
Cheminformatics, 2019, 11(1): 1-13.
ZHANG Peng, ZHANG Rui. Feature selection based on
reinforcement learning and its application in material

Journal  of

informatics [J]. Journal of Shanghai University (Natural
Science Edition), 2022, 28(3): 463—475. (in Chinese)
WU lJia-qi, WANG Wei-hua, SUN Yi-tao, LI Mao-zhi.

(36]

[37]

[38]

[39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

1569

Application of machine learning approach in disordered
materials [J]. Scientia Sinica Physica, Mechanica &
Astronomica, 2020, 50: 067002.

LIU Xiao-wei, LONG Zhi-lin, YANG Ling-ming, ZHANG
Wei, LI Zhuang. Prediction of glass forming ability in
amorphous alloys based on different machine learning
algorithms [J]. Journal of Non-Crystalline Solids, 2021, 570:
121000.

LI Xin, SHAN Guang-cun, SHEK C H. Machine learning
prediction of magnetic properties of Fe-based metallic
glasses considering glass forming ability [J]. Journal of
Materials Science & Technology, 2022, 103: 113—120.

LIU Xiao-di, LI Xin, HE Quang-feng, LIANG Dan-dan,
ZHOU Zi-qing, MA Jiang, YANG Yong, SHEN Jun.
Machine learning-based glass formation prediction in
multicomponent alloys [J]. Acta Materialia, 2020, 201:
182-190.

SAMAVATIAN M, GHOLAMIPOUR R, SAMAVATIAN V.
Discovery of novel quaternary bulk metallic glasses using a
developed correlation-based neural network approach [J].
Computational Materials Science, 2021, 186: 110025.
ZHANG Ting, LONG Zhi-lin, PENG Li, LI Zhuang.
Prediction of glass forming ability of bulk metallic glasses
based on convolutional neural network [J]. Journal of
Non-Crystalline Solids, 2022, 595: 121846.

DENG Bing-hui, ZHANG Ya-li. Critical feature space for
predicting the glass forming ability of metallic alloys
revealed by machine learning [J]. Chemical Physics, 2020,
538: 110898.

CECEN A, DAI H J, YABANSU Y C, KALIDINDI S R,
SONG L. Material structure-property linkages using three-
dimensional convolutional neural Acta
Materialia, 2018, 146: 76—84.

LONG Zhi-lin, LIU Wei, ZHONG Ming, ZHANG Yun,
ZHAO Ming-sheng-zi, LIAO Guang-kai, CHEN Zhuo. A

new correlation between the characteristics temperature and

networks [J].

glass-forming ability for bulk metallic glasses [J]. Journal
of Thermal Analysis and Calorimetry, 2018, 132(3):
1645-1660.

DENG Rui-jie, LONG Zhi-lin, PENG Li, KUANG Du-min,
REN Bai-yu. A new mathematical expression for the relation
between characteristic temperature and glass-forming ability
of metallic glasses [J]. Journal of Non-Crystalline Solids,
2020, 533: 119829.

MASTROPIETRO D G, MOYA J A. Design of Fe-based
bulk metallic glasses for maximum amorphous diameter
(Dmax) using machine learning models [J]. Computational
Materials Science, 2021, 188: 110230.

MAJID A, AHSAN S B, TARIQ N U H. Modeling
glass-forming ability of bulk metallic glasses using
computational intelligent techniques [J]. Applied Soft

Computing, 2015, 28: 569-578.



1570

Ting ZHANG, et al/Trans. Nonferrous Met. Soc. China 34(2024) 1558—1570

E TR & RGN B IR A BE 1750
kA, BEM, B K
WK TR TRESERE, #E 411105

O R R ER A S ORI BENLARRRE) . & UTAT(KNN) . B T] v 5K B (GBDT) AR 3 46 1% 32 7
(XGBoost) 152 TR Sk 4x 8 3 (BMGs) T B BE /1 (GFA) FIHERA M o 12255 W& A5 FH VIR 407 10 A6 AR 26 ) 26 (CNIN) A2 24
FMORFHER &, HASRBE SR —MMANAE, A2 Sei ke s A 2R . obdh, did
R 2 TIERN k3738 XIEAEXT RF. KNN. GBDT F1 XGBoost # I [\ SHGHEAT 70K S5REW, AX/EL
PEH Y 4 Rl A48 CNN-RF. CNN-KNN. CNN-GBDT fl CNN-XGBoost Lh I3k 4 Flifla% S BRI (R] RF.
KNN. GBDT #1 XGBoost #5284 Tl kg B 5 rr, 1X R WY ZRAF (¥ CNN B G N TRMIESRICE . sk, 52
B N A2 ST AN GFA HIFEARLL, AR SCYEE 3 ARl S A5 28 mT DL SEORS o 3 T 46 Je8 5 3 1O T Rl e
KR PURE BB BEIVREE ) WL BRMAEMY, GEmr

(Edited by Wei-ping CHEN)




<<

  /ASCII85EncodePages false

  /AllowTransparency false

  /AutoPositionEPSFiles true

  /AutoRotatePages /None

  /Binding /Left

  /CalGrayProfile (Dot Gain 20%)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

  /sRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Error

  /CompatibilityLevel 1.4

  /CompressObjects /Tags

  /CompressPages true

  /ConvertImagesToIndexed true

  /PassThroughJPEGImages true

  /CreateJobTicket false

  /DefaultRenderingIntent /Default

  /DetectBlends true

  /DetectCurves 0.0000

  /ColorConversionStrategy /CMYK

  /DoThumbnails false

  /EmbedAllFonts true

  /EmbedOpenType false

  /ParseICCProfilesInComments true

  /EmbedJobOptions true

  /DSCReportingLevel 0

  /EmitDSCWarnings false

  /EndPage -1

  /ImageMemory 1048576

  /LockDistillerParams false

  /MaxSubsetPct 100

  /Optimize true

  /OPM 1

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness true

  /PreserveHalftoneInfo false

  /PreserveOPIComments true

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts true

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Preserve

  /UsePrologue false

  /ColorSettingsFile ()

  /AlwaysEmbed [ true

  ]

  /NeverEmbed [ true

  ]

  /AntiAliasColorImages false

  /CropColorImages true

  /ColorImageMinResolution 300

  /ColorImageMinResolutionPolicy /OK

  /DownsampleColorImages true

  /ColorImageDownsampleType /Bicubic

  /ColorImageResolution 300

  /ColorImageDepth -1

  /ColorImageMinDownsampleDepth 1

  /ColorImageDownsampleThreshold 1.50000

  /EncodeColorImages true

  /ColorImageFilter /DCTEncode

  /AutoFilterColorImages true

  /ColorImageAutoFilterStrategy /JPEG

  /ColorACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /ColorImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000ColorACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000ColorImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasGrayImages false

  /CropGrayImages true

  /GrayImageMinResolution 300

  /GrayImageMinResolutionPolicy /OK

  /DownsampleGrayImages true

  /GrayImageDownsampleType /Bicubic

  /GrayImageResolution 300

  /GrayImageDepth -1

  /GrayImageMinDownsampleDepth 2

  /GrayImageDownsampleThreshold 1.50000

  /EncodeGrayImages true

  /GrayImageFilter /DCTEncode

  /AutoFilterGrayImages true

  /GrayImageAutoFilterStrategy /JPEG

  /GrayACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /GrayImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000GrayACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000GrayImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasMonoImages false

  /CropMonoImages true

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /OK

  /DownsampleMonoImages true

  /MonoImageDownsampleType /Bicubic

  /MonoImageResolution 1200

  /MonoImageDepth -1

  /MonoImageDownsampleThreshold 1.50000

  /EncodeMonoImages true

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageDict <<

    /K -1

  >>

  /AllowPSXObjects false

  /CheckCompliance [

    /None

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXTrimBoxToMediaBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXSetBleedBoxToMediaBox true

  /PDFXBleedBoxToTrimBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXOutputIntentProfile ()

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputCondition ()

  /PDFXRegistryName ()

  /PDFXTrapped /False



  /CreateJDFFile false

  /Description <<



    /BGR <>

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

    /CZE <>

    /DAN <>

    /DEU <>

    /ESP <>

    /ETI <>

    /FRA <>

    /GRE <>

    /HEB <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

    /HUN <>

    /ITA <>

    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

    /LVI <>

    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

    /NOR <>

    /POL <>

    /PTB <>

    /RUM <>

    /RUS <>

    /SKY <>

    /SLV <>

    /SUO <>

    /SVE <>

    /TUR <>

    /UKR <>

    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

  >>

  /Namespace [

    (Adobe)

    (Common)

    (1.0)

  ]

  /OtherNamespaces [

    <<

      /AsReaderSpreads false

      /CropImagesToFrames true

      /ErrorControl /WarnAndContinue

      /FlattenerIgnoreSpreadOverrides false

      /IncludeGuidesGrids false

      /IncludeNonPrinting false

      /IncludeSlug false

      /Namespace [

        (Adobe)

        (InDesign)

        (4.0)

      ]

      /OmitPlacedBitmaps false

      /OmitPlacedEPS false

      /OmitPlacedPDF false

      /SimulateOverprint /Legacy

    >>

    <<

      /AddBleedMarks false

      /AddColorBars false

      /AddCropMarks false

      /AddPageInfo false

      /AddRegMarks false

      /ConvertColors /ConvertToCMYK

      /DestinationProfileName ()

      /DestinationProfileSelector /DocumentCMYK

      /Downsample16BitImages true

      /FlattenerPreset <<

        /PresetSelector /MediumResolution

      >>

      /FormElements false

      /GenerateStructure false

      /IncludeBookmarks false

      /IncludeHyperlinks false

      /IncludeInteractive false

      /IncludeLayers false

      /IncludeProfiles false

      /MultimediaHandling /UseObjectSettings

      /Namespace [

        (Adobe)

        (CreativeSuite)

        (2.0)

      ]

      /PDFXOutputIntentProfileSelector /DocumentCMYK

      /PreserveEditing true

      /UntaggedCMYKHandling /LeaveUntagged

      /UntaggedRGBHandling /UseDocumentProfile

      /UseDocumentBleed false

    >>

  ]

>> setdistillerparams

<<

  /HWResolution [2400 2400]

  /PageSize [612.000 792.000]

>> setpagedevice



