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Abstract: Al-10Bi—7Zn and Al-10Bi—7Zn—1.5X (X: Cu, Fe, Ni, in wt.%) composite powders were designed and
prepared through phase diagram calculation and gas atomization method. The effects of Cu, Fe, and Ni on the
hydrolysis of Al-Bi—Zn-base composite powders for hydrogen production were investigated respectively. The
composition and morphology of powders were characterized by X-ray diffraction (XRD) and scanning electron
microscopy (SEM) with energy disperse spectroscopy (EDS) analyses. Hydrolysis performance test results indicate that
the additions of Cu, Fe, or Ni can modify the hydrogen production rate and enhance oxidation resistance in
Al-10Bi—7Zn ternary alloy composite powder. In the quaternary composite powder system, Al-10Bi—7Zn—1.5Ni (wt.%)
exhibits the best performance with the hydrogen generation yield of 75.3% (954.1 mL/g) within 500 min when reacting
with distilled water at 60 °C and maintains a hydrogen yield of 57.9% (733.7 mL/g) within 1500 min after being stored
(30 °C, relative humidity of 60%) for 7 d. In addition, the mechanism investigation suggested that the additions of Cu,
Fe, or Ni in Al-Bi—Zn-base composite powders can stabilize the Al matrix to retain the high activity of powders
resulting from inhibiting the cracking of composite powders in the air.
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1 Introduction

With the development of society, people
gradually realize that the massive use of fossil
energy will bring about air pollution, greenhouse
and other environmental problems [1]. Therefore,
the search for renewable and clean energy has
become an important subject for human beings.
Among various new energies, hydrogen energy has
the advantages of rich resources, clean, and high

energy storage density which is generally
considered by researchers as one of the effective
alternatives to traditional energy [2,3]. However,
the application of hydrogen energy is still limited
due to the difficulties in the production, storage and
transportation of hydrogen [4]. Therefore, DENG
et al [5] and HOLLADAY et al [6] put forward the
concept of portable hydrogen production or
on-board hydrogen production, which means that
hydrogen production materials are directly used to
produce hydrogen when hydrogen is on demand.
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Recently, on-board hydrogen generation via
the hydrolysis of electrochemically active light
metals such as Al [7] and Mg [8] has attracted much
attention. In particular, Al is a very promising
hydrolyzing material due to its low density, high
efficiency and safety [9—11]. However, when Al
reacts with water to generate hydrogen, a dense
oxide film on the surface forms, hindering the
contact reaction between Al and water, which leads
to the reduction of the reaction activity [12]. The
researchers found that putting Al in the alkaline or
acidic solution can destroy the oxide film to
produce hydrogen continuously [13—16]. However,
both alkaline and acidic solutions will cause
corrosion to hydrogen production equipment, which
increases the cost and is harmful to the environment.
In order to improve the reaction activity of Al in a
neutral solution and maintain continuous hydrogen
production by hydrolysis, researchers usually
introduce additives such as salts [17], transition
metal [18,19] and metal hydride [14] in Al by high-
energy ball milling. The introduced additives can
simulate the micro-galvanic cell effect with the Al
matrix to improve the hydrogen production
performance of the materials. Nevertheless, there
are some defects, such as low hydrogen yield, high
cost and harmful to the environment. Furthermore,
some researchers found that reducing the activation
energy of the Al-H»O reaction is also a promising
way to improve the hydrogen production capacity
of Al-based materials [20] However, there are still
some defects, such as the cumbersome material
preparation process. At present, adding low melting
point metals to Al to obtain high hydrogen
production efficiency is a widely used method [21].
TEKADE et al [22,23] utilized the volume diffusion
of Ga inside the Al surface leading to the structural
weakening of Al to activate waste aluminum for
in situ hydrogen production successfully. QIAO
et al [24] prepared Al alloy ingots with excellent
hydrogen production performance through adding
low melting point additives (Ga, Sn, In, etc.).
However, Ga and In are extremely expensive and
difficult to preserve at room temperature.

In recent years, WANG et al [25] prepared
self-assembling Al-Bi—Sn ternary alloy powder
by atomization method due to the stable and
metastable liquid miscibility gaps in the Al-Bi
system and Al—Sn. These powders have achieved an
excellent hydrogen production capacity. However,

the use of Sn leads to a high hydrogen production
cost, which difficulties in practical
application. Furthermore, WANG et al [26] replaced
Sn with Zn to obtain comparable hydrogen
production performance while reducing the cost of
hydrogen production, and (Al, Bi)—7Zn presented
the best hydrogen production performance.
Nevertheless, on the one hand, the hydrogen
production rate of Al-Bi—Zn composite powder is
too fast to use in a practical situation. The excessive
hydrogen production rate requires greater demands
on controlling hydrogen flow. Additionally, the
hydrogen that cannot be consumed in time needs to
be collected using a buffer, which increases the use
cost and brings potential safety hazards. On the
other hand, Al-Bi—Zn composite powder that is
easily inactivated in the air requires highly sealed
storage equipment. As the result, the practical
application of Al-Bi—Zn composite powder is
limited by hydrogen flow control and the high
storage cost.

Therefore, it is necessary to find low-cost
metal additives on the basis of the existing ternary
system to obtain Al-based composite powder with a
moderate hydrogen production rate and good
oxidation resistance. As the previous research
reported [27—29], adding a small amount of high
melting point metal elements such as Cu, Fe, and Ni
can effectively control the hydrogen production
performance of powders. In this study, Al-10Bi—
7Zn (wt.%) powder was designed by phase diagram
calculation and prepared by the gas atomization
method, and the composite powders of Al-10Bi—
7Zn—1.5X (X: Cu, Fe, Ni, in wt.%) with the
additions of Cu, Fe or Ni were designed and
prepared based on phase diagram calculation to
modify the rate of hydrogen production. The
microstructures of the composite powders were
observed. Their hydrogen production performances
were studied at different temperatures. In addition,
the antioxidant properties of the composite powders
were also studied.

causes

2 Experimental

In this study, Al-10Bi—7Zn and Al-10Bi—
7Zn—1.5X (X: Cu, Fe, Ni, in wt.%, the same below)
the same below composite powders were prepared
by gas atomization method. The raw materials used
in this study are bulk metals with high purity
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(99.9%) Al, Bi, Zn, Cu, Fe, and Ni. The metal was
melted in an arc melting furnace and then atomized
with high-pressure argon (5—8 MPa). The alloy
powder was collected in a powder collection tank
with a butterfly valve and then placed in a glove
box filled with argon. Finally, the powder was
separately loaded into a marked glass bottle for
subsequent research.

The hydrogen yield of composite powder was
measured by the drainage method. The measuring
device is shown in Fig. 1. A 100 mL flask reactor
containing 0.3 g alloy composite powder is placed
in a water bath. After the temperature (40, 50, and
60 °C) is stable, 10 mL of preheated distilled water
is injected into the reactor (the temperature of
preheated water is consistent with the reaction
temperature). The hydrogen produced in the
reaction bottle is dried through the drying tube and
enters the gas collection bottle. The water pressure
in the bottle flows out into the beaker placed on the
balance. The actual hydrogen production is
obtained by weighing the mass of water. According
to the ideal gas equation, the calculation formula of
hydrogen production conversion rate (a' ) is [26]

H

attz = y- x100% (1)
WAWXE_'_Wan y
MA] 2 MZn

where y™is the actual hydrogen production; wai
is the mass fraction of Al in composite powder; wza
is the mass fraction of Zn in composite powder; Ma;
is the molar mass of Al; Mz, is the molar mass of
Zn; m is the mass of the reacted composite powder;
V is the molar volume of the gas at the reaction
temperature.

The morphology and microstructure of
the powder were observed by scanning electron

Drying tube

_4

Reaction unit Drainége bottle

ooooo

Electronic balance

Fig. 1 Schematic diagram of experimental device used
for hydrogen yield measurement

microscope (SEM, SU—70, Hitachi, Tokyo, Japan).
The elemental distribution and composition of
composite powder were measured by energy
disperse spectrometer (EDS) connected by SEM.
The crystal structure of powder was determined by
an X-ray diffraction (D8 Advance, Bruker, Madison,
WI, USA). The powder was coldly inlaid with
epoxy resin, followed by dry sandpaper and
0.25 um polishing paste grinding and polishing to
obtain the cross section of composite powder. In the
anti-oxidation experiment, the samples were stored
in a constant temperature and humidity chamber
(30 °C, 60% relative humidity (RH)).

3 Results and discussion

3.1 Design of powder composition

Using the established thermodynamic database
of Al-based alloys, the vertical section phase
diagrams of Al-10Bi—(0—-10)Zn, Al-10Bi—7Zn—
(0—6)Cu, Al-10Bi—7Zn—(0—6)Fe, and Al-10Bi—
7Zn—(0—6)Ni were calculated, respectively. As
shown in Figs. 2(a—d), there is a stable miscibility
gap in the liquid state in these systems, marked as
the Li+L, area in the diagrams. According to
previous studies, the powder composition can be
maintained in the liquid-phase miscibility gap
regions by means of rapid cooling by gas
atomization [30]. Therefore, alloy powders
composed of Al-10Bi—7Zn, Al-10Bi—7Zn—1.5Cu,
Al-10Bi—-7Zn—1.5Fe, and Al-10Bi—7Zn—1.5Ni
were designed and prepared. The calculated phase
fractions during solidification in Al-10Bi—
(0-10)Zn, Al-10Bi—7Zn—(0—6)Cu, Al-10Bi—7Zn—
(0—6)Fe, and Al-10Bi—7Zn—(0—6)Ni are present in
Figs. 2(e-h), which show that the stable liquid-
phase miscibility gap appears with the decrease of
temperature. Further, the Al,Cu phase, AlsFe phase,
and Al:Ni phase appear in Al-10Bi—7Zn—1.5Cu,
Al-10Bi—7Zn—1.5Fe, and Al-10Bi—7Zn—1.5Ni
alloys, respectively.

3.2 Morphology and microstructure

Figure 3 shows the microstructures of
Al-10Bi-7Zn, Al-10Bi—7Zn—1.5Cu, Al-10Bi—
7Zn—1.5Fe, and Al-10Bi—7Zn—1.5Ni. As can be
seen from Fig. 3(a), the Al-10Bi—7Zn alloy powder
is good sphericity, in which the powder size ranges
from 5 to 50 pm. The powder surface is composed
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Fig. 2 Calculated vertical phase diagrams of Al-Bi—Zn, Al-Bi—Zn—X (Cu, Fe, Ni) (a—d) and calculated phase fractions
(e—h) during solidification: (a) Al-10Bi—(0—10)Zn; (b) Al-10Bi—7Zn—(0—6)Cu; (c) Al-10Bi—7Zn—(0—6)Fe; (d) Al—
10Bi—7Zn—(0—6)Ni; (e) Al-10Bi—7Zn; (f) Al-10Bi—7Zn—1.5Cu; (g) Al-10Bi—7Zn—1.5Fe; (h) Al-10Bi—7Zn—1.5Ni
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Fig. 3 SEM images of as-atomized Al-10Bi—7Zn and Al-10Bi—7Zn—1.5X composite powders: (a) Al-10Bi—7Zn;
(b) Al-10Bi—7Zn—1.5Cu; (c¢) Al-10Bi—7Zn—1.5Fe; (d) AlI-10Bi—7Zn—1.5Ni

of a white Bi-rich phase and a gray Al-rich phase.
The Bi-rich phase mainly distributes continuously
along the grain boundary, and a small part
distributes separately within grain in the form of
fine spots (Fig.3(ai)). After adding the fourth
component, the powder size and sphericity did not
change significantly, as shown in Figs. 3(b—d). In
the meantime, it is worth noting that the addition of
the fourth component will make the powder surface
smoother. The continuous distribution of the white
Bi-rich phase at the Al matrix grain boundary is
reduced, and more Bi-rich phases distribute on the
surface of the Al-rich phase in spots (Figs. 3(bi—d1)).
The main reason maybe that the mixing enthalpy
between elements is different [31]. Cu, Fe, and Ni
elements will prefer to dissolve in the Al matrix and
repel the Bi elements together. Bi elements will be
more difficult to exist at the grain boundary of the
Al matrix, so more Bi elements will be repelled to
the surface of the Al matrix, and the spheres will
look smoother. Figures 4(a—d) show the cross-
sectional views of Al-10Bi—7Zn, Al-10Bi—7Zn—
1.5Cu, Al-10Bi—7Zn—1.5Fe, and Al-10Bi—7Zn—
1.5Ni composite powders. Inside the composite
powder, the white Bi-rich phase dispersed at the
grain boundary of the Al-rich phase. Figures 4(a;—ds)
are the EDS mappings of Al-10Bi—7Zn and

Al-10Bi—7Zn—1.5X (X: Cu, Fe, Ni) powders. As
displayed in the patterns, Zn, Cu, Fe and Ni are
dissolved in the Al-rich phase matrix. The green
spots in Figs. 4((a;—d»)) show the Bi-rich phase,
which confirms that the white phase is the Bi-rich
phase in Fig. 3.

Figure 5 shows the XRD patterns of the
composite powders. The characteristic diffraction
peaks of Al and Bi can be seen in the figure. The
lack of characteristic peaks of Zn may be due to the
large solid solubility of Zn in Al and the lack of
precipitation under rapid cooling conditions [32]. In
the meantime, from experimental phase diagrams of
Ni—Al [33], Fe—Al [34], and Cu—Al [35] binary
systems, it can be seen that there is a large solid
solubility among Ni—Al, Fe—Al and Cu—Al In
particular, the cooling rate in the atomization
process is very high, which inhibits the
precipitation of the AlsNi phase, Al,Cu phase and
AlsFe phases [36—39].

3.3 Hydrogen generation performance

In this study, the effect of reaction temperature
on the hydrolysis hydrogen production of
quaternary alloy composite powder was studied.
Figures 6(a—c) show hydrogen production per unit
mass of Al-10Bi—7Zn—1.5Cu, Al-10Bi—7Zn—1.5Fe,
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Fig. 4 SEM images and EDS mappings of cross-sections of Al-10Bi—7Zn and Al-10Bi—7Zn—1.5X composite powders:
(a—a3) Al-10Bi—7Zn; (b—bs) Al-10Bi—7Zn—1.5Cu; (c—c4) Al-10Bi—7Zn—1.5Fe; (d—d4) AlI-10Bi—7Zn—1.5Ni
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Fig. 5 XRD patterns of Al-10Bi—7Zn and Al-10Bi—
7Zn—1.5X composite powders: (a) Al-10Bi—7Zn—1.5Ni;
(b) AI-10Bi—7Zn—1.5Fe; (c) Al-10Bi—7Zn—1.5Cu;
(d) Al-10Bi—7Zn

and AI-10Bi—7Zn—1.5Ni composite powders.
These powders react with distilled water at different
temperatures (40, 50 and 60 °C). Take an example,
the hydrogen production curve of Al-10Bi—7Zn—
1.5Cu composite powder at 40 °C can be roughly

divided into three parts. The initial stage is a
dormant stage, which produces only a small amount
of hydrogen for about 120 min and the yield is
about 4.2% (50.0 mL/g). The next stage is the stage
of constant growth, which is close to the stage of
producing hydrogen at a constant rate. Hydrogen is
produced at a constant rate within 150 min, and the
yield is about 37.8% (450.2 mL/g). Then, the
reaction enters the last stage of slow growth. The
powder at this stage produces only a small amount
of hydrogen until the end of the reaction. For
Al-10Bi—7Zn—1.5Cu  composite powder, the
increase in temperature will make the reaction skip
the dormancy period and change to only two stages,
retaining the constant growth period and slow
growth period. At the same time, the increase in
temperature will improve the reaction activity of the
powder, so as to greatly improve the hydrogen
production per unit mass of the composite powder.
When Al-10Bi—7Zn—1.5Cu composite powder
reacts with distilled water at 60 °C, the hydrogen
yield of 60.7% (769.0 mL/g) can be achieved in



Cui-ping WANG, et al/Trans. Nonferrous Met. Soc. China 34(2024) 1427—-1440

70
(@)
60 - .....ll.-...'.
..

° 50 - -.l. ...............
x w oo AAAAAAAAAA
% -:.. A‘AAAAAA
© 401 we® A&
2 o
= e A
gﬂ 30+ --:. AA
S 20} "
= s . 60°C

of Jfef ¢ 30C

ue A 440 °C
Laaanak
o s
0 100 200 300 400 500 600
Time/min
80 (C) IIII...............
70 Lo
n
..

60 N l. 00000000
§ . ...0........A‘AAAAAA
< 50+ 2 o*® A e
[} . A
Sab e ot
5 ol AAA
2 30t . A

L A
TN g . 60°C
10 | A“ * 50 :C
ol .x“A 440 °C

0 100 200 300 400 500 600 700 800
Time/min

1433
80
(b)
70 [ ...................l
..
X or .'... .o'.oo!o.ooo.""“"
3 50 - - ....0 ‘AAA‘AAAAM
o n AK
S\ 40 .l '.. AAAA
= i - l. P
19} g A~
an
g 30 .'.' AAAA
> s e °
= 20+ i = 60 °C
10 we ‘AA e 50°C
L A o
:‘AAA 440 °C
0l &
0 100 200 300 400 500 600 700 800 900
Time/min
%0 (d) guuEEEEEEESEEEE RN
-
80 l.. vvev
" vvvvyvyy
70 b - i "vVvV"v:AA“AAAAAA
o\\° 60 F o ‘A“‘..ooooooooo
= 77 A o’
9_.; S0 -' AAA ...
& 40F v At
%0 . “‘ o.
S 30 AT 0
> L o .
jan) 2wk y s Al-10Bi-7Zn
) v Al-10Bi—-7Zn-1.5Ni
10F /s 4 Al-10Bi-7Zn-1.5Fe
ol / o Al-10Bi-7Zn-1.5Cu
0 100 200 300 400 500 600
Time/min

Fig. 6 Hydrogen yield of Al-10Bi—7Zn and Al-10Bi—7Zn—1.5X composite powders reacting with distilled water:
(a) AlI-10Bi—7Zn—1.5Cu; (b) Al-10Bi—7Zn—1.5Fe; (c¢) Al-10Bi—7Zn—1.5Ni; (d) Al-10Bi—7Zn; Al-10Bi—7Zn—1.5X

at 60 °C

500 min. The hydrogen production curves of
Al-10Bi—7Zn—1.5Fe and Al-10Bi—7Zn—1.5Ni
composite powders at three temperatures have only
two stages of uniform growth stage and slow
growth stage. Among them, Al-10Bi—7Zn—1.5Fe
can achieve a hydrogen yield of 50.7% (603.1 mL/g)
within 800 min at 40°C. As the temperature
increases to 60 °C, the hydrogen yield will further
increase to 68.6% (869.4 mL/g). Among the three
groups of quaternary alloy composite powders,
Al-10Bi—7Zn—1.5Ni has the best hydrogen
production efficiency. At 40 °C, the hydrogen yield
can reach 54.7% (651.2mL/g) within 700 min.
When the temperature increases to 60 °C, the
hydrogen yield can further increase to 75.3%
(954.1 mL/g) within 500 min. The above results
show that the hydrogen production performance of
quaternary alloy composite powders increases with
the increase in temperature. In addition, each
powder has a stable and uniform hydrogen
production period in each temperature range.

Figure 6(d) shows the hydrogen production
curves of Al-10Bi—7Zn ternary alloy composite
powder and Al-10Bi—7Zn—1.5X (X: Cu, Fe, Ni)
quaternary alloy composite powder in distilled
water at 60 °C. It can be seen that the additions of
Cu, Fe, and Ni can effectively slow down the
hydrogen production rate, and the slowing degree
from high to low is Cu, Fe and Ni. The decrease in
hydrogen production and hydrogen generation rate
may be due to the solid solution of the fourth
component in the Al-rich phase. These elements
could inhibit the cracking of the powder and reduce
the reaction activity of Al, resulting in the failure of
the powder to react violently with water to produce
hydrogen. Compared with Al-10Bi—7Zn, the
hydrogen production and hydrogen production rate
of Al-10Bi—7Zn—1.5X (X: Cu, Fe, Ni) are lower,
but the hydrogen production rate of quaternary
alloy powder is stable, which can supply hydrogen
for a long time in practical application.

Figure 7 shows the SEM images of hydrolysis
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Fig. 7 SEM images of hydrolysis products in Al-10Bi—7Zn and Al-10Bi—7Zn—1.5X composite powders:
(a) Al-10Bi—7Zn; (b) Al-10Bi—7Zn—1.5Cu; (c) Al-10Bi—7Zn—1.5F¢; (d) Al-10Bi—7Zn—1.5Ni

products in AlI-10Bi—7Zn and Al-10Bi—7Zn—1.5X
(X: Cu, Fe, Ni) composite powders. After reaction
with water, the original spherical shape of the
composite powders will be cracked into irregular
columnar blocks from the grain boundary. As the
grain boundary is the place where a large number of
dislocations and prestress are enriched, the grain
boundary of the Al-rich phase is easy to crack
during hydrolysis. In the meantime, the
microstructures of the reaction products also
illustrate that water can continuously react with
fresh Al through the grain boundary of the Al-rich
phase during the hydrolysis reaction of composite
powders. This is the reason that the composite
powders can produce hydrogen continuously. In
addition, although each composite powder can be
broken in water, the activity of the powder
fragments will ultimately determine the hydrogen
production capacity of the powder.

Figure 8 shows the XRD patterns of hydrolysis
products in Al-10Bi—7Zn and Al-10Bi—7Zn—1.5X
(X: Cu, Fe, Ni) composite powders, and the
characteristic peak of Al, AI(OH)3;, and Bi can be
detected in the patterns. The characteristic peaks of
Al and AI(OH); suggest that Al hydrolyzes with
water to produce hydrogen, and there is still a small
amount of Al that does not react completely. The
existence of Bi characteristic peak indicates that Bi

a A —Bi = — Al(OH),
s e — Al
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A °
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Fig. 8 XRD patterns of hydrolysis products in Al-10Bi—
7Zn and Al-10Bi—7Zn—1.5X composite powders:
(a) Al-10Bi—7Zn; (b) Al-10Bi—7Zn—1.5Cu; (c¢) Al-
10Bi—7Zn—1.5Fe; (d) Al-10Bi—7Zn—1.5Ni

does not react with distilled water. No Zn, Cu, Fe
and Ni characteristic peaks were measured. It may
be due to the large solid solubility of Zn, Cu, Fe
and Niin Al

3.4 Oxidation resistance performance

The easy passivation of Al metal surface and
deliquescence in the air has always been the main
obstacles to the development of Al and its alloys for
hydrogen production [40]. Therefore, it is very
important to study the oxidation resistance of
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Al-based composite powder in the air. In order to
study the oxidation resistance of Al-based
composite powder, Al-10Bi—7Zn, Al-10Bi—7Zn—
1.5Cu, Al-10Bi—7Zn—1.5Fe, and Al-10Bi—7Zn—
1.5Ni were stored in a constant temperature and
humidity chamber (30 °C, 60% RH) for 0, 3, 5, and
7d. Figure 9 shows the SEM images of four
composite powders after storage for different time.
It can be seen that AI-10Bi—7Zn composite
powders after 3 d of storage, due to their contact
with oxygen and moisture in the air, the powders no
longer maintain the initial morphology, and the
cracks propagate along the grain boundary, causing
the powders to become ruptured and passivated
(Fig. 9(a1)). However, the morphology of Al-10Bi—
7Zn—1.5X (X: Cu, Fe, Ni) composite powders
remained basically unchanged after 3 d of storage,
only a small amount of Bi-rich phases distributed in
dots on the powder surface fell off (Figs. 9(bi—d)).
After 7d, cracks appear on the surface of the
Al-10Bi—7Zn—1.5X (X: Cu, Fe, Ni) composite
powders along the grain boundary (Figs. 9(bs;—d3)).
In comparison, Al-10Bi—7Zn composite powders
are broken along the grain boundary completely

(Fig. 9(a3)) in 7 d. The reason for these differences
may be that the addition of the fourth component in
the composite powders can stabilize the Al matrix
by solid solution. Figure 10 shows the cross-
sections of Al-10Bi—7Zn—1.5X (X: Cu, Fe, Ni)
composite powders after being stored (30 °C, 60%
RH) for 7 d. Significantly, after 7 d of storage, a
passivation layer will be formed on the surface of
the quaternary composite powders. This passivation
layer is the key to keeping the morphology of the
composite powders unchanged in the air for a long
time.

Figure 11 shows the hydrogen production
performance of four powders reacting with distilled
water at 60 °C after storage for 3, 5, and 7 d under
the same conditions (30 °C, 60% RH). The results
show that the hydrogen production capacity of
Al-10Bi—7Zn composite powder reduced to 37.8%
(478.1 mL/g) after 7 d of storage. In the meantime,
all the quaternary alloy powders have excellent
oxidation resistance. Especially, even after 7d of
storage, Al—10Bi—7Zn—1.5Ni can still maintain a
hydrogen yield of 57.9% (733.7 mL/g) within
1500 min, showing satisfactory antioxidant capacity.

Fig. 9 SEM images of Al-10Bi—7Zn (a—a3), Al-10Bi—7Zn—1.5Cu (b—bs3), Al-10Bi—7Zn—1.5Fe (c—c3), and Al-10Bi—
7Zn—1.5Ni (d—d;) composite powders after being stored (30 °C, 60% RH) for 0 d (a—d), 3 d (ai—di), 5 d (a»—d>) and

7d (a3—d3)
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Ni|10pum
Fig. 10 SEM images and EDS mappings of cross-
sections of Al-10Bi—7Zn—1.5X composite powders after
being stored (30 °C, 60% RH) for 7 d: (a—as) Al-10Bi—
7Zn—1.5Cu; (b—bs) Al-10Bi—7Zn—1.5Fe; (c—cs5) Al-
10Bi—7Zn—1.5Ni
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3.5 Mechanism

In previous studies, WANG et al [26] have
explained the hydrolysis reaction process of
Al-Bi—Zn ternary alloy composite powder,
Al-Bi—Zn composite powder after being reacted in
the water was typical morphology of popcorn
formula. The hydrolysis reaction process of
Al-10Bi—7Zn—1.5X (X: Cu, Fe, Ni) quaternary
alloy composite powders is similar to that of
Al-Bi—Zn ternary alloy composite powder. A
schematic illustration of the reaction mechanisms of
the AlI-10Bi—7Zn—1.5X (X: Cu, Fe, Ni) composite
powders reacting with distilled water at 60 °C is
presented in Fig. 12. After the composite powder
contacts with water, its surface quickly reacts
with water to generate aluminum hydroxide and
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Fig. 11 of Al-10Bi—7Zn and
Al-10Bi—7Zn—1.5X composite powders reacting with
60 °C distilled water after being stored (30 °C and 60%
RH) for different time: (a) 3 d; (b) 5d;(c)7d

Hydrogen yields

hydrogen. And the reaction of Al hydrolysis can be
expressed as [41]

2Al+6H,0—2AI(OH);+3H, )
2Al+4H,0—2A10(OH)+3H, (3)
2A1+3H,0—ALOs+3H, 4)
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Fig. 12 Schematic illustration of reaction mechanisms of Al-10Bi—7Zn—1.5X composite powders reacting with distilled

water at 60 °C

Then, due to the loose connection between the
Bi-rich phase and Al-rich phase on the powder
surface, water infiltrates into the gap between the
two phases and hydrolyzes with Al (Stage 1). The
hydrogen bubbles generated by the Al hydrolysis
reaction led to the expansion of the alloy powder,
the Bi-rich phase on the powder surface and the
Bi-rich phase at the powder grain boundary
continue to fall off with the reaction, and the fresh
Al continues to be exposed to promote the
continuous and rapid hydrolysis reaction (Stage 2).
Finally, the spherical structure of the powder
collapsed and cracked into small fragments along
the grain boundary, which increased the contact
area between Al and water, and the hydrolysis
reaction continued to occur.

It is worth noting that in the Al-Bi—Zn-base
composite powders, through the Al matrix is
cracked into small fragments, they also cannot
completely react with water. This is confirmed by
the XRD patterns of composite powders hydrolysis
products in Fig. 8, in which the characteristic peaks
of Al are still identified in addition to the
characteristic peaks of AI(OH); and Bi. It indicates
that some Al matrix is not reacted with water under
the coating of AI(OH)s. As shown in SEM images
(Fig. 7), the Al matrix that has not yet reacted with
water may exist inside the irregular columnar
blocks. Due to the additions of the fourth
component (Cu, Fe, Ni) stabilizing the Al matrix,
more Al matrix does not participate in hydrolysis
reaction in Al-10Bi—7Zn—1.5X (X: Cu, Fe, Ni)
composite powders. This is the reason that the
hydrogen production capacity of Al-10Bi—7Zn—

1.5X (X: Cu, Fe, Ni) quaternary composite powders
are weaker than that of Al-10Bi—7Zn composite
powder, as shown in Fig. 6.

In recent years, CHEN et al [11] reported a
kind of Al alloy powder that reacts with low-
temperature water vapor. Their investigation
provides a theoretical basis for the deactivation of
Al-Bi—Zn composite powder in the air. In this study,
the AlI-10Bi—7Zn—1.5X (X: Cu, Fe, Ni) composite
powders retain high stability in the air. As shown in
Fig. 9, after introducing Cu, Fe or Ni to
Al-10Bi—7Zn composite powder, powders hardly
crack in the air. This is the reason that
Al-10Bi—7Zn—1.5X (X: Cu, Fe, Ni) composite
powders can still maintain high hydrogen yield after
7 d of storage (30 °C, 60% RH).

4 Conclusions

(1) The wunit hydrogen production of
Al-10Bi—7Zn—1.5X (X: Cu, Fe, Ni) composite
powders is less than Al-10Bi—7Zn composite
powder when reacting with distilled water at 60 °C.
Al-10Bi—7Zn—1.5Ni composite powder exhibits
the best performance with the hydrogen generation
yield of 75.3% (954.1 mL/g) within 500 min in the
quaternary composite powders system.

(2) The hydrogen production rates of
Al-Bi—Zn-base composite powders become more
stable and milder due to the additions of the fourth
component (Cu, Fe, Ni) resulted in the strengthen
of the matrix.

(3) The additions of high melting point metal
(Cu, Fe, Ni) can inhibit AI-10Bi—7Zn composite
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powder cracking in the air and enhance the
oxidation resistance of Al-Bi—Zn-base composite
powders. After 7 d of storage (30 °C, 60% RH), the
hydrogen production capacity of all quaternary
composite powders exceeded that of AI-10Bi—7Zn
composite powder. In particular, Al-10Bi—7Zn—
1.5Ni can still maintain a hydrogen yield of 57.9%
(733.7 mL/g) within 1500 min when reacting with
distilled water at 60 °C.
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