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Abstract: W-doped LiNig.ssC00.00Mng 030> cathodes were fabricated by using W-doped precursors. X-ray diffraction
indicates that W-doping suppresses the crystal growth of the precursor along the direction perpendicular to c-axis.
Scanning electron microscopy results show that the primary particles of the cathode become finer with the increase of
W-doping amount. Electrochemical measurements prove the merits of the W-doped cathodes. The one with 0.4 wt.%
W-doping shows significantly improved electrochemical properties compared with the pristine one. After 100
charge—discharge cycles at a high rate of 10C, it exhibits capacity retentions of 94.68% and 89.63% at 25 and 45 °C,
respectively. The intergranular cracks after cycles are also suppressed by W-doping. Hence, profiting from the
synergistic effect of component regulation and microstructure engineering by W-doping, the Li* diffusion kinetics is

boosted, and the structural stability is enhanced.
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1 Introduction

Nowadays, with the rapid development of
consumer electronics, portable power tools and
electric vehicles (EVs), next generation cathode
materials with high energy-density, low cost, high
reliability and long cycle life for lithium-ion
batteries (LIBs) are urgently needed [1,2]. In the
past decades, layered LiNi.Co,Mn.O, (NCM,
x+y+z=1) oxides have gradually become one of the
mainstream cathode materials due to high capacity,
high electronic conductivity and outstanding
structural stability [3]. More importantly, the
specific capacity can be feasibly enhanced by
increasing Ni content. Therefore, in recent years,
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Ni-rich NCM (x >0.8) materials have attracted wide
attentions in the field of EVs due to their high
specific capacity of over 200 mA-h/g [4,5].
Although Ni-rich NCM cathodes possess
high energy-density, the large-scale application of
Ni-rich cathode materials is still hindered by the
following issues: (1) The cation disordering (i.e.,
the occupation of Li sites by Ni** ions) due to the
similar ionic radius of Li* (0.076 nm) and Ni**
(0.069 nm) obstructs the extraction/insertion of Li*
ions [6]. (2) Anisotropic strain and structural
degradation from layered (space group R3m) to
spinel-like phase (space group Fd 3m) or rock-
salt phase (space group Fm3m) during charge/
discharge processes can induce the formation of
the micro-cracks along the boundaries of primary
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particles [7]. (3) The highly oxidized Ni*' ions will
promptly react with the organic electrolyte at the
electrode/electrolyte interface, which results in O»
release, thermal instability and safety issues [8,9].
(4) The spontaneous reduction of Ni*" to Ni?', as
well as the existence of lithium residues on the
surface, leads to fast moisture uptake and the
formation of LiOH/Li;COs; on the surface,
consequently resulting in deteriorated performance
and the gelation of cathode slurry during the
electrode processing [10,11].

Many strategies have been proposed to
address the aforementioned issues, such as lattice
doping [12—14], surface modification [15—17] and
morphology regulation [18—20]. The cation doping
strategy is more facile in industry and able to
enhance the cycling stability through stabilizing the
crystal structure and facilitating the ions/electron
diffusion. Moreover, the morphology engineering
and grain orientation through the cation doping in
precursors can affect the ion diffusion kinetics and
structural stability [21-24]. Studies have been
carried out on the morphology and structure
variations of cathode materials by the introduction
of foreign ion [25,26]; however, the detailed
mechanisms of crystal growth and particle
agglomeration have not been thoroughly explored
and well demonstrated.

In this work, LiNio.ssC00.09Mng.0302> materials
with various contents of W-doping are synthesized
from W-doped Nio.gsC009Mno3(OH), precursors.
Furthermore, the precursor growth mechanism in
the co-precipitation process is studied.

2 Experimental

2.1 Material preparation

The spherical W-doped Nig.ssC0o.00Mng03(OH)2
precursors were synthesized by a co-precipitation
method. The mixed salt solution with a total
metal concentration of 2 mol/L was prepared by
dissolving NiSO4-6H,0, CoSO4:7H,0 and MnSOy-
H,O in distilled water with a molar ratio of
Ni:Co:Mn=0.88:0.09:0.03. The as-prepared solution
was pumped into a batch reactor (30 L) at a
steady temperature (60 °C) in N, atmosphere.
Simultaneously, NH3-H>O solution (20 wt.%) and
NaOH solution (32 wt.%) were parallelly pumped
into the reactor. The ammonia concentration should
be maintained at 6—9 g/l and the pH value was

stabilized at 11.0—11.5. The precursor powder was
finally obtained after washing, filtering and vacuum
drying at 140 °C for 24 h. For preparing W-doped
0.25 mol/L Na,WOs solution was
pumped into the reactor parallelly during the
co-precipitation process without other changes. To
prepare the precursors with 0.2, 0.4 and 0.6 wt.% of
W dopant, the mass ratios of W to [Ni+Co+Mn]
were 0.2, 0.4 and 0.6 wt.%, respectively. Accordingly,
for convenience, the obtained W-doped precursors
were denoted as NCMOH, NCMOH-0.2W,
NCMOH-0.4W and NCMOH-0.6W, respectively.
Then, W-doped Nig.ssC00.00Mno.03(OH)2 precursors
were mixed with LiOH-H,O (Li:[Ni+Co+Mn]=
1.06:1, molar ratio) and calcined at 760 °C for 12 h
under a pure O, flow to produce W-doped cathode
materials. The final products were denoted as
NCM, NCM-0.2W, NCM-0.4W and NCM-0.6W,
respectively.

precursors,

2.2 Material characterization

The chemical compositions of the as-prepared
cathode materials were determined by inductively
coupled plasma-optical emission spectrometry
(ICP—OES, OPTIMA 8300, PerkinElmer). The
crystallographic structures of the samples were
identified by powder X-ray diffraction (Rigaku,
Rint—2000, Cu K, radiation) in the 26 range from
10° to 80°. The morphologies of the cathode
particles were examined by scanning -electron
microscopy (SEM, FEI Quanta 250 FEG) and
transmission electron microscopy (TEM, JEOL
2010). Energy dispersive X-ray spectroscopy (EDX)
mapping was used for the surface elemental
characterization on the W-doped precursor particles.
The valences of the elements in the materials were
determined using X-ray photoelectron spectroscopy
(XPS, PerkinElmer, PHI 5600).

2.3 Electrochemical evaluation

Electrochemical performances were measured
on CR2032 half-cells. Each working electrode was
composed of 90 wt.% cathode material, 5 wt.%
carbon black and 5 wt.% poly(vinylidene fluoride)
(PVDF). Electrochemical tests were carried out by
using an automatic galvanostatic charge/discharge
system (LAND CT2001A battery tester) between
3.0 and 4.3V (versus Li"/Li). Electrochemical
impedance spectroscopy (EIS) tests were recorded
with the amplitude voltage of 5mV in the
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frequency range from 10 mHz to 100 kHz on an
electrochemical workstation (CHI760E).

3 Results and discussion

3.1 Physiochemical characteristics

Comparative analysis of the crystallographic
structures of the precursors is displayed in Fig. S1
in Supplementary Information (SI). The samples
with different amounts of W-doping have the same
diffraction peaks without the presence of other
impurity peaks, which can be assigned to f-Ni(OH)»
(JCPDS card No. 14-0117) with a hexagonal
structure [21]. The estimated intensity ratio of
(001)/(101) peaks is decreased with the increase of
W-doped contents, demonstrating that the crystal
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growth along the direction perpendicular to c-axis is
suppressed by W-doping. The possible growth
mechanism of the precursor grains is shown in
Fig. 1(a). The metal ions combine with the hydroxyl
groups to generate initial nucleus, which can coalesce
spontaneously to form embryonic agglomerates
because of the large surface energy [27]. The (001)
planes have the highest concentration of hydroxyl
groups, and therefore have the highest surface
energy and electronegativity [23]. The electronegative
(001) planes are readily adsorbed by dissociative
ammonia. It has been demonstrated that the adsorbed
ammonia on the (001) planes cause lowered growth
rate along [001], consequently leading to (001) plane-
dominated sheet-like grains [21]. When tungstate
ions are added into the co-precipitation reaction,
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Fig. 1 Schematic illustration of effect of sodium tungstate on growth behavior of NigssCoo.00Mno.03(OH)2 (a); SEM
images of NCMOH (b), NCMOH-0.2W (c), NCMOH-0.4W (d) and NCMOH-0.6W (e); EDX elemental mapping of

NCMOH-0.4W (£, g)
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things will change. Since MeWO4 (Me?'=Ni*", Co*"
or Mn?") possesses lower dissociation constant than
Me(OH),, Me*" ions are easier to combine with
WOf than OH™ ions. As a result, the selective
adsorption of WO; would preferentially occur on
(101) planes, which have less hydroxyl groups and
thus provide more accessible Me*" cation sites.
Therefore, the crystal growth along [001] direction
can be promoted. This is the reason why W-doped
precursors exhibit lower intensity ratio of
(001)/(101) peaks.

The morphology evolution of the precursors is
analyzed by SEM, as shown in Figs. 1(b—e), which
reveals the relationship between the particle
morphology and doping amount. All particles show
a spherical morphology with a diameter of ~10 pm,
and are composed of nanoscale primary particles.
With the increase of W-doping, both the length and
width of the primary particles show obvious shrinkage
and their morphology changes from lamellar grains
to spindle-like shape. The finer grain size of the
W-doped samples is due to the pinning effect of W
on grain boundaries, which inhibits grain growth.
Figures 1(f) and S2 in SI display the elemental
mapping results of NCMOH-0.4W. The homogeneous
distribution of Ni, Co, Mn and W elements further
indicates that WO;~ has been uniformly incorporated
into the precursor by co-precipitation method.

The contents of W in the as-prepared cathode
materials were measured by ICP—OES. The results
(Table S1 in SI) confirm that the content of W in
each sample is very close to the designed value.
Figure 2 shows the XRD patterns of the cathode
materials with different amounts of W-doping. All
the patterns can be indexed as a-NaFeO, layered
structure (JCPDS card No. 09-0063) with R3m
space group without any impurity peak. The similar
XRD results demonstrate that the W-doping has
little influence on the crystallographic structure
(Fig. 2(a)). Meanwhile, it can be observed that the
(006)/(102) and (008)/(110) diffraction peaks have
obvious splitting, suggesting a well-ordered layered
structure formed in all samples (Fig. 2(b)).

The detailed lattice parameters can be obtained
by using the Rietveld refinement, as shown in
Figs. 2(c—f) and Table 1. The calculated patterns are
highly coincident with the obtained data, and the
low values of residual of least-squares refinement
(Rwp) and weighted residual of least-squares
refinement (R,) (less than 5%) demonstrate that our

refined results are credible. As can be seen in
Table 1, with increase of the doping amount of W,
the degree of Li"/Ni** mixing is enhanced, in
agreement with the decrease of (003)/(104) peak
intensity ratio [28]. According to the charge balance
principle, the introduction of W® will generate
more Ni**, which results in the increased cation
mixing due to the similar ionic radii of Li* and Ni*",
confirming that the W®" has exclusively occupied
the transition-metal sites. In addition, Ni** has the
larger ionic radius than Ni*, which will extend the
cell volume of materials [14]. As expected, the
cell volume calculated by utilizing refined lattice
parameters is enlarged due to the presence of W. It
should be mentioned that the increased cation
mixing originating from the W-doping is unlike that
caused by the unsuitable calcination condition (e.g.,
insufficient oxygen supply) for synthesis of the
cathode. The former is mainly present in the
near-surface region of the primary particles and is
an ordered occupation of Li sites by Ni*" ions,
which is considered to be able to protect the
cathode surface and improve cycling stability [29].

The morphologies of all the products are
shown in Fig. 3. The pristine and W-doped samples
exhibit a spherical morphology with an average
diameter of ~10 um. The size distributions of the
samples are listed in Table S2 in SI. The spherical
secondary particles are composed of nanosized
primary particles; however, the W-doped samples
show smaller primary particles than the pristine
one, which is consistent with the phenomenon
observed on the precursors. Figures 3(c, f) show the
cross-sectional SEM images of the NCM and
NCM-0.4W, respectively. It can be clearly seen that
the primary particles of the former are much larger
than that of the latter. In addition, the pristine NCM
is composed of randomly orientated equiaxed grains,
whereas the W-doped sample has slender and narrow
grains with a radial growth pattern. The unique
structure derived from the W-doping is beneficial
for Li* diffusion, and can alleviate the anisotropic
strain during charge—discharge process [30]. TEM
and high-resolution TEM (HRTEM) images of
NCM are shown in Figs. 3(g, h). The spacing of the
lattice fringes is 0.47 nm (Fig. 3(h)), which can be
assigned to the (003) crystal planes. The lattice
fringe spacing of NCM-0.4W is 0.48 nm (Fig. 3(j)),
suggesting that W-doping might broaden the
diffusion paths for Li* ions.
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Fig. 2 XRD patterns of NCM and W-modified cathode materials (a); enlarged regions for (006/012), (018/110)
peaks (b); Rietveld refinements of NCM (c), NCM-0.2W (d), NCM-0.4W (e) and NCM-0.6W (f)

Table 1 Rietveld analysis results of NCM and W-modified cathode materials

Sample N c/A Too3y/I104) Ni/Li mixing/% Ryp/% Ry/%
NCM 2.8722 14.1953 1.6077 0.78 3.38 1.87
NCM-0.2W 2.8762 14.1898 1.5601 0.92 3.7 1.5
NCM-0.4W 2.8725 14.1918 1.5291 1.4 3.41 1.72
NCM-0.6W 2.8745 14.2024 1.5223 1.95 2.8 1.44
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Fig. 3 SEM images of NCM (a), NCM-0.2W (b), NCM-0.4W (d) and NCM-0.6W (e); cross-sectional images of
NCM (c) and NCM-0.4W (f); TEM and HR-TEM images of NCM (g, h) and NCM-0.4W (i, j)

Figure 4 shows the XPS results of the NCM
and the NCM-0.4W samples. The Ni spectra with
two main peaks at 854.7 and 872.3 eV are assigned
to Ni 2ps.2 and Ni 2pip, respectively (Fig. 4(a)). The
peak of Ni 2ps» can be deconvoluted into two peaks
at 855.63 and 854.5 eV, which belong to Ni*" and
Ni%*, respectively, indicating that Ni** and Ni?*
coexist in the materials. The Ni**/(Ni**+Ni**) values
can be calculated to predict the degree of cation
mixing. These values of NCM and NCM-0.4W are
19.25% and 31.2%, respectively, which means that
W-doping increases the cation mixing. This result is
consistent with the XRD Rietveld refinement
results. The high-resolution Co 2p XPS spectrum
(Fig. 4(b)) exhibits two main peaks located at 779.6
and 794.73 eV, which represent Co 2p;» and
Co 2pi, respectively, indicating the presence of
Co*. As can be seen in the Mn2p spectrum
(Fig. 4(c)), two broad diffraction peaks are
observed at 642.09 and 653.41 eV, corresponding to
Mn 2ps32 and Mn 2pip, respectively, indicating that
the valence state of Mn is +4. The spectrum of W 4f
(Fig. 4(d)) shows two spin orbital peaks at 34.69
and 36.84 eV, which are assigned to W 4f;, and

W 4fsp, respectively, indicating that the valence
state of W is +6 [31].

3.2 Electrochemical properties

Electrochemical performances of the as-
prepared cathode materials were evaluated in
CR2032 coin type half-cells in the operating
voltage range of 3—4.3 V at room temperature and
elevated temperature. As shown in Fig. 5(a), all the
samples show very similar charge and discharge
curves. When tested at 25 °C, NCM-0.2W, NCM-
0.4W and NCM-0.6W display initial discharge
capacities of 192, 190.3 and 188.9 mA-h/g,
respectively, while the pristine NCM delivers the
value of 202.8 mA-h/g. The lowered capacity
caused by W-doping can be interpreted as the
electrochemical inactivity of W dopant in the
cathodes. When tested at 45°C, the initial
capacities of the samples are increased due to the
enhanced ion diffusion kinetics at high temperature
(Fig. 5(d)). However, the pristine NCM exhibits
inferior cycling performance to the W-doped ones,
both at room temperature and 45 °C (Figs. 5(c, 1)).
Moreover, the comparison of cycling performance
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Fig. 5 Initial charge—discharge curves at 0.1C (1C=200 mA/g) at 25 °C (a) and 45 °C (d); Discharge curves at 0.5C, 1C,

2C and 5C at 25 °C (b) and 45 °C (e); Cycling performances at 1C at 25 °C (c) and 45 °C (f); Cycling performances of
NCM and NCM-0.4W at 10C at 25 °C (g) and 45 °C (h)
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among these samples indicates that NCM-0.4W
possesses not only excellent cycling stability, but
also the highest specific capacity. When tested at
25 °C, for example, it delivers a specific capacity
of 175.8 mA-h/g at 1C after 100 cycles with the
capacity retention of 93.51%, which is higher
than the values of NCM (119.7 mA-h/g, 62.21%),
NCM-0.2W (131.5 mA-h/g, 69.03%) and NCM-0.6W
(166.7 mA-h/g, 90.59%). Hence, NCM-0.4W is
chosen as a typical sample to illustrate the merits of
W-doping.

Rate capability is compared between NCM
and NCM-0.4W, as shown in Figs. 5(b, ¢). Both
samples show capacity fading as the current density
increases. However, it can be seen that the fading
rate of NCM-0.4W is significantly suppressed,
suggesting the better Li" diffusion kinetics endowed
by W-doping. Comparison of cycling performances
at higher current density can magnify the difference
between their Li* diffusion kinetics. Figures 5(g, h)
display the cycling performances of NCM and
NCM-0.4W at 10C. When tested at 25 °C, the
W-doped sample still achieves a capacity of
144.2 mA-h/g after 100 cycles with a retention of
94.68%. In contrast, the pristine NCM rapidly fades
to 80.7 mA-h/g after 100 cycles at 10C. Similar
trends are also observed at the testing temperature
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of 45 °C.

In order to further understand the phase
transitions accompanying with charge/discharge
cycling, dQ/dV-V profiles are depicted for NCM
and NCM-0.4W cathodes in Fig. 6. The dQ/dV—V
curves of NCM and NCM-0.4W contain three
couples of peaks. The three oxidation peaks for
both samples are related to the oxidation of Ni**
(with minor Ni*) to Ni*', and Co*" to Co*,
accompanied with the transitions from hexagonal
phase to monoclinic phase (H1/M), monoclinic
phase to hexagonal phase (M/H2) and hexagonal
phase to hexagonal phase (H2/H3). The three
reduction peaks for both samples are indicative of
the reverse process [32—35]. The reversibility of
H2-H3 phase transition at about 4.2V is closely
related to the cycling stability [17,35]. Obviously,
the H2/H3 peak of the NCM sample fades
dramatically after 100 cycles, indicating the inferior
structural stability (Fig. 6(a)). In contrast, H2/H3
peak of NCM-0.4W remains unchanged in 50
cycles, and changes slightly up to 100 cycles,
indicating improved structural stability (Fig. 6(b)).

To evaluate the reaction kinetics degradation,
electrochemical impedance spectroscopy (EIS) after
100 cycles has been implemented. As can be seen
in Fig. 7(a), both plots consist of two partly merged
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Fig. 7 Nyquist curves of NCM and NCM-0.4W (a) and corresponding Z'—w " plots (w is the frequency) (b)
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semicircles at high-to-medium frequency region
and a straight line at low frequency region,
corresponding to surface resistance (Rs), charge
transfer resistance (R.) at the electrolyte/electrode
interface and Warburg impedance connected with
Li" diffusion in solid electrode, respectively [36].
The diffusion coefficient of Li* (Dj;) is also
calculated, according to Eq. (1). The parameter o
can be obtained from the slop of Z-w ' plot
(Fig. 7(b)), according to Eq. (2) [37,38]:

D} =R T /(24 F* C??)

'=Rc+Rcto ! 12

(D
2

where R is the molar gas constant, 7 represents the
thermodynamic temperature, 4 is the active surface
area, n stands for the transfer electron numbers
during the reaction, F stands for the Faraday
constant, C represents the concentration of lithium
ions, o is the Warburg factor. The results are shown
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in Table 2. According to the calculation results,
after 100 cycles, the diffusion coefficient of
Li* for NCM-0.4W is 1.617x107" cm?/s, which is
much larger than that of NCM (1.200x107'¢ cm?/s),
indicating that the W-doping has a positive effect
on Li" diffusion kinetics.

3.3 Evolution of morphology and structure after
cycles
Figure 8 displays SEM images and XRD
patterns of NCM and NCM-0.4W cathodes after
100 cycles. After repetitive de-lithiation/lithiation

Table 2 EIS fitting parameters and diffusion coefficients
of Li* for NCM and NCM-0.4W samples

Sample (R+R)/Q o Dy /(cm?s™")
NCM 268.68 293.38 1.200x10716
NCM-0.4W 14.232 79.903 1.617x10713

(e)
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Fig. 8 SEM images (a, b) and cross-sectional images (c, d) of NCM-0.4W (a, ¢) and NCM (b, d) after 100 cycles and

XRD patterns (e) after 100 cycles
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processes, some NCM particles are shattered into
fragments (Fig. 8(b)), and numerous intergranular
microcracks are observed (Fig. 8(d)). The micro-
cracks result from volume contraction and expansion
during cycling, which not only let electrolyte
penetrate into the particles to initiate extra side-
reactions, but also restrain the migration of Li* ions.
The morphology of NCM-0.4W samples is well
maintained without obvious microcracks formed
after cycling (Figs. 8(a, ¢)). Furthermore, as shown
in Fig. 8(e), the diffraction peak of (003) facets
for NCM shift towards lower angle with 0.38°
compared with that for NCM-0.4W, indicating a
larger lattice expansion. However, this shift is
unlike the situation that an expanded interplanar
spacing can promote diffusion kinetics for Li ions.
This is caused by the lattice expansion along c-axis
with the deepening of delithiation. In a highly
delithiated NCM cathode, the metastable Ni*" ions
are readily reduced into more stable Ni?" ions and
thus the electrochemically inactive rock salt NiO
phase is formed [39]. In this case, the lattice
variation cannot be fully restored after re-lithiation.
Therefore, the results prove that W-doping can
stabilize the material structure and suppress the
formation of microcracks during cycling.

4 Conclusions

(1) W-doped Ni-rich cathode materials with
ordered primary particles were successfully
synthesized from W-doped hydroxide precursors
which were obtained by co-precipitation method
with the presence of sodium tungstate.

(2) The crystal growth of the precursor can be
influenced by the selective adsorption of WO; .
W-doping leads to smaller primary particles with
radial orientation.

(3) The sample with 0.4 wt.% W-doping
exhibits the best electrochemical properties. At
room temperature, it delivers an initial discharge
capacity of 190.3 mA-h/g at 0.1C, and a capacity
retention of 94.68% after 100 cycles at a high rate
of 10C. It also shows excellent cycling stability at
45 °C.

(4) The intergranular cracks, as well as the
lattice variation after 100 cycles can be suppressed
by W-doping, indicating that W-doping can
improve the structural stability for Ni-rich layered
cathodes.
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