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Abstract: Different interfacial structures of diamond/Cu composites were synthesized by varying the boron (B) content. 
The microstructural, thermal, and mechanical properties of the composites were investigated. The results showed that 
diamond/Cu−B composites had a high thermal conductivity of 695 W/(m·K) and high bending strength of 535 MPa 
attributed to the formation of a micron-scale dentate B4C interface structure. The dentate B4C provided dual functions of 
metallurgical bonding and mechanical meshing for interface bonding. A semi-coherent interface was formed between 
the diamond and B4C, where the diamond (111) and B4C (104) planes were parallel. The micro/nano-scale dentate 
structure improved the phonon transmission efficiency and bonding strength at the interface. 
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1 Introduction 
 

With the rapid development of high-power 
electronic equipment, there is a great demand for 
advanced thermal management materials for heat 
sinks and microelectronic applications [1,2]. 
Carbon materials (including diamond, graphene, 
and carbon nanotube) reinforced metal matrix 
composites exhibited excellent thermal conductivity 
in previous studies [3−5]. Among these candidates, 
diamond-reinforced copper matrix composites 
(diamond/Cu) are promising for the heat dissipation 
of high-power chips due to their excellent 
thermo-physical properties and tunable thermal 
expansion [6]. However, carbon and copper neither 
wet nor react, even at high temperatures, due to the 
differences in their physico-chemical properties. 
These properties usually result in a poor interface 

between diamond and copper, further affecting the 
heat conduction and load transmission at the 
interface [7,8]. 

Studies have employed several routes for 
interface improvement to reduce the impact of weak 
interfaces on the thermal conductivity and 
mechanical properties of diamond/Cu composites. 
Under severe high-temperature and high-pressure 
preparation conditions, diamond/Cu composites 
might achieve coherent interfaces. YOSHIDA and 
MORIGAMI [9], and EKIMOV et al [10] have 
systematically addressed the impacts of numerous 
factors. The results indicated that polycrystalline 
diamond would be formed under high-temperature 
and high-pressure conditions, which is beneficial to 
eliminating interfaces and related defects. In 
addition, the fabrication of diamond/Cu composites 
with void-free interfaces by electroplating was 
proposed [11]. Although the perfect interface is the 
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goal pursued in diamond/Cu composites, harsh 
fabrication technology limits its application in 
industrial production. 

Interfacial modification is another effective 
method that improves interface wetting and 
bonding remarkably. The carriers of heat transfer 
(i.e., phonons and electrons) control the heat 
transfer mechanisms in diamond and copper. The 
interface layer also acts as a phonon bridge between 
diamond and copper. CAO et al [12] introduced 
graphene as an interface layer that reduced the 
acoustic mismatch between diamond and copper, 
thus significantly improving the interfacial thermal 
conductivity. In addition, a new two-dimensional 
material MXene (Ti3C2Tx) adequately improved the 
interfacial thermal conductivity [13]. Furthermore, 
carbides of some elements (such as B, Cr, Ti, W, 
and Zr) improved wettability, interface thermal 
conductivity, and interface bonding strength 
between diamond and copper [14−18]. These 
carbides can transform the interface bonding into 
chemical bonding, which could significantly 
increase the thermal conductivity and interface 
bonding strength. CIUPIŃSKI et al [19] have 
prepared diamond/Cu composites, including Cr3C2 
carbide via pulse plasma sintering, achieving the 
maximum thermal conductivity of 687 W/(m·K). 
As for boron, it can be directly alloyed into the 
copper matrix or grown on the diamond surface as a 
coating, resulting in increased tensile strengths and 
thermal conductivities compared to the systems 
without boron addition [8,14]. The highest thermal 
conductivity of 538 W/(m·K) was achieved with an 
optimal boron content of 0.8 wt.% [20]. 

In addition to the thermal conductivity, the 
mechanical properties of diamond/Cu composites 
are equally important for their application. 
ABYZOV et al [21] developed a diamond/Cu 
composite with high filler content (60 vol.%) and 
coarse diamond particles (180 μm), which exhibited 
a high bending strength of 380 MPa. ZHANG    
et al [22] obtained diamond/Cu−Zr composites with 
a bending strength of 440 MPa by zirconium 
interface modification. In previous work, 0.7 wt.% 
Cr addition achieved the highest tensile and 
bending strengths of 252 MPa and 523 MPa, 
respectively [15]. 

Studies have been focused on the scale effect 
of the carbide interface layer while ignoring the 

influence of the interface layer structure. In this 
work, diamond/Cu−B composites were prepared  
by vacuum pressure infiltration, and an in-situ 
generated micro/nano-scale dentate interface 
structure was discovered. The effects of different 
dentate structures on the thermal conductivity and 
strength of diamond/Cu−B composites were  
studied. The formation process of the micro/nano- 
scale dentate was analyzed by microscopic means 
to reveal the mechanism by which the dentate 
improves the interface phonon transmission 
efficiency and the interface bonding strength. 
Hence, this work provides valuable guidance for the 
design of high-heat conduction interface structures 
in diamond/Cu composites. 
 
2 Experimental 
 

Pressure infiltration was performed to prepare 
diamond/Cu composites with different boron 
contents. Copper bulks (purity of 99.9 wt.%) and 
boron powder (size of 2−3 μm, and purity of 
99.99 wt.%) were obtained from Cuibolin Non- 
Ferrous Technology Co., China, and used as the 
composite matrix. Single crystal diamonds with a 
grain size of 100 μm were obtained from Huanghe 
Whirlwind Co. (China) and added to the composites 
in 60 vol.%. First, diamond particles were made 
into preforms and placed in graphite molds. Using 
the vacuum pressure infiltration method, Cu−B 
alloy (0.3 wt.%, 0.5 wt.%, 0.7 wt.%, and 1.0 wt.% 
of B) was poured into the graphite mold at 1250 °C. 
Mechanical pressure of 50 MPa was applied to 
forcing copper to penetrate the preform gap. The 
samples were kept at 1000 °C and 50 MPa for 
60 min, and then the diamond/Cu−B composites 
with a diameter of 100 mm were obtained. The 
nitric acid etching was subsequently applied to 
exfoliating the diamond particles in the composite. 
Diamond/Cu−B composites were heated to 200 °C 
in 68 wt.% nitric acid for 30 min, and the diamond 
particles were obtained after the dissolution of the 
matrix copper. 

The microstructures of diamond/Cu−B 
interfaces were analyzed using scanning electron 
microscopy (SEM, JSM−7610F Plus, Hitachi, 
Japan) and transmission electron microscopy  
(TEM, JEOL−2100F, Japan). Selected area electron 
diffraction (SAED) was used to examine the atomic 
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structure at the interface of the diamond/Cu−B 
composites. The X-ray diffraction (XRD) patterns 
of diamond/Cu−B composites were recorded using 
the X'Pert-Pro MPD diffractometer (Holland 
Panalytical) with Cu Kα. The interface micro- 
structure samples of diamond/Cu−B composites 
were prepared by focused ion beam etching. The 
thermal conductivity of diamond/Cu−B composites 
was calculated by   
K=α·ρc·cp                                                 (1)  
where α, ρc, and cp represent the thermal diffusivity,  
density and specific heat capacity of the composite, 
respectively. The thermal diffusivities of the 
diamond/Cu−B composites were measured at room 
temperature by a thermal conductivity tester 
(LFA447, NETZSCH). The densities of the 
diamond/Cu−B composites were measured by the 
drainage method. The measurement was repeated 
three times for each sample and averaged. The 
specific heat capacities of the composites were 
measured at room temperature by a synchronous 
thermal analyzer (STA 449F3, Netzsch, Germany). 
The bending strengths of the diamond/Cu−B 
composites were measured by a universal material 
testing machine. The testing sample size was 
4 mm × 3 mm × 35 mm. 
 
3 Results and discussion 
 
3.1 Microstructures and phase constitutions 

The nucleation and growth of interface carbide 
are affected by various conditions including 
temperature and boron content. By controlling these 
parameters, in-situ controllable growth of carbides 
can be achieved, and thereby different interface 
structures are prepared. The surface morphologies 
of the diamond particles extracted from diamond/ 
Cu−B composites was examined by SEM, as shown 
in Fig. 1. When a small amount of boron was added, 
one-third of the exposed defects existed on the 
diamond surface. Upon increasing the boron 
content, the size of sparse carbide protrusions 
reached 1 μm. However, spot defects remained on 
the surface that was not covered with carbide. 
When the boron content reached 0.7 wt.%, a 
compact and uniform carbide layer was formed on 
the diamond surface, along with carbide dentate 
structures of a uniform size distribution of about 
1 μm. Further increased boron content provided 

sufficient elements for carbide growth. Carbides 
continued to grow perpendicular to the diamond 
surface, with dentate structures up to 1.5 μm. With 
this structure, the dense carbide layer on the surface 
massively reduced the interface thermal resistance. 
Simultaneously, diffusion bonding and physical- 
mechanical meshing combined the dentate carbide 
and the matrix. 

To confirm the composition of dentate carbide 
at the interface of diamond/Cu−B composites, the 
phase compositions of the polished surfaces 
(Fig. 2(a)) and the elemental composition of the 
near-interface region were measured by XRD and 
EDS. As depicted in Fig. 2(b), significant boron 
accumulation was detected near the diamond 
interface region, which indicates that boron diffuses 
from the copper−boron solid solution to the 
diamond during the infiltration process. Further, 
phase analyses have shown that a newly formed 
phase of B4C was detected except for the copper 
and diamond phases in Fig. 3. Hence, it is 
confirmed that B4C is the product of the interface 
reaction during the infiltration process of the 
diamond/Cu−B composites. The presence of B4C 
enhances the interfacial bonding between diamond 
and copper, as inferred from the fracture 
morphology. 

The fracture structures of the diamond/Cu−B 
composites with different boron contents are shown 
in Fig. 4. Increasing the boron content enhanced the 
proportion of diamond transgranular fractures 
within the fracture structure. When the boron 
content was lower than 0.5 wt.%, the fracture was 
dominated by diamond extraction. Part of the 
carbide adhered to the extracted diamond surface, 
and the uniform layer was not formed in carbide. 
Hence, carbides were insufficient to provide strong 
interfacial bonding. When the boron content was 
increased to 0.7 wt.%, the proportion of diamond 
transgranular fracture within the fracture increased, 
and more carbides adhered to the extracted diamond 
surface. Further enhancement of the boron content 
to 1.0 wt.% promoted transgranular fracture in the 
diamond, indicating that the interfacial bonding 
force became stronger. 

 
3.2 Interface characterization 

The interface microstructures of the diamond/ 
Cu−B composites were revealed by TEM. High- 
resolution atomic images were obtained to reveal 
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Fig. 1 SEM images revealing surface morphologies of diamond particles extracted from diamond/Cu−B composites at 
different boron (B) contents: (a, b) 0.3 wt.% B; (c, d) 0.5 wt.% B; (e, f) 0.7 wt.% B; (g, h) 1.0 wt.% B  
 

 
Fig. 2 SEM image for polished surface of diamond/Cu−B composites (a) and element analysis of interface area (b) 
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Fig. 3 XRD pattern of diamond/Cu−B composites 
 
the interfacial bonding between diamond and B4C. 
Figure 5(a) shows that a tooth structure appeared 
between the diamond and B4C when the boron 
addition was 0.5 wt.%. With increasing the boron 
content, the tooth structure at the interface 
disappeared, as shown in Fig. 5(b). A straight and 
clear interface was formed between the diamond 
and B4C. The diamond crystal planes parallel to the 
interface were designated as diamond (111) planes. 
The high-resolution atomic image in Fig. 5(c) 
shows that the dentate structure was composed of 
diamond atoms. The diamond crystal plane parallel 
to the interface was demarcated as the (111) plane 

with an interplanar distance of 0.206 nm. 
Interestingly, the orientations of the faces where the 
dentate structure binds to B4C were all diamond 
(111) faces. Overall, these findings indicate the 
evolution of the interface between diamond and 
B4C during the infiltration process in diamond/ 
Cu−B composites. 

Figure 5(e) graphically depicts the changes 
affecting the diamond surface and the interface 
microstructure evolution between diamond and B4C 
during infiltration. Initially, the surface of the 
diamond particles was flat. Upon exposure to the 
molten Cu−B alloy, the carbon atoms on the 
diamond surface began to fall off along the 
diamond (111) surface. Since the surface energy of 
the diamond (111) plane is lower than the diamond 
(100) plane, it is easier for the (111) plane to 
participate in interface reactions [23,24]. The 
exfoliated carbon atoms reacted with the boron in 
the alloy to form B4C while leaving pits on the 
diamond surface. With the progress of the 
interfacial reaction, a dentate structure was formed 
gradually by the pits on the surface. Then, the 
dentate reacted to form a flat interface until the 
boron in the alloy was consumed. Therefore, it is 
evident that the content of boron controls the 
interface structure between diamond and B4C. 

 

 
Fig. 4 SEM images for fracture morphologies of diamond/Cu−B composites at different boron contents: (a) 0.3 wt.% B; 
(b) 0.5 wt.% B; (c) 0.7 wt.% B; (d) 1.0 wt.% B 
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Fig. 5 TEM bright field images (a, b) and HRTEM images (c, d) of interface between diamond and B4C in 
diamond/Cu−B composites; Schematic diagram of interface microstructure evolution between diamond and B4C during 
infiltration (e) 
 

To further reveal the micro-area heat transfer 
mechanism of the diamond/Cu−B composites 
interface, HRTEM and selected area electron 
diffraction (SAED) were used to analyze it. 
Figure 6(a) displays the bright-field image of the 
interface within diamond/Cu−B composites, where 
B4C had an irregular shape with an average 
thickness of about 300 nm. The high-resolution 
atomic image of the b-region (Fig. 6(b)) shows that 
diamond (111) and B4C (104) planes were parallel, 
i.e., diamond(111)//B4C(104). Figure 6(c) shows 
that B4C (104) plane was also parallel to the 
interface between B4C and copper and that 10 nm 
copper nanocrystals were formed on the copper 
matrix side. SAED was performed on the selected 
areas in Fig. 6(a) and the corresponding SAED 
patterns are shown in Figs. 6(d−f). The results 
confirm that the d-region is diamond and the 
e-region is B4C. The substrate side corresponding to 
the poly-crystalline ring is copper nanocrystals. 

According to the interface atomic structure  
in Fig. 6(b), a schematic diagram of the interface 
bonding between diamond and B4C was established, 
as displayed in Fig. 6(g). Based on the orientation 
relationship between diamond and B4C, the lattice 
mismatch (δ) was calculated as 10.9%, where δ= 
(ddiamond−dB4C)/(ddiamond+dB4C), ddiamond(111)=0.206 nm, 

and dB4C(104)=0.256 nm [25]. The interface between 
B4C and diamond is semi-coherent and the 
schematic diagram of the atomic matching model is 
shown in Fig. 6(g). The semi-coherent interface 
effectively reduced phonon scattering, thereby 
improving interface thermal conductivity. The 
schematic diagram of the interface phonon transport 
is shown in Fig. 6(h). However, the phonons 
reflected during phonon transmission in the 
tooth-shaped interface structure could re-enter the 
interface. Overall, this interface structure improved 
the phonon transmission efficiency, and thus it 
could also effectively improve the interface thermal 
conductivity [26]. 
 
3.3 Properties 

The effect of boron content on the thermal 
conductivity of diamond/Cu−B composites is 
exhibited in Fig. 7. With increasing the boron 
content, the thermal conductivity firstly increased 
and then decreased, displaying a maximum   
value of 695 W/(m·K) at 0.7 wt.% boron content. 
The functional relationship between thermal 
conductivity and boron content can be interpreted 
by the interface structure. The thermal conductivity 
reached its highest value when the B4C layer coated 
the diamond surface completely without defects.  
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Fig. 6 TEM image of copper and diamond interface layer for diamond/Cu−B composites (a); High-resolution atomic 
image of interface between diamond and B4C (b); High-resolution atomic image of interface between copper and   
B4C (c); Selected area electron diffraction calibration of d-region (d), e-region (e), and f-region (f) in (a); Schematic 
diagram of interfacial bonding state between diamond (111) and B4C (104) (g); Schematic diagram of interface phonon 
transport (h) 
 

 

Fig. 7 Thermal conductivity of diamond/Cu−B 
composites with different boron contents 
 
Beyond the critical value, increasing the B4C layer 
grain augmented the interfacial thermal resistance. 
Therefore, further boron addition would decrease 
the thermal conductivity of diamond/Cu−B 
composites. 

Figure 8 depicts the bending strength of 
diamond/Cu−B composites as a function of boron 
content. The bending strength of diamond/Cu−B 
composites increased linearly with the addition of 
boron content. Increasing the boron content from 
0.3 to 1.0 wt.% enhanced the bending strength of 
the composites from 368 to 535 MPa. The bending 
strength of 535 MPa is higher than the previously 
reported value [22]. The improvement in bending 
strength is closely related to the strength of 
interface carbide and the near-interface area 
connecting diamond and copper. The size of B4C 
continued to increase with the addition of boron 
content. The dentate B4C extended to the matrix, 
forming mechanical engagement with the matrix, 
which significantly improved the bonding strength 
between the matrix and B4C. Copper nano- 
crystalline regions were detected on the matrix side 
near the interface region. The nanocrystals 
enhanced the strength of the interface region, 
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resulting in increased crack propagation resistance. 
Due to the stress concentration in the process of 
crack propagation, diamond transgranular fracture 
occurred. Therefore, the mechanical properties   
of diamond/Cu−B composites were significantly 
improved by controlling the process parameters to 
regulate the interface structure. 
 

 

Fig. 8 Bending strength of diamond/Cu−B composites 
with different boron contents 
 
4 Conclusions 
 

(1) With increasing the boron content in the 
alloy from 0.3 wt.% to 1.0 wt.%, the carbide 
structure evolved from a discontinuous point-like 
structure to a dentate structure with 1.5 μm in 
height. The proportion of diamond transgranular 
fractures in the fracture structure of diamond/Cu−B 
composites continued to rise, which showed that the 
interface bonding strength increased with the 
change in the B4C structure. 

(2) By changing the boron content to tailor  
the B4C structure, a maximal thermal conductivity 
of 695 W/(m·K) was obtained at 0.7 wt.% boron 
addition. However, a maximal bending strength of 
535 MPa was attained at 1.0 wt.% boron addition. 

(3) The micron-scale dentate B4C structure 
provided the dual functions of metallurgical 
bonding and mechanical meshing for interface 
bonding. The interface formed between diamond 
and B4C was semi-coherent and revealed the 
orientation relationship of diamond(111)//B4C(104). 
The micro/nano-scale dentate structure improved 
the interface phonon transmission efficiency and 
interface bonding strength, thereby improving 
interface heat conduction and load transmission. 
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摘  要：通过控制硼含量制备不同界面结构的金刚石/铜复合材料，研究复合材料的界面显微组织及其对热性能和

力学性能的影响。结果表明，界面处形成微米级 B4C 齿状结构，该结构为界面结合提供冶金结合和机械啮合的双

重作用。金刚石/铜−硼复合材料获得最高为 695 W/(m·K)的热导率和 535 MPa 的弯曲强度。金刚石与 B4C 之间形成

具有金刚石(111)//B4C (104) 取向关系的半共格界面。微纳米级齿状结构可提高界面声子传输效率和界面结合强度。 
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