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Abstract: A near-a Ti—7Al-2V alloy was designed using cluster formula approach and prepared by laser additive
manufacturing, whose specific strength is better than that of Ti—6Al-4V alloy. Its composition formula
o-{[Al-Ti12](AlTiz) } 15+6-{[Al-Tii4](V3)}. features an enhanced o-Ti by increasing a unit proportion of 15/17 (with
respect to 12/17 of Ti—6Al—4V alloy) and stabilized f-Ti via V alloying. This alloy possesses a good laser additive
manufacturing processibility. At the as-deposited state, the microstructures are composed of fine basket-weave regions,
coarse basket-weave regions and ultrafine & Widmanstétten lath regions. The surface roughness of coarse basket-weave
regions is much smaller than that of fine basket-weave regions and ultrafine o Widmanstitten lath regions. The a-phase
distribution in fine basket-weave regions is more uniform than that in the coarse basket-weave regions. Its ultimate
tensile strength of 971-1005 MPa, yield strength of 891-921 MPa and elongation of 4.5%—6.6% are close to those of
Ti—6Al-4V alloy, and particularly, its specific strength of 224—232 kN-m/kg is better than that of Ti—6Al—-4V alloy.

Key words: Ti alloy; composition design; cluster-plus-glue-atom model; laser additive manufacturing; mechanical
properties

materials for the aerospace industry [6]. Up to now,
there are only a few families of special Ti alloys
used for laser additive manufacturing, such as

1 Introduction

Laser fabrication has attracted wide attention
for the rapid near-net manufacturing of the high-
performance components [1—3]. This manufacturing
technique is particularly suitable for strategic
metallic materials that are difficult and expensive
to manufacture through traditional subtractive
technologies. Titanium (Ti) alloys are used
extensively in the aerospace and biomedical fields
due to their excellent performances, including
high strength, good biocompatibility, and low
density [4,5]. In particular, Ti alloys with good laser
additive manufacturing processibilities are key
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a+p-Ti series Ti—6A1-4V [7], TCI11 [8], TC21 [9],
Ti6246 [10], Ti—Al-Mo—Si—Zr [11], Ti—Al-V—
Mo—Nb [12], and S-Ti alloy series Ti—Al-V—Fe [13],
Ti—-Mo—Zr—Al [14], Ti—Al-Mo [15] and Ti—V-
Fe—Al [16]. On the other hand, typical wrought Ti
alloys including near-a Ti series Til100, IMI834,
and Ti60, and p-Ti alloy series f-21S, BT22,
Ti-55531, and S-CEZ are not suitable for additive
manufacturing because of their wide solidification
range, over 100 °C in general [17]. As is well known,
the solidification rate of the molten metal in the
laser additive manufacturing process is 2—3 times
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that of conventional casting processes. Ti alloys
tend to show severe cracking and poor damage
tolerance after laser processing [18,19]. Therefore,
there is an urgent need to develop special titanium
alloys for laser additive manufacturing.

Ti—6Al-4V alloy has drawn
attention due to its excellent additive manufacturing

extensive

formability, low cost and good workability. Based
on the Ti—6Al-4V alloy composition, many
Ti—Al-V alloys series have been developed [20,21].
TAN et al [20] investigated the effects of Al and
V on laser additive manufactured Ti—(2—11)Al-
(4-20)V alloys, and found that the morphology
evolution of primary f grains changes from
large columnar to small equiaxed as V or Al
concentration increases. Among them, near-a alloy
series Ti—8Al-2V and Ti—11Al-2V show a better
additive-manufacturing formability and a lower
density. ZHANG et al [21] developed Ti—(2—11)Al—
(1-10)V alloy series based on the neural network
model optimization and produced them by laser
additive manufacturing. They found that the tensile
strengths of Ti—4Al-3V, Ti—5AI-3V, Ti—4Al-4V,
and Ti—3Al—-6V are comparable to those of wrought
Ti—6Al-4V. However, these alloys suffer from
insufficient specific strength, below 220 kN-m/kg.
The primary issue is then to find high-specific-
strength near-o Ti alloys suitable for additive
manufacturing, with specific strength
220 kN-m/kg.

Our team has developed a “cluster-plus-glue-

above

atom” model, a new structural tool for the
description of short-range order [22], expressed in
the cluster formula as [cluster](glue atoms), which
can be understood as the composition gene of the
material [23]. With aid of such cluster formula
approach, we were able to show the widely-used
Ti—6Al-4V composition via a dual-cluster formula
to be a-{[Al-Ti2](AlTi2)} 12+f-{[Al-Ti4](V2Ti)} s,
where the two structural units in proportion of 12:5
correspond respectively to a- and f-Ti phases [7].
This formula provides the basis for the composition
optimization of various Ti alloys: by varying the
ratio of the a and f units and by alloying the two
units separately, different Ti alloys
formulated, as exemplified in low-elastic-modulus
biomedical f-Ti alloys [24], laser additive
manufactured o+f Ti alloys [12,25] and high-

can be

temperature near-a Ti alloys [17,26]. As far as the
objective of the present work is concerned, i.e.,
achieving high specific strength using additive
manufacturing, Ti—Al-V
addressed using the cluster formula approach: the
targeted alloy should be near-a type in order to have
a low density (henceforth high specific strength)

ternary alloys are

and to ensure a good laser additive manufacturing
processibility; it should also contain a certain
amount of stable S phase for a good plasticity and
high strength.

In the current work, a Ti—7AI-2V alloy was
developed based on the dual-cluster formula
of Ti—6Al-4V alloy, to address the mentioned
limitations. After laser additive manufacturing, this
V-lean alloy exhibited a higher specific strength
than Ti—-6A1—-4V alloy.

2 Composition design using cluster
formula approach

2.1 Selection of elements

To design a Ti alloy targeting high specific
strength with appropriate additive manufacturing
processibility, the first step is to ensure a small
solidification range. As is known, a wide
solidification range tends to induce the formation
of microcracks in the alloy [25,27]. In this work,
the solidification temperature ranges (ATis) of
Ti-based binary alloys are estimated using JMatPro
software based on Scheil-Gulliver model [12], as
given in Fig. 1. In near-a Ti alloys [17], the content
of each alloying element does not exceed 25 wt.%.
Therefore, the content of alloying element used to
calculate the ATi.s of Ti-based binary alloys is set
to be from 0 to 30 wt.%. In the calculation, the
starting cooling temperature is set to be 3000 °C,
the ending temperature is 25 °C, and the step is
5 °C. When the elemental content contents are less
than 15 wt.%, a-Ti stabilizer Al and S-Ti stabilizers
Mo, V, Nb, and Ta contribute only weakly to
the solidification temperature range: for each
10 wt.% addition, a 5 °C rise of the solidification
temperature range is attributed to Al, 6 °C to V,
28 °C to Mo, Nb, and Ta, in sharp contrast to
~150 °C to eutectoid-type p-Ti stabilizers Fe, Cr,
and Cu, as shown in Fig. 1. In particular, Al and V
are the alloying elements most suitable for laser
additive manufacturing.
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Fig. 1 Solidification temperature ranges of Ti-based
binary alloys

2.2 Composition formulas of some Ti alloys for
laser additive manufacturing

A quite few Ti alloys such as Ti—6AI-4V [7],
TC11 [8], TC21 [9], and Ti6246 [10] have
been proved to be suitable for laser additive
manufacturing.

The dual-cluster formula of popular Ti—
6Al-4V has been well established under a hard-
sphere packing model based on the measured
phase compositions [7,17]. This alloy is formulated
to be a-{[Al-Tii2](AlTiz)}i2tf-{[Al-Tii4](V2Ti)}s,
consisting of 12 units of HCP o-Ti and 5 units of
BCC p-Ti, and the nearest-neighbor clusters of
which are respectively twinned cuboctahedron
with coordination 12 (Fig.2(a)) and rhombodo-
decahedron with coordination 14 (Fig. 2(b)).

In developing the above formula, each basic o
or £ unit is treated as a hard sphere whose radius is
proportional to the number of atoms in the cluster.
It is then assumed that any Ti alloy is formulated
to consist of 17 basic a and f units, in different
proportions. Typical Ti alloys that are widely
accepted for laser additive manufacturing such as
TC11, TC21, and Ti6246 are then interpreted using
the 17-unit dual-cluster formula, as listed in Table 1.
The alloying elements are first classified into the
o-Ti stabilizer Al, f-Ti stabilizer 1\T0=(Mo, Nb, Cr,
Ta, V, Sn, Si, etc.), and solvents Ti=(Ti, Zr) as
already done in Ref. [17]. For example, the nominal
composition Ti—6.5A1-3.5Mo—1.5Zr—0.3Si (in wt.%)
of TCll, converted to Tigs,glAh1,22M01,7ZI‘0_77Si0_5 (in
at.%), is simplified into pseudo-ternary Tissss-
A111_22 mz,z, where ﬁ=(Tio_992r0,01) and 1\%=
(Mo0¢.77S10.23). The straight line linking the a formula
[AI-Tii2]AlTi=AlTiis and the alloy composition in

the Ti—Al-Mo composition diagram (Fig. 2) passes
necessarily the S-Ti one, [Al—Ti](Mo,Ti)=
Ti;sAliMo,. Using the lever rule of phase diagram,
the numbers of the o and £ units are determined and
TCI1 is finally formulated approximately as o-{[Al—
Tii2](AlTi2) } 14+p-{[Al=Tii3.2Z10.5](Mo01.5Si0.5Ti) } 3,
consisting of 14 o-Ti units and 3 S-Ti ones. Similarly,
TC21 is formulated as a-{[Al-Ti2](AlTiz)} 13+
B-{[Al=Tii3.4Zr06](Sno.57M00.71Nbg 74Cro9s) }4,  and
Ti6246 as a-{[Al-Ti2](AlTiz)}131+8-{[Al-Tii2.74-
711 26](M02.36Sn0.64) } 4.

All these Ti alloys show dual-cluster formulas
maintaining one Al in the §-Ti units. In comparison
with popular Ti—6Al—4YV, they are characterized by
fewer B units (n=3—4) but containing more f
stabilizers, such as three f stabilizers in TC21 and
three S stabilizers in Ti6246, relative to two S
stabilizers in Ti—6Al—4V. In all, there is a paradox
that reducing the number of f units can increase
laser additive manufacturing processibility, but a
certain number of f units are needed to increase the
strength and plasticity. To address the above
limitations, it can be achieved by optimal matching
the number of £ unit and enhancing the stability of
£ unit.

2.3 Alloy design

The next step is to define a suitable
composition formula. Two modifications were
made in the 17-unit dual-cluster formula o-{[Al—
Tilz](AlTiz)}12+ﬂ-{[A1—Ti14](V2Ti)}5 of popular
Ti—6Al—4V. First, the a unit number is increased
from 12 to 15 to enhance Ilaser additive
manufacturing processibility and reduce density.
Second, the initial £ unit [Al-Tii4]V.Ti of
Ti—6Al-4V is transformed to [Al-Ti4](V3) via
more V alloying to improve the f structural stability
and the maximum £ stability corresponds to the full
occupation of the three glue sites. The presence of S
unit would also contribute to a good plasticity and
high strength comparable to that of Ti—6Al-4V. The
designed composition formula then becomes
o-{[Al-Ti2](AlTiz) } 15t 8- {[Al—Ti14](V3)}2, or about
Ti—7Al-2V (in wt.%), abbreviated as Ti72 hereafter.
It is noted that the chemical composition of Ti72
is close to the conventional laser additive
manufactured Ti alloys in Ti—Al-Mo pseudo
ternary composition diagram, as shown in Fig. 2.
Their Mo and Al equivalents and the dual-cluster
composition formulas are listed in Table 1. Ti72
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Fig. 2 Ti—~Al-Mo pseudo-ternary composition diagram
showing positions of designed composition (red open
square), extending along a straight red line linking a-
ALTis formula and B-MosAl Tis formula (Nearest-
neighbor clusters of the a- and S-Ti, twinned cuboctahedron
(a) and rhombic dodecahedron (b) are also shown)

shows a low Mo equivalent and a high Al equivalent,
which are respectively 1.3 and 7.0, with reference to
those laser of Ti—6Al1-4V (2.7 and 6.0), TC11 (3.5
and 6.8), TC21 (5.9 and 7.0), and Ti6246 (6.0 and
7.3). Its solidification temperature range of 6 °C as
estimated from JMatPro is much smaller than 56 °C
of TC11, 96 °C of TC21 and 51 °C of Ti6246, even
slightly smaller than 13 °C of Ti—6Al—4V, which
is indicative of a good additive manufacturing
formability comparable to that of Ti—6Al-4V. The
Mo equivalent is expressed as [Mo]eq=1.0Mo+
1/3.6Nb+1/4.5Ta+1/2W+1/0.63Cr+1/0.65Mn+1/1.5V+
1/0.35Fe+1/0.8Ni (in wt.%) [17]. The Al equivalent
is expressed as [Al]eq=1.0Al+1/3Sn+ 1/6Zr+100 (in
wt.%) [28].
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3 Experimental

Pure elemental powders, with sizes of
50—-150 um for Ti and 50—75 um for Al and V,
were mixed in a blending machine at ambient
temperature. Then, the mixed powders were subjected
to laser additive manufacturing under an argon
atmosphere using a 6 kW fiber laser (YLS—6000),
supplied by IPG Photonics Corporation, Germany.
The working parameters were as follows: laser
power of 1800 W, beam diameter of 3.0 mm,
hatching overlap of 30%, scanning speed of 9 mm/s,
powder feeding rate of 8 g/min, and z-axis lifted
height of 0.6mm. The substrate a
commercially Ti—6Al-4V plate, supplied by
Yongfeng Non-ferrous Metals Technology Co., Ltd.,
China. The schematic diagram of the laser additive
manufacturing experiment system and scanning
scheme are presented in Figs. 3(a, b), respectively.
Bulk ingots with dimensions of 60 mm X
15 mm x 30 mm was layer-by-layer deposited using
the above parameters, as shown in Fig. 4.

The as-deposited state, without any heat
treatment, was characterized for microstructures
and properties.

Microstructure characterization of Ti72 alloy
was investigated by optical microscopy (OM),
scanning electron microscopy (SEM) equipped with
an energy dispersive spectrometry (EDS), and
X-ray diffraction (XRD). The OM and SEM
samples were produced by grinding (using emery
papers up to 2000%), polishing (using a SiO,—H,O:
solution), and chemical etching in a 3 vol.% HF+
7 vol.% HNOs+90 vol.% H>O liquid mixture. The
grain sizes of primary f grains, a- and f-phases and

was

Table 1 Cluster formulas and compositions of designed Ti72 and conventional laser additive manufactured Ti alloys of

Ti—6Al-4V, TC11, TC21 and Ti6246

Material Cluster formula/at.% Composition/wt.% [Moli/wt.% [Al]%g/Wt.% AT%.s/°C
Ti72  a-{[ATinl(AlTi)}is+B-{[AI-Til(Va)}.  Ti—7Al-2V 13 7.0 6
Ti-6Al-4V - {[AI-Tip](AlTi)} B {[AI-Tin(VaTi)ls  Ti-6Al-4V 2.7 6.0 13
-{[Al-Ti;2](AITi + Ti—6.5A1-3.5Mo—
TC11 a-t[APTe](AlTht ' w0 3.5 6.8 56
[)’-{[Al—Tn;zZroAg] (M01A5810A5T1)}3 1.5Zr—0.3Si1
-{[Al-Ti;2](AlTi + Ti—6Al-2Zr—2Sn—
TC21 o AFTIRAlTL); s ‘ ren 5.9 7.0 96
P-{[Al-Tii3.4Zr0,)(Sno.s7M00.71Nbo.74Cro9s) }4  3Mo—1.5Cr—2Nb
-{[Al-Ti2](AlTi + Ti—6A1-2Sn—
Ti6246 e ' " 6.0 7.3 51
L-{{Al=(Ti12.74Z11.26)|(M02.36SN0.64) } 4 4Zr—6Mo

@ [Mo]eq=1.0Mo+1/3.6Nb+1/4.5Ta+1/2W+1/0.63Cr+1/0.65Mn+1/1.5V+1/0.35Fe+1/0.8Ni (wt.%) [17]; ® [Allee=1.0A1+1/3Sn+1/6Zr+100

(wt.%) [28]; °ATLs denotes the solidification range of liquid-solid region
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Fig. 3 Schematic diagram of laser additive manufacturing system (a) and laser scanning strategy (b)

1
Fig. 4 Macrographs of as-deposited bulk Ti72 samples

their volumetric fractions were calculated by using
an Image-Pro Plus 6.0 software. The surface
roughness of the samples was investigated by using
an Image J software.

Four plate-shaped specimens, machined along
the x direction (i.e., within the transverse cross-
section) with gage length of 20 mm and a cross-
sectional area of 3.5 mm X 2 mm, were subjected
to uniaxial tensile tests at room temperature and a
strain rate of 0.25 mm/min in a UTM5504—G test
machine.

4 Results

4.1 Microstructures of as-deposited state

Figure 5 shows typical growth morphology of
laser additive manufactured Ti72 parallel to the
deposit z-direction. The microstructure consists of
coarse primary S columnar grains with longitudinal
lengths of about 650 um along the deposit direction,
which is typical for Ti alloys fabricated by laser
additive manufacturing [29]. Besides, layer bands
of about 540 um appear. The formation of coarse
columnar f grains is related to the grain growth
preferentially along the direction of the fastest heat
dissipation (deposit z-direction). The formation of
layer bands is caused by the re-melting and
re-solidification of the material during the building

of the part. From XRD patterns in Fig. 6, it can be
seen that the laser additive manufactured Ti72 is
composed of « and S phases.

Figure 7 shows optical micrographs of
as-deposited Ti72 sample on the transverse
cross-section within the layer bands. As shown in
Fig. 7(a), this alloy exhibits a mixed structure
consisting of ultrafine o Widmanstitten lath regions
(marked by red-dotted Area A), fine a phase regions
(marked by blue-dotted Area B) and coarser o
phase regions (marked by orange-dotted Area C);
within the bands there exists a typical basket-weave

Fig. 5 Typical optical microstructure of as-deposited
Ti72 parallel to deposit z-direction
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Fig. 6 XRD patterns of as-deposited Ti72 alloy
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microstructure composed of lamellar a and remnant
p. As marked by the red-dotted Area A4 in
Fig. 7(b), some oriented a Widmanstdtten laths are
preferentially distributed along the primary £ grain
boundaries. Similar Widmanstitten microstructure,
consisting of oriented lamellar ¢ and remnant S
with clear grain boundaries, is also reported
in a Ti—6Al-4V [30] and in a laser additive
manufactured TC11 [8].

Figure 8 shows secondary electron images
taken within the layer bands on the transverse

cross-sections of Ti72. It can be seen from the SEM
images that two morphologies of the phases appear
in Ti72 containing gray lamellar o phases and white
strip-like remnant § phases. The volume fraction of
f phases in the fine basket-weave regions in
Fig. 8(b) is about 7%, noticeably higher than that
(5%) of coarse basket-weave regions in Fig. 8(c).
Figure 8(d) presents a magnified orange-dotted area
of Fig. 8(c). As shown in Fig. 8(d), the phases in the
laser additive manufactured Ti72 were analyzed by
EDS (Fig. 8(d)), and their components are listed in

Fig. 7 OM images within layer bands on transverse cross-sections of Ti72 (a), Widmanstétten morphologies taken from
red-dotted Area A (b), fine a phase taken from blue-dotted Area B (c), and coarse a phase taken from orange-dotted

Area C (d) in (a)
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Fig. 8 Secondary electron images taken within layer bands on transverse cross-sections of Ti72: (a) Widmanstitten
morphologies; (b) Fine a phase; (c) Coarse a phase; (d) Corresponding EDS points in (c)
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Table 2. The results show that the Al/V molar ratio
of lamellar a phase (Point 4 in Fig. 8(d)) is 5.6,
while that in white strip-like f phase (Point B in
Fig. 8(d)) is 3.9. This suggests that the o phase
contains a higher Al concentration and the f phase
contains a higher V concentration, confirming the
results reported by AZARNIYA et al [30].

Figures 9(a—c) show surface roughness of
different regions taken from SEM images of
Figs. 8(a—c), respectively. It is evident from
Fig. 8 that the surface roughness of Widmanstitten
regions (Fig. 9(a)) is about 175 nm and that in

(@ R, (175+87) nm

(b)

g g
= =
“w v
wv) e}
a I
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-
%

m
P v
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fine basket-weave regions (Fig. 9(b)) is about
178 nm, both of which are noticeably higher than
that (about 126 nm) of coarse basket-weave regions
in Fig. 9(c).

Figures 10(a—c) show a phase size distributions

Table 2 EDS data of o and f phases in Fig. 8(d)

Element content/at.% Al/V
Point :
Ti Al \Y4 molar ratio
A 85.87 12.0 2.13 5.6
B 86.38 10.86 2.76 3.9
E1 (©) R, (126+16) nm
Nal
wv
[}
N

Y
ot

Fig. 9 Surface roughness of Ti72 in different regions taken from SEM images of Fig. 8: (a) Widmanstétten morphology
area taken from Area A4 in Fig. 8(a); (b) Fine a phase area taken from Area B in Fig. 8(b); (c) Coarse a phase area taken

from Area C in Fig. 8(c)
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Fig. 10 Size distributions of fine a phase in Ti72 taken from blue-dotted Area B (a, b) and coarse a phase in Ti72 taken
from orange-dotted Area C (c, d) in Figs. 7(c) and (d), respectively



Zhi-hao ZHU, et al/Trans. Nonferrous Met. Soc. China 33(2023) 33643375 3371

in different basket-weave regions taken from Fig. 7(a).
The o phase size distribution can be expressed by

1 X
standard deviation (SD= %Z (x,-r) ), where
=l

N is the number of collected a plates, x and r are
respectively the single a plate size and an average
of o plate size [31]. As shown in Figs. 10(a) and (b),
the length and thickness distributions of a plates in
Area B exhibit a single peak, while those in Area C
exhibits bimodal structure (Figs. 10(c) and (d)).
Statistics results show that the average length and
thickness of finer a phases in Area B (Fig. 7(c)) are
respectively 8.4 and 2.3 um, in contrast to 8.9 and
2.2 um in Area C (Fig. 7(d)). Moreover, the SD
values of o length and thickness in Area B are
remarkably decreased, about 6.7 and 1.0 um,
respectively, in comparison to about 8.7 and about
2.3 um in Area C. The lower SD value indicates a
more uniform a plate distribution.

4.2 Tensile properties

Figure 11 shows the engineering tensile strain—
stress curves of Ti72 at ambient temperature. The
ultimate tensile strength (UTS), yield strength (YS)
and elongation to failure (EL) are listed in Table 3.
Ti72 exhibits a good balanced tensile property,
UTS of 971-1050 MPa, YS of 887-921 MP, and
elongation of 4.5%—6.6%, comparable to those of
the reported Ti—6Al—4V [17,32]. As can be seen
from Fig. 11, there is a relatively large difference
in elongation in the engineering tensile stress—

1100

1000 F---" e
900r 7~ I
800 f
700 F Reported
600 - Ti—6Al-V [32]
500 f
400 |
300 +
200 p
100

Engineering stress/MPa

O 1 2 3 4 5 6 7 8
Engineering strain/%
Fig. 11 Engineering tensile stress—stain curves of Ti72

(The red dotted lines respectively donate the reported
UTS of Ti—6A1-4V alloys [17,32])

stain curves. This is due to a strong internal stress
induced by the high cooling rate of the laser
processing, resulting in a larger elongation error.
On the other hand, the as-deposited Ti72 alloy
without any heat treatment possesses a mixed
microstructure containing fine basket-weave regions,
coarse basket-weave regions and ultrafine o
Widmanstitten lath regions, as shown in Figs. 7 and
8, and also gives rise to a large difference in
elongation.

Figure 12 presents comparisons of mechanical
properties between Ti72 and the reported
conventional additive manufactured Ti alloys. Five
density measurements were measured for the Ti72
and the reported Ti—6A1—4V alloy, and the average
density was presented in Fig. 12(a). It is noted from
Fig. 12(b) that the UTS and EL of Ti72 are in a
comparable level with a laser freeform fabricated
Ti—6Al-4V alloy [32], particularly its UTS is even
better than that of some laser additive manufactured
Ti—(2—5)Al-(1-6)V series [21] and a laser additive
manufactured TC21 alloy [9] and a wire arc
additive manufactured TC11 alloy [33]. YANG
et al [34] reported that the yielding-to- tensile ratio
(YS/UTS) reflects the strain capacity (i.e., damage
tolerance) of the material. A high damage tolerance
of metals is generally reflected by YS/UTS close to
0.9 [35], which is also satisfied by Ti72 and most of
as-deposited Ti alloys, as shown in Fig. 12(b). In
addition, Ti72 exhibits a high specific strength
(UTS-to-density) of 224-232 kN-m/kg, increased
by 4%—40% with respect to 166—215 kN-m/kg of
some reported laser-additive-manufactured Ti—3Al—
6V and Ti—(2-5)Al-(1-4)V series [21], and
increased by 30% relative to 207 kN-m/kg of a
reported laser additive manufactured TC21 alloy [9],
superior to 211-230 kN-m/kg of the reported laser
additive manufactured Ti—6Al-4V alloys [17,32],
even comparable to 234 kN-m/kg of a laser additive
manufactured TCI1 [8] and 235 kN-m/kg of a
direct laser fabricated Ti—6Al-4V [17], as shown in
Fig. 12(c). Though the specific strength of Ti72 is
lower with reference to those of the laser additive
manufactured Ti—5A1-6V [21], Ti—7Al-5V [21],
TC17 [36] series and a laser powder bed fusional
Ti6246 [10], its density is quite low, about
4.33 g/cm?®, decreased by 5.3% in sharp to the TC17
and Ti6246, over 4.56 g/cm’.
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Table 3 Tensile properties of as-deposited Ti72 (Data from literature are also provided for comparison)

Material Fabrication Tensile property YS/UTS Specific stret_llgth/ Source
method  yTS/MPa  YS/MPa  EL/% (kN-m-kg™")
Ti72-1 LAM 1005 921 4.5 0.92 232 This work
Ti72-2 LAM 980 887 4.7 0.91 226 This work
Ti72-3 LAM 973 890 59 0.92 225 This work
Ti72-4 LAM 971 891 6.6 0.92 224 This work
Ti—6Al-4V LAM 1005+20 942+21  10.1+0.6 0.94 230 [17]
Ti—6Al-4V LAM 965+15 890430 8+2 0.92 221 [32]
Ti—6Al-4V LF 911+10 892+10 6.4+0.6 0.98 208 [32]
Ti—6Al-4V DLD 1025+10 950+2 12+1 0.91 235 [17]
Ti—2Al-1V LAM 740 665 18 0.90 166 [21]
Ti—4Al-2V LAM 840 770 15 0.92 190 [21]
Ti—3A1-2V LAM 840 780 18 0.93 189 [21]
Ti—4Al-3V LAM 930 845 14 0.91 210 [21]
Ti—5A1-3V LAM 940 885 9 0.94 214 [21]
Ti—4Al-4V LAM 900 830 13.5 0.92 203 [21]
Ti-3Al-6V LAM 965 885 13.5 0.92 215 [21]
Ti—5A1-6V LAM 1100 1030 7.3 0.94 249 [21]
Ti—7Al-5V LAM 1150 1070 8.5 0.93 264 [21]
TC11 LAM 1033+13 975+6 6.8+0.2 0.94 234 [8]
TC11 LMD 1018 932 14.7 0.92 231 [37]
TC11 WAAM 935+20 844+16 17.242 0.90 212 [33]
TC21 LAM 933 845 16 0.91 207 [9]
TC17 LAM 120148 116417  5.2+0.7 0.96 262 [36]
TC17 LAM 1138+13 109311 11.4+£1.0 0.96 248 [36]
Ti6246 LPBF 1183+7 483t6  26.9+0.8 0.41 259 [10]
Ti6246 LPBF 1209+11 582+6 25.5£0.9 0.48 265 [10]

LAM, LF, DLD, LMD, WAAM and LPBF denote laser additive manufacturing, laser freeform fabrication, direct laser fabrication, laser
melting deposition, wire arc additive manufacturing and laser powder bed fusion, respectively

5 Conclusions

(1) A near-a Ti72 (Ti—7Al-2V, in wt.%) alloy
is designed following the composition formula
of o-{[Al-Ti2](AlTiz)} 15+f-{[Al-Ti14](V3)}2, which
features enhanced o unit proportion of 15/17 (with
respect to 12/17 of Ti—6Al-4V) and stabilized f-Ti
via V alloying. The Ti72 shows a good laser
additive manufacturing processibility, comparable
to that of Ti—6Al—4V.

(2) The microstructures of as-deposited Ti72
alloy are composed of fine basket-weave regions,

coarse basket-weave regions and ultrafine o
Widmanstétten lath regions. The surface roughness
of coarse basket-weave regions is much smaller than
those of fine basket-weave regions and ultrafine o
Widmanstitten lath regions. The a phase distribution
in fine basket-weave regions is more uniform than
that in the coarse basket-weave regions.

(3) At the as-deposited state, its ultimate
tensile strength of 971-1050 MPa, yield strength of
887-921 MPa, and eclongation of 4.5%—6.6%, fell
are close to those of the reference Ti—6Al-4V,
particularly its specific strength of 224—
232 kN-m/kg is better than those of Ti—6Al-4V.
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Fig. 12 Comparisons of mechanical properties between Ti72 and reported conventional additive manufactured Ti alloys:

(a) Density; (b) Tensile properties; (c) Specific strength
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