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Abstract: The separation of molybdenite and chalcopyrite is a major challenge because of their similar floatability. It is
essential to discover a depressant for selectively inhibiting chalcopyrite in a profitable and sustainable way. A novel
chalcopyrite depressant, thiolactic acid (TLA), was proposed. The flotation behaviors were studied through
micro-flotation and artificial mixed minerals flotation. Micro-flotation experiments indicated that thiolactic acid could
significantly suppress chalcopyrite recovery from 81% to 9.7%, along with molybdenite recovery always more than
71%. Artificial mixed minerals flotation experiments showed a distinct separation behavior between chalcopyrite and
molybdenite with an optimal Gaudin’s selectivity index of 12.9. The reactivity mechanism of TLA on molybdenite and
chalcopyrite surfaces was determined by FT-IR, XPS, and AFM with a possible adsorption model presented. The results
revealed that —SH and —COOH groups of TLA preferentially occupied the active copper site on chalcopyrite surface,
inhibiting subsequent sodium n-butyl xanthate chemisorption.
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1 Introduction

Molybdenum plays a crucial role in alloy
manufacturing, the electronics industry, stainless steel
production, chemical catalysts, fertilizer manufacturing,
and medical equipment [1—4]. Molybdenite (MoS)
is a significant mineral of molybdenum resources,
accounting for much of the metal’s economic viability,
which is closely associated with chalcopyrite in the
sulfide deposits [5—9]. Normally, molybdenite and
chalcopyrite are recovered by bulk flotation and
separated from the chalcopyrite—molybdenite bulk
concentrate [10—12]. However, the flotation
separation of these two minerals is still a major
challenge for production, owing to the similar
floatability of molybdenite and chalcopyrite and the
lack of effective flotation reagents [13].

Depressants play a decisive role in the selective
flotation separation reagents for molybdenite and
chalcopyrite. In recent decades, many inorganic and
organic chalcopyrite depressants have generally
been proposed in Table 1. These depressants have
been used to amplify the floatability difference
and separate molybdenite from chalcopyrite—
molybdenite bulk concentrate [14—15]. However,
they have not been widely used in industry because
of the comprehensive consideration of toxicity, cost,
and selectivity [16,17]. Thus, it is worthwhile to
discover viable substitute depressants for selectively
inhibiting chalcopyrite economically and ecologically.

Thiolactic acid (TLA), also known as
2-mercaptopropionic acid, is a colourless, slightly
yellowish liquid that is broadly used in cosmetics,
food, and home care. As shown in Fig. 1, thiolactic
acid (TLA) contains COOH and SH functional

Corresponding author: Yang CAO, Tel: +86-15084740137, E-mail: caoyang@csu.edu.cn

DOI: 10.1016/S1003-6326(23)66324-1

1003-6326/© 2023 The Nonferrous Metals Society of China. Published by Elsevier Ltd & Science Press



3158 Wei-xin HUANG, et al/Trans. Nonferrous Met. Soc. China 33(2023) 3157-3167

Table 1 Summary of chalcopyrite depressant

Category Depressant Application stage Dosage
Sodium sulfide [18] Industry 9-13 kg/t

Inorganics Hydrogen peroxide [19] Industry 800 g/t
Nokes reagents [19] Industry 1-2 kg/t

Organic small L-cysteine [20] Laboratory (Bench-scale actual rock flotation) 25 mg/L
molecules AHS [13] Laboratory (Bench-scale actual rock flotation) 150 mg/L
Organic O-carboxymethyl chitosan [21] Laboratory (Single pure mineral flotation) 50 mg/L
polymer Xanthan gum [22] Laboratory (Artificial mixed single-minerals flotation) 60 mg/L

0]

OH
SH

Fig. 1 Molecular structure of thiolactic acid

groups. Previous studies have shown that the —SH
functional group could react with metal ions, such
as copper, to form Cu—S bond [7,23]. Therefore,
TLA has a great potential to be applied in the
flotation industry as a chalcopyrite depressant.
To date, the feasibility of TLA on the selective
separation of chalcopyrite from molybdenite
through flotation are still not understood. Moreover,
there is a lack of systematic research on the
flotation behavior and mechanism from this
flotation system, which is particularly important
when one considers the upscaling of the process
from laboratory tests to industrial applications.

In this study, the effects of TLA on the
flotation behavior of both chalcopyrite and
molybdenite were investigated via both single-
mineral and artificial mixed minerals flotation with
sodium n-butyl xanthate (as xanthate is a toxic
reagent with potential health and environmental
risks [24,25], the use of sodium n-butyl xanthate
has always been kept at a low concentration). A
concept of Gaudin selectivity index is introduced to
confirm the effect of TLA on molybdenite and
chalcopyrite separation. The inhibiting mechanism
of TLA was studied by Fourier transform infrared
spectroscopy (FT-IR), X-ray photoelectron spectro-
scopy (XPS), and Atomic force microscope (AFM)
in detail. A possible adsorption model of TLA on
the molybdenite and chalcopyrite surfaces was then
proposed. The research results indicated that
thiolactic acid was a flexible, economical, and
green chalcopyrite depressant in the separation of
chalcopyrite—molybdenite. This work offers a better

understanding of the depression mechanism of TLA
for chalcopyrite, which provides important practical
guidance in chalcopyrite—molybdenite separation.

2 Experimental

2.1 Samples and reagents

Chalcopyrite and molybdenite were obtained
from Sichuan Province, China. They were
characterized using X-ray diffraction (XRD) to
ensure that the samples had single phases (Fig. 2).
The pure samples were collected by handpicking,
pulverized in a ceramic ball mill, crushed, and
ground to particle sizes of 37—74 pm before being
used for microflotation.

Sodium n-butyl xanthate (SBX), thiolactic acid
(TLA), and terpineol were used as the collector,
depressant, and frother, respectively. Sodium
hydroxide (NaOH) and hydrochloric acid (HCI)
were adopted to regulate the pulp pH level. All
reagents were in analytical grade, and deionized
(DI) water was used throughout the test.

2.2 Flotation experiments

Microflotation was carried out in an XFG
flotation machine with spindle speed of 1992 r/min.
The flotation processes were as follows: (1) 2 g of
pure mineral samples were added to the flotation
cell with 40 mL of DI water; (2) NaOH or HCI was
used to adjust the pH value; (3) Flotation reagents
were added in order and stirred for 3 min, with
3 min interval after each addition; (4) The float and
sink fractions were collected, filtered, dried, and
weighed to calculate the flotation recovery. Each
microflotation test was replicated three times,
and the average was calculated to ensure the
reproducibility of the results.

Gaudin’s selectivity index (SI, [Is), as the
convenient measure of two-way separation, denotes
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the recovery and rejection between two components.

It can better present the selectivity separation of a
valuable mineral from gangue [26]. By this
definition, SI can represent the quality of separation
between molybdenite and chalcopyrite in the
presence of TLA. The selectivity index was
calculated using the following equation:

I R, -J,
S\ (100-R,, )(100-J, )
where Rm is the molybdenite recovery in the

flotation concentrate; and J, is the chalcopyrite
recovery in the tailing fraction.
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Fig. 2 XRD patterns of chalcopyrite (a) and molybdenite
(b) samples

2.3 FT-IR analysis

Comparative investigations of the infrared
spectra of chalcopyrite and molybdenite before
and after reagent treatment were carried out. The
diffuse reflectance mode (DRIFTS) was used to
characterize the mineral samples by RAffinity-1S
(Shimadzu Instruments, Japan) within the
wavenumber range of 5004000 cm™!. For this
purpose, 2.0g of each mineral sample was
pulverized to obtain a particle size of 5 pm in the

agate mortar and then mixed with 100 mL of
collector solution for 4 min. The solid fraction was
filtered, washed with DI water (pH (7+0.2)), dried
at 90 °C for 1 h, and then analyzed.

2.4 XPS measurements

XPS analyses were performed with an Escalab
250 Xi energy spectrometer using a focused
monochromatized Al K, radiation (Leica, Holland).
The acceleration voltage and the applied current
were 40 kV and 25 mA, respectively. The binding
energy scale was calibrated from the carbon
contamination (always present at the material
surface) using the C 1s peak at 284.8 eV. The test
sample was prepared in the same way as the
microflotation test.

2.5 AFM observation

The characterization of mineral surface
topography before and after reagent treatment was
detected using a multimode V atomic force
microscopy (Bruker, USA) with a tapping mode
in a nitrogen atmosphere at 25 °C. Samples were
polished using a semi-automatic grinding and
polishing machine (Buehler, USA), then sonicated
with DI water and dried with N,. After this, the final
product was transferred to the AFM measurement.

3 Results and discussion

3.1 Microflotation experiments

The recovery of chalcopyrite and molybdenite
as a function of TLA concentration in the presence
of SBX at pH (7+0.2) is shown in Fig. 3. Note that
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Fig. 3 Recoveries of chalcopyrite and molybdenum as
function of TLA dosage in the presence of 4x10™*mol/L
SBX
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TLA acts as an effective depressant for chalcopyrite
in flotation. It was clear from Fig.3 that
chalcopyrite recovery steeply dropped from 81% to
9.7% as the concentration of TLA increased to
8x103mol/L. Above this range, the chalcopyrite
recovery did not change significantly. Therefore,
8x10°mol/L TLA was sufficient to depress
chalcopyrite flotation. In contrast, the floatability of
molybdenite was barely affected by TLA and
remained above 71% over the entire TLA
concentration range.

The effect of TLA on the separation of
molybdenite from chalcopyrite was investigated
using a microflotation experiment of artificial
mixed molybdenite—chalcopyrite minerals.
Figure 4(ai, by) show that changes in TLA
concentration did not affect molybdenite floatability,
with chalcopyrite always being depressed. When
5x107° mol/L TLA was added to the mixtures (the
mass ratios of chalcopyrite to molybdenite were
1:3 and 3:1), the chalcopyrite recovery was
significantly decreased to 5.15% and 10.63% from
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89.22% and 99.1%, respectively. In comparison,
molybdenite recovery consistently fluctuated in the
high-value range in the presence and absence of
TLA. The Gaudin selectivity index was then
established to describe the separation selectivity of
TLA, as illustrated in Figs. 4(az, b2). It can be seen
that, the introduction of TLA greatly improved
the SI of mixture minerals. As a result, adding
TLA enhanced molybdenite separation efficiency
substantially, suggesting a good selectivity of TLA
for recovering molybdenite from chalcopyrite.

3.2 FT-IR analysis

Figure 5 shows the FT-IR spectra of SBX and
TLA at pH (7£0.2). As shown, for SBX, the bands
between 2958 and 2870 cm™!' were related to the
C—H stretching of CHs and CH» groups [27]. The
peaks between 1468 and 1116 cm ! represented the
stretching vibration of C—O—C [28]. In addition,
the peak at 1059 cm™! was attributed to the SBX
characteristic group C=S [29,30]. As for TLA,
these peaks at 2763 and 2574 cm™! corresponded to

14 (a,) n(Cu):n(Mo)=1:3

Selectivity index

0 1 2 3 4 5
TLA concentration/(10 mol-L™")

7[(b,) n(Cu):n(Mo)=1:3

Selectivity index

0 1 2 3 4 5
TLA concentration/(10 mol-L™)

Fig. 4 Recovery (ai, b1) and selectivity index (az, by) of mixed minerals with mass ratios of chalcopyrite to molybdenite
of 1:3 (a1, a2) and 3:1 (by, by) as function of TLA concentration
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Fig. 5 FI-TR spectra of SBX (a) and TLA (b)

the S—H group [7], while other peaks at 1744
and 1064 cm™! belonged to the C=0 and C—S
groups [31], respectively.

Figure 6 describes IR spectra of chalcopyrite
before and after treatment with SBX and TLA. As
depicted in Fig. 6(b), with treatment of SBX,
the stretching vibration of C—O—C emerged at
1269, 1192, and 1193 cm™ on the chalcopyrite
surface [32]. In addition, the peak of the C=S
stretching vibration was shifted from 1059 to
1024 cm™!. These changes confirmed that SBX was
chemically adsorbed on the chalcopyrite through
the C=S and C—O—C functional groups.

In Fig. 6(c), FTIR spectra of TLA-treated
chalcopyrite showed possible adsorption of TLA
on the chalcopyrite surface at approximately 1685
and 3547-3815cm™!, both corresponding to the
carboxylate group stretching. Furthermore, the
bonds attributed to S—H groups (2763 and
2574 cm™!) of TLA disappeared. These results
suggested that TLA may be adsorbed on the surface
of chalcopyrite in two ways. The one is electrostatic
adsorption between TLA and the surface product of
chalcopyrite oxidation. The other is chemisorption

between TLA and chalcopyrite through the S—H
functional group.

CuFeS,
CuFeS,+SBX
CuFeS,+TLA
= CuFeS,+SBX+TLA

3000 2500 2000 1500 1000
Wavenumber/cm™!

4000 3500

Fig. 6 FTIR spectra of chalcopyrite before and after
reagent treatment

Figure 6(d) indicates the IR spectra of
chalcopyrite interacted with TLA and SBX
sequentially. The characteristic peaks of SBX
disappeared and were replaced by the carboxylate
group stretching and C—S function group of TLA.
TLA showed a strong competitive adsorption
effect towards SBX on the chalcopyrite surface.
It preferentially occupied the active sites on the
chalcopyrite surface, resulting in the inability of
SBX to chemisorb on the chalcopyrite surface.

As for molybdenite (Fig. 7), when interacted
with SBX, the stretching vibration peaks of C—H
and C—O—C bonds appeared at 2958-2870 cm!
and 1465—1118 cm !, respectively. The characteristic
of C=S was shifted from 1059 to 1031 cm™'. This
confirmed the strong adhesion of SBX on the
molybdenite surface.

| = MoS,+SBX
I'1 = MoS,+TLA c—0—C 27 |3
11 =—— MoS,+SBX+TLA a 2

3500 3000 2500 2000 1500 1000 500
Wavenumber/cm™
Fig. 7 FTIR spectra of molybdenite before and after
reagent treatment
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As shown in Figs. 7(c,d), there were no
obvious changes in the IR spectra of TLA-treated
molybdenite. The peaks of C—0O—C and C=S
belonging to SBX still existed in the IR spectra of
TLA-SBX-treated molybdenite. These phenomena
indicated that TLA was weakly adsorbed onto
molybdenite, which barely affected the subsequent
SBX adhesion on the molybdenite surface.
Accordingly, chalcopyrite flotation was selectively
depressed.

3.3 XPS analysis

The XPS analysis was used to investigate the
chemical state variation on the mineral surfaces.
Here, XPS analysis was used to further investigate
the selective depression mechanism of TLA
in the flotation separation of chalcopyrite and
molybdenite.

Figure 8 demonstrates the high-resolution
spectra of C Is on chalcopyrite before and after
reagent treatment. In natural chalcopyrite, the C 1s
consisted of three peaks at 284.8, 286.3, and
288.8 ¢V, which could be assigned to C—C,
C—0—C, and C=0 [33-35], respectively. As
seen in Fig. 8(b), a comparison of binding energy of
C Is obtained from chalcopyrite before and after
SBX treatment indicated the higher peak intensity
of C—O—C on SBX-treated chalcopyrite surface,

(b)

(d)

292 2‘I)O 2é8 2é6 2é4 282
Binding energy/eV

Fig. 8 C 1s XPS spectra of chalcopyrite (a), SBX-treated

chalcopyrite (b), TLA-treated chalcopyrite (c), and

TLA—-SBX-treated chalcopyrite (d)

which was attributed to interaction between SBX
and chalcopyrite via the C—O—C function groups.
TLA also exhibited strong chemical adsorption on
the chalcopyrite surface, as evidenced by the
decrease in C=0 peak intensity from 288.8 to
288.4 ¢V in Fig. 8(¢c). Figure 8(d) showed that the
binding energy shifts of the C=0 peak still existed,
and C—O—¢C binding energy shifts disappeared on
the chalcopyrite surface. This observation might be
ascribed to the hypothesis of the adsorption
mechanism that TLA preferentially occupied the
active site on the chalcopyrite surface, suppressing
SBX chemisorption on the chalcopyrite surface.

Figure 9 shows Cu 2p core peaks of natural,
SBX-treated, TLA-treated, and TLA—SBX-treated
chalcopyrite. As previously reported [36,37], the
original chalcopyrite Cu2p spectrum could be
fitted with two peaks at 932.07 and 9519 eV,
corresponding to CuFeS;and Cu(OH),, respectively.
After treatment with SBX (Fig. 9(b)) and TLA
(Fig. 9(¢)), the peaks of CuFeS, were shifted by
0.37eV to a much lower binding energy of
931.7 eV, owing to the electron from certain groups
of SBX and TLA. This phenomenon also appeared
on the TLA—SBX-treated chalcopyrite surface. It is
likely that chemical adsorption occurred on the
chalcopyrite surface between the Cu atom of
chalcopyrite and reagents.

@) 932. 07
951.9:
A /j A
(b) 9317 |
951.61
© . 931.7
951.65 1
() ’
9317 4
951.65 !

960 955 950 945 940 5
Binding energy/eV

Fig. 9 Cu2p XPS spectra of chalcopyrite (a), SBX-
treated chalcopyrite (b), TLA-treated chalcopyrite (c),
and TLA—-SBX-treated chalcopyrite (d)
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In the S 2p spectra of chalcopyrite (Fig. 10),
the peaks at 161.1, 162.3, 163.21, and 164.3 eV
could be assigned to S, S;, S27/S°, and energy
loss [38,39], respectively. When SBX was added,
two new peaks at 161.85 and 164.8 eV contributed
to C—S [40] and C=S [41] functional groups,
suggesting the chemisorption between SBX and
chalcopyrite. After adding TLA, the new peak at
164.08 eV corresponded to the —SH species from
TLA. After TLA modified the chalcopyrite surface
in the presence of SBX, the peak located at
164.25 eV corresponded to the —SH functional
group of TLA, and the C=S and C—S peaks
belonging to SBX disappeared. These results
demonstrated that TLA preferentially adsorbed on
the chalcopyrite surface via the —SH functional
group, thus preventing the adsorption of SBX.

(@)

(d)

164 163 162 161 160 159
Binding energy/eV

Fig. 10 S2p XPS spectra of chalcopyrite (a), SBX-
treated chalcopyrite (b), TLA-treated chalcopyrite (c),
and TLA—SBX-treated chalcopyrite (d)

167 166 165

Figure 11 shows the precise scan of the C Is
core peaks of natural, SBX-treated, TLA-treated,
and SBX-treated molybdenite in the presence of
TLA. As seen in Fig. 11(a), the peak fitting of the
C Is spectrum of natural molybdenite gave three
peaks at 288.85, 286.05, and 284.8 eV, attributing to
the C=0, C—0—C, and C—C [42], respectively.
It could be observed that the binding energy of
C—0—C (286.33 eV) in SBX-treated molybdenite

was increased by 0.28¢V, suggesting the
chemisorption between SBX and molybdenite.
No significant binding energy shift of C=0 and
C—O—C occurred on TLA-treated molybdenite
surface, demonstrating that TLA had negligible
influence on the chemical state of the C atom. The
binding energy of C—O—C in the molybdenite
surface prepared by SBX and TLA was shifted
from 286.05 to 286.45 ¢V, an increase of 0.4 eV
compared to natural molybdenite due to the still
existing chemisorption of SBX on the chalcopyrite
surface.

(2)

i — T
290 2é9 2§I§8 2é7 2é6 2é5 2;34 2§|33 282
Binding energy/eV
Fig. 11 C1s XPS spectra of molybdenite (a), SBX-
treated molybdenite (b), TLA-treated molybdenite (c),

and TLA—SBX-treated molybdenite (d)

In the Mo 3d spectra (Fig. 12), the peaks
located at 233.17 and 230.02eV could be
assigned to Mo 3ds, and Mo 3ds, of natural
molybdenite [41], respectively. After the addition
of SBX, the peaks of Mo 3ds, and Mo 3dsp
were shifted by 0.53 and 0.48 eV, respectively,
suggesting that the Mo atom might participate in
the interaction between SBX and molybdenite.
As shown in the Mo 3d spectra of TLA-treated
molybdenite, no significant binding energy shift
(<0.1 eV) occurred. In contrast, the binding energy
of Mo 3ds» and Mo 3ds/; peaks were shifted by 0.55
and 0.53 eV in TLA—SBX-treated molybdenite.
These results demonstrated no significant inhibition
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of TLA on the molybdenite in the flotation with
and without the presence of SBX.

(a) | \ 230.02
233.17 !
1
(®) | 229,54
232.64 | !
I
1
I
© , A 230.10
233.05 | !
)
1
(d) |
S \ 229.49
I
A

238 236 234 232 230 228 226 224

Binding energy/eV
Fig. 12 Mo 3d XPS spectra of molybdenite (a), SBX-
treated molybdenite (b), TLA-treated molybdenite (c),
and TLA—SBX-treated molybdenite (d)

3.4 AFM measurement

All of the AFM testing scan range was set at
I um % 1 um. Figure 13 illustrates the 3D and 2D
images of the studied minerals. The left images are
3D images, which can be used to visually observe
the morphology features of the mineral surface. The
right image represents a height image with different
colors, indicating different mineral surface heights.

Figure 13(a) indicates homogeneous distribution
of the chalcopyrite surface with a root mean square
(RMS) roughness (Rgy) of 1.83 nm. The AFM image
of the SBX-treated chalcopyrite is shown in
Fig. 13(b). It can be seen that, the Ry of the
chalcopyrite surface was shifted to 4.70 from
1.83 nm, and SBX exhibited uniform patches on the
chalcopyrite surface. As shown in Fig. 13(c), the Ry
of TLA-treated chalcopyrite increased from 1.83
to 2.05nm, and the linear stratification on the
chalcopyrite surface vanished. Figure 13(d) shows
that the R; of TLA—-SBX-treated chalcopyrite
decreased from 4.70 to 1.80 nm, and the adsorbed
batches of SBX disappeared. Thus, TLA strongly
inhibited SBX adsorption on the chalcopyrite
surface, consistent with the FTIR and XPS

analyses.

Figure 14 illustrates the surface morphology of
molybdenite before and after reagent treatment. The
flat molybdenite surface was confirmed by its
well-cleaved state in Fig. 14(a). SBX exhibited
uniform point-like adsorption on the SBX-treated
molybdenite surface, similar to the SBX-treated
chalcopyrite. In contrast, no TLA accumulation
was visible on the AFM image of TLA-treated
molybdenite. When molybdenite reacted with TLA
and SBX, the Ry of 5.32 nm molybdenite surface
illustrated that SBX could still chemisorb on the
molybdenite surface in the presence of TLA.

Chalcopyrite 2D 24 nm

08 10

(d)
Fig. 13 AFM images of chalcopyrite before and after

0.6
02 04 </
=20 nm

reagent treatment

3.5 Adsorption mechanism and model analysis

Based on the above analyses, a possible
adsorption model of TLA on the chalcopyrite
surface is indicated in Fig. 15. Through the —SH
and —COOH groups, TLA preferentially occupied
the active sites on the chalcopyrite surface,
suppressing the subsequent SBX adsorption on
the chalcopyrite surface. On the other hand, TLA
did not cling to the surface of molybdenite, which
made it easier to separate molybdenite and
chalcopyrite.
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Fig. 14 AFM images of molybdenite before and after
treatment with reagents
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Fig. 15 Proposed adsorption model of TLA on mineral
surface

4 Conclusions

(1) TLA was a non-toxic and highly efficient
organic chalcopyrite depressant. It could be
considered a practical alternative depressant to
separate molybdenite from chalcopyrite in flotation.

(2) In the flotation system consisting of TLA
and SBX, chalcopyrite recovery decreased from
81% to 9.7%, while the recovery of molybdenite
remained around 71%. Meanwhile, a good Gaudin
selectivity index of 12.9 and 6.5 was obtained in the
artificial mixed minerals flotation of different mass
ratios of these two minerals (n(Cu):n(Mo)=1:3 and
n(Cu):n(Mo)=3:1).

(3) FT-IR, XPS, and AFM analysis revealed
that the chemisorption of TLA was strong on
chalcopyrite surface through —SH and —COOH
groups but weak on molybdenite surface, which
can hinder the further chemisorption of SBX on
chalcopyrite surface.
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