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Abstract: Tantalum (Ta) is a technology-critical metal, which has important applications in many strategic emerging
industries, such as electronic, and aerospace, and there are no substitute materials for Ta so far. The supply crisis of Ta
has kept growing globally over the past two decades. This work presents a comprehensive review of tantalum resources
and its production. There is less than 300 kt Ta in the earth’s crust, and the production of primary Ta is an energy- and
materials-demanding process. Ta can also be recovered from tin smelting slag, lithium ores, end-of-life tantalum
products, etc., and they can account for 37% of the total Ta production. The HF leaching—solvent extraction—sodium
potassium fluorotantalate reduction process is the most widely used technology in producing Ta. However, long process
and environmental issues have limited the sustainable development of this method. Clean production technologies and

efficient recycling of Ta should receive continuous attention.
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1 Introduction

Tantalum (Ta) is a high melting point metal,
and has fancy properties, such as good conductivity
of heat and electricity, excellent machinability, and
high stability in acidic environment, which makes
it an important material in many fields, such as
electronics, chemicals, aerospace, and medicine [1].
The production and recycling of Ta have significant
influences on the development of these strategic
emerging industries. However, the resource of
tantalum is scarce (less than 300 kt Ta in the earth’s
crust) [2], and this could easily lead to Ta supply
crisis. Ta has been labelled as critical raw materials
by the European Union since 2020, and it is noted
that the supply crisis of Ta has kept increasing since
2017. In the era of economic globalization, the

production and supply of tantalum affect the
development of related industries. Therefore, it is
essential to know the supply chain of tantalum.
There are three critical parts of the Ta supply
chain, which are Ta resources, metallurgical
production and manufacturing, and downstream
application. It is urgent to diagnose these critical
parts to know how to improve its supply resilience.
Limited numbers of works can be found in
literatures. However, the researches were mainly
focused on the primary resources of tantalum, but
the secondary and associated resources are seldom
mentioned [3—6]. Referring to the tantalum-making
process, some work has been done to study the
reduction process of tantalum oxides [7—9]. But the
decomposition process of tantalum concentrates and
the separation of tantalum and niobium are still not
well known. Some studies [10—12] have analysed
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the supply and demand of Ta, but they didn’t
consider political, economic and cultural factors.

In order to show the life-circle of Ta, this work
has made a comprehensive review of the catalogue
of resources, applications, supplies and production
of the tantalum. Existing theories are analysed and
integrated to fill in the gaps in existing research,
and suggestions have been put forward to enhance
the stability of the tantalum supply chain.

2 Applications and supply of Ta

2.1 Ta applications

Tantalum was firstly separated as a discrete
element in 1802 [13], and then started to be used as
filaments, rectifiers and detector materials [14,15].
Due to the unique properties, the application
of Ta keeps developing. Nowadays, tantalum has
been widely used in electronics, chemical industry,
aerospace, optics, medical treatment, nuclear
industry, etc., and it has been categorized as a
technology-critical metal [1,16]. Figure 1 shows the
life circle of Ta, including the resources, production,
value-adding manufacturing and end-users in each
material flow [3,17—-23].

The electronics industry, accounting for around
50% of consumption, has consumed the largest part
of tantalum, in which met-grade tantalum powder,
capacitor-grade tantalum powder and Ta mill
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production are used in manufacturing sputtering
targets and tantalum capacitors. Ta is an important
alloying element in preparing high-temperature
alloys, which are key materials for aerospace
engines [24]. Tantalum compounds, which are
mainly in the forms of tantalum oxide, sodium
tantalate, lithium tantalate, etc., are widely used
in optics, semiconductors [25] and catalysis
industries [26].

Figure 2 shows the compound annual growth
rate of tantalum worldwide between 2016 and 2021,
by the end product [3,27]. The overall growth rate
of tantalum consumption is 4%—5%, and more Ta is
needed in preparing sputtering targets, superalloys
and Ta compounds. The Ta consumption in the
capacitor filed grows by 1.5%, a value below average,
and saturation of the market and miniaturisation of
capacitors are the main reasons. However, the
construction of 5G base stations all over the world
and the fast growth of electric vehicles are expected
to be new points of growth [28,29] in the future.
Due to the low substitutability of tantalum, the
consumption in the high-temperature alloy field
increases by 7%, and this is mainly a result of the
rapid development of the aerospace field [23]. Ta
consumption for sputtering targets and tantalum
chemicals will also grow at an above-average rate.
The use of tantalum in carbides is expected to
decline slowly in following years.
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Fig. 1 Material flows of Ta resources, production, value-added manufacturing and applications between 2015 and 2019
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2.2 Supply

The supply of tantalum in the world had
several disruptions and subsequent price swings in
the past 20 years, and this implies resilience and
stability problems in the supply chain. Figure 3
shows the global production of tantalum metal from
1999 to 2021 [3,30].

Because of the benign economic climate
between 1999 and 2005, global tantalum production
gradually increased to 1916t. However, Ta
production has decreased for several years in a row
since 2006, and it was mainly a result of the global
financial crisis at that time [3]. And then, Ta
production started to grow in 2013, and maintained
a high production value between 2017 and 2019.
This could be explained by the improvement of the
global economy, especially the rapid development
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of global electronics, aerospace and other industries.
New Ta projects in Congo, Rwanda, etc., also
improve the global tantalum supply [31]. However,
the yield decreased slightly in 2019 and 2020, and
it is caused by the COVID-19 pandemic. When Ta
production resumed in 2021, its supply reached a
ten-year peak value of 2494 t [24,32]. Overall, the
outlook for tantalum continues to remain robust.
Figure 4 shows the tantalum price between 1976
and 2020 [21,33,34].

Tantalum is usually traded with long-term
contracts, or parceled on a confidential basis among
miners, traders and producers [35,36]. A prisoner’s
dilemma 1is easily caused by some traders and
buyers [34], and this may result in short-term
market volatility. The price of tantalum will rise in
the future when the world gradually recovers from
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Fig. 2 Portion of Ta products between 2016 and 2021, and forecast before 2026
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adding manufacturing works of Ta are carried out
in the USA, Japan, Korea and Germany [10,37].
Commercial data about Ta concentrate importing
and exporting between 1990 and 2020 have been
reviewed and presented in Fig. 5 [38].

There is a great increase in the tantalum—
niobium—vanadium  concentrate  trading and
unwrought tantalum exporting from the 1990s to
2000s, and this is mainly contributed by the fast
development of the Ta-making industry and other
Ta-related immerging industries. About 50% of
the tantalum—niobium—vanadium concentrates are
processed in China nowadays, but China is only the
third largest country in exporting primary Ta. The
United States used to be the biggest country in both
concentrate importing and Ta exporting. Because of
the financial crisis in 2009, the tantalum—niobium—
vanadium concentrate imported to the USA
decreased to a low level, and started to recover
gradually in 2012. But the amount of concentrate
imported in recent years was much smaller than that
in 1990—2008, and this can be explained by the
industry structure adjustment. Malaysia and Estonia
also import tantalum concentrate, but their portion
is small. About 60% of the global tantalum
exporting is contributed by the United States
and Japan, which revealed that Ta refiners are still
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Fig. 5 Values of imported tantalum—niobium—vanadium
concentrate and exported unwrought tantalum by
countries between 1990 and 2020

important in these developed countries. Thailand
and Kazakhstan export more than 20% of global
unwrought Ta, and this is determined by the Ta
resources in these countries.
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It is noted that shipments of different tantalum
materials show different trends over time. Figure 6
shows the annual shipments of the six different
tantalum materials in TIC members [39,40]. The
supplies of all tantalum materials except met-grade
tantalum powder and tantalum ingots decreased
in 2019, which was affected by COVID-19. The
demand for tantalum carbide declined due to the
substitution of tungsten and other hard alloys.
Shipments of capacitor-grade tantalum powder
fluctuated slightly, but kept at high values. The
supply of Ta milling products decreased. The
demand for met-grade tantalum powders and
tantalum compounds is increasing because of the
development of sputtering targets, semiconductors
and optics. In general, the change in the shipment
of different Ta materials has revealed that high-
temperature alloys and tantalum compounds are
nibbling away at the Ta in carbides and capacitors
in the market.

3 Ta resources

Ta could be produced from Ta concentrates,
associated resources (tin slag, lithium by-products,
etc.), and end-of-life Ta products. Public data have
been reviewed and analysed, and the portions of Ta
produced from these above resources are 64%, 20%,
and 16%, respectively [4,41].

3.1 Ta minerals
Tantalum is a rare metal, and its abundance in
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the earth crust is only 0.9x107® [42,43]. There are
approximately 65 large tantalum and niobium
deposits worldwide, and according to their
geological characteristics, they can be classified
into five types [5], namely pegmatitic, granitic,
alkaline granitic, crystal-rich and carbonatite.
Tantalum is mainly found in lithium—caesium—
tantalum-rich  granite deposits and lithium—
caesium—tantalum-rich pegmatite deposits [44].
There are over 150 minerals [45], which contain
tantalum, and only several tantalum minerals could
be used in Ta extraction, such as tantalite, columbite,
microlite, wodginite, struverite, and cassiterite.
About 50% of present tantalum has been produced
from tantalite [46,47].

Geologists have speculated that tantalum
resources are abundant, but no definitive data on
reserves are available. The mineral report published
in 2011 by the British Geological Survey (BGS)
mentioned that the tantalum reserves (in Ta,Os) are
over 150000 t, but the tantalum resources (in Ta,Os)
are over 300000 t [48], which is consistent with the
tantalum resources estimated by TIC [2]. According
to the United States Geology Survey (USGS 2022),
the global tantalum reserves (in TayOs) are
estimated to be 189000t, and the reserves in
Australia, Brazil, and the USA are 94000, 40000
and 55000 t, respectively [32,49]. Figure 7 depicts
the tantalum resources and reserves in different
countries.

Figure 8 [50] shows the annual supply of
tantalum concentrates in different countries between
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Fig. 6 Annual shipments of different tantalum products
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1999-2020. Australia and Brazil were major
suppliers in the world before 2008, and they used
to have 90% of the global tantalum concentrate
market. However, Australia closed tantalum mines
in 2008 with the background of the global financial
crisis, and the supply of Ta concentrate from
Australia was zero between 2010 and 2013. When
Ta price increased rapidly after 2013, some mines
in Australia resumed, but still cannot regain their
old share [5]. Tantalum supplies from Africa’s
“Great Lakes” region, such as the Congo and
Rwanda, are gradually assuming global dominance,
and both countries consistently accounted for more
than 50% of the supply since 2014.

The supply of Ta concentrates also varies with
time, and the surge from 1999 to 2000 could be
interpreted by the rapid increase in demand for
tantalum capacitors. The “internet bubble burst”

from 2002 to 2005, which led to a decrease in
demand for tantalum and a surplus of stocks, made
mines worldwide reduce production [51]. Global
tantalum concentrates declined in 2005 and 2006
due to the shrinking of the Greenbush mine in
Australia. Then, the production of tantalum
concentrates increased significantly after 2006, and
this could be explained by the rapid development of
artisanal mining in African countries, such as the
Congo, and Rwanda. However, the financial crisis
in 2008 resulted in the breakdown of many
tantalum mines. From 2009 to 2013, the production
of tantalum concentrates decreased to a low value,
and it increased significantly in 2014 with the
global economic rejuvenating. The supply of
tantalum concentrates remained stable from 2014
to 2016. Along with the fast development of the
electronics industry, Ta concentrates supply reached
a high value between 2017 and 2019. However,
some countries closed mines with the background
of COVID-19 pandemic in 2019, and this resulted
in 8% decrease in 2020 [5,32].

Tantalum has been listed in the EU’s fourth
Critical Raw Materials List, and the EU has raised
the level of Ta supply risk [52]. In addition to the
geological availability, most of the tantalum mines
in the “Great Lakes” region of Africa are “Conflict
minerals” [10,53,54], and they are mined by
artisanal approach [17,55,56], which is lack of
accurate data.

The long-term continuity of tantalum supply is
difficult to predict in a dynamic global market
environment. The transfer of tantalum production
from industrialised, politically stable countries to
developing, politically volatile regions has attracted
international concerns about the risk to the tantalum
supply chain [19]. The “conflict minerals” of
Central Africa have also attracted widespread
international attention. With the gradual increase in
public awareness of conflict minerals and the
successive introduction of relevant bills [5,54], the
share of tantalum supply from the “Great Lakes”
region of Africa will decline significantly. On the
other hand, the development of larger tantalum
mines is actively considered in the international
tantalum market in industrialised countries,
such as Canada, Australia and Brazil. Therefore, a
significant increase in tantalum concentrate
production is expected to follow [18].
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3.2 Tin slag

Tantalum has also been detected as an
associated mineral in cassiterite ores, and these
Ta sources mainly enter the slag phase in the
pyrometallurgical processing of tin. The tantalum in
the tin slag can be enriched with acid leaching,
alkaline leaching or chlorination roasting, and the
Ta content in the products can be up to 50 wt.%,
which can be regarded as a synthesised Ta
concentrate [57—63]. Tin slag was once an
important raw material for primary tantalum
production in some countries, such as Thailand,
Malaysia, and Brazil. Tantalum extracted from tin
slag was used to account for more than 50% of
total primary tantalum production in the 1970s
and 1980s. However, the portion decreased in 1985
since the collapse of the tin market [19,37].
Figure 9 shows the share of primary Ta produced
from tin slag between 1991 and 2019 [39,64].

Global economy
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0.5 FI Tin market collapses A drop in the supply
of tantalum
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by financial crisis
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Fig. 9 Share of primary Ta produced from tin slag
between 1991 and 2019 (Source: TIC)

As shown in Fig. 9, the proportion of primary
tantalum produced from tin slag generally
decreased in the past 30 years. But in some specific
periods, it increased as substitute raw materials
when the supply of tantalum concentrate was not
sufficient. Tin is mainly used in containers,
construction materials, transport materials and
solder [17,65], but cheaper alternatives are available
for these applications [66]. As a result, demand has
grown slowly over the past 30 years and it is
expected to grow by 2% in the following 5—-10
years [65], which indicated that Ta extraction from
tin slag will not increase significantly in the future.
Another reason is the environmental requirements

and economic challenges in extracting tantalum
from tin slag are also negative [58].

3.3 Lithium ore

Tantalum has historically been an important
by-product of lithium-making processes [67]. The
tantalum can be recovered from polymetallic
lithium ores during beneficiation [68]. Currently,
primary lithium comes mainly from brines and
pegmatite minerals in roughly equal proportions
[69]. In the long term, the explosion of lithium
supply capacity is most likely to occur in large
brine deposits [70], but the mining of brine deposits
is still challenging. Only 2 of the top 10 brine
deposits are operating nowadays. Lithium ores
mining is still attracting attention due to the short
investment cycle [71]. Table1 gives estimated
global statistics for significant lithium mineral
resources and by-product tantalum resources [69].

Due to the rapid development of smartphones,
tablets, electric vehicles, etc., the manufacturing of
lithium-ion batteries has been growing rapidly in
the past 20 years. At the same time, concerns of the
international community on energy saving and
emission reduction provide new opportunities for
lithium-ion batteries in the following decades, and
it is expected that the lithium-ion battery market
may grow 10 times larger by 2032 [69]. Lithium
ores, an important resource for Li extraction, are
supposed to increase dramatically, and there are
seven major lithium pyroxene mines put into
operation in Australia by the end of 2019 [71].
The rapid growth of lithium ores mining will also
boost the supply of its by-product, tantalum [55].
According to Roskill’s report, Australia accounted
for 5% of global tantalum concentrate production
in 2018, and it increased rapidly to 17% in 2019,
which is a result of the mining of lithium pyroxene.
Tantalum resources recovered from minerals such
as lithium pyroxene and tin slag in Australia are
expected to supply 20% of the world’s tantalum
demand by 2026 [1]. Based on future global
requirement trends for lithium resources, tantalum
as a by-product of lithium-making processes is
likely to become an important source of primary
tantalum production in the next 10 years.

3.4 Secondary resource
Tantalum is easy to lose in the environment,
other material streams and landfills, and the global
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Table 1 Large lithium—tantalum deposits and operators in world
Company Deposit Country LCE! grade/wt.% Ta grade*wt.% Status
Xinjiang Non-Ferrous Koktokay China - - Operating
Talison Greenbushes Australia 5.93 0.03 Operating
Galaxy Mt Cattlin Australia 2.68 0.02 Operating
Process Minerals Int. Mt Marion Australia 3.38 0.01 Operating
Yichun Tantalum Yichun China - 0.02 Operating
Bikita Minerals Bikita Zimbabwe - - Operating
Mineral Resources Wodgina Australia 3.18 0.02 Operating
Jilin Jien Val d’Or Canada 2.95 - Recommissioning
AMG Mibra Brazil 2.60 0.03 Constructing
Pilbara Pilgangoora Australia 3.08 0.01 Constructing
Tawana Bald Hill Australia 291 0.02 Constructing
Altura Pilgangoora Australia 2.46 - Constructing
Nemaska Whabouchi Canada 3.62 - Financing
Keliber Various Finland 2.96 0.01 Planning
European Metals Cinovec Czech Republic 1.04 - Planning
Critical Elements Rose Canada 2.34 0.02 Planning
Sayona Authier Canada 2.64 - Planning
Pock Tech Georgia Lake Canada 2.55 - Planning
Kidman/SQM Earl Grey Australia 3.55 - Planning
Global Geoscience Rhyolite Ridge USA 0.87 - Planning
Galaxy Resources James Bay Canada 3.09 - Planning
Avalon Separation Rapids Canada 3.24 0.01 Planning
European Lithium Wolfsburg Austria 2.89 - Planning
Prospect Resources Arcadia Zimbabwe 2.74 0.01 Planning
Birimian Boougouni (Goulamina) Mali 3.50 - Planning
Premier African Mins Zulu Zimbabwe 2.62 0.01 Planning
Perilya Moblan Canada 3.48 - Planning
Bacanora Zinnwald Germany 1.94 - Planning
Novo Litio Sepeda(Romano) Portugal 2.47 <0.01 Planning
Ardiden North Aubry Canada 3.57 - Planning
Lithium Australia Sadisdorf Germany 1.11 - Planning
Lepidico Alvarroes Portugal 2.72 - Planning
American Pacific Fort Cady USA 1.99 - Planning
Plymouth Minerals San Jose Spain 1.45 - Scoping
Savanah Resources Mina de Barroso Portugal 2.47 - Exploring
Frontier PAK Canada 3.86 0.01 Feasibility

1-Lithium carbonate equivalent (contained Li X 5.323); 2—Ta2Os basis
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recovery of tantalum is likely to be only 10% of
total tantalum consumption [20]. The secondary
resources of Ta can be divided into two groups:
the pre-consumer scrap, which was generated
during the manufacture of Ta-containing electronic
components, and the consumer scrap (post-use
scrap of related tantalum products) [31].

It is reported that around 8% of Ta loss occurs
in the manufacturing of capacitors, and the loss is
even higher when preparing sputtered targets [72].
GILLE and MEIER [73] listed the current material
streams of tantalum (primary and secondary), in
which the proportion of pre-consumer scraps of
total tantalum demand is 30%. Another report
shows that the recycling of pre-consumer scrap of
tantalum processing accounts for approximately
20%—25% [74]. However, these data can only
represent the situation in developed countries,
which have large numbers of Ta refineries.
Tantalum consumer scraps are mainly recovered
from cemented carbide and superalloy scrap
nowadays [75], and their are
approximately 60% and 90%, respectively [19].
70% of these recycled superalloy scraps are
remelted to regain the same alloys, 20% are
processed into low-grade materials (down-
cycling), and the rest (10%) are delivered to
nickel refineries [76]. Table 2 summarizes available
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recovery information on tantalum in USA, Japan,
etc.

Table 2 Available tantalum recovery information

Country/ Recovery  Recovery
Year ) Ref.
Region amount/t rate/%
1998 USA 210 21 [76]
2021 USA - 30 [31]
2012  Worldwide 250-700 - [77]
2014 Worldwide 990 35 [37]
2012 USA, Japan - 25 [78—80]

'y
o

According to Table?2, the tantalum scrap
processing started early in developed countries,
such as USA and Japan, and in developing countries
is still small [37]. Figure 10 shows the import of
tantalum scrap in different countries [81].

As shown in Fig. 10, tantalum recycling in the
world showed an increasing trend from 2003 to
2012, and this is influenced by the global awareness
of sustainability and the development of tantalum
recycling technologies. The importing of Ta scrap
decreased between 2012 and 2019, which was
mainly influenced by the regulations in different
countries, and the trading of Ta containing materials
was under supervision.
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4 Primary tantalum production

The extraction of tantalum from ores and other
resources has been studied in many research [47,82].
The process consists of several sequential
steps, involving tantalum and niobium leaching,
solution purification and intermediate compound
reduction [83]. The tantalum production processes
practised in major plants in the world are listed in
Table 3 [84]. And Fig. 11 shows various processes
for tantalum production [57,85,86].

Table 3 Technologies for tantalum and niobium
production in world

Country Company Technology  Solvent
USA Cabot Hydrometallurgy MIBK
Germany H. C. Starck Hydrometallurgy MIBK
Russia  Solikamsk Chlorination
process
. Ningxia orient
China tantalum industry Hydrometallurgy MIBK
Brazil CBNN Direct reduction ~ —
Uzbekistan Erba Metallurgical Hydrometallurgy MIBK
Plant
Brazil AMG Brasil Direct reduction ~ —
Mitsui Minning &
Janpan Smelting Hydrometallurgy MIBK

4.1 Decomposition of tantalum concentrate

Owing to the refractory nature of tantalum
minerals, Ta concentrates are usually treated with
strong alkali/acid, or at high temperatures. The
approaches that are applied in the industry are
caustic fusion, alkaline solution leaching, acid
leaching, chlorination roasting and carbothermal
reducing [87]. The chemical reactions involved in
these decomposition processes are shown in
Supporting Materials. The key parameters of these
methods are listed in Table 4.

The caustic fusion was the first used method to
decompose tantalum—niobium concentrates [88],
but it has been phased out due to economic and
environmental disadvantages [89]. Compared to
the caustic fusion method, the alkaline solution
leaching greatly reduces the reagent consumption.
But the investment in industrialization is too
high [91]. Acid leaching is currently the dominant
decomposition process, and hydrofluoric acid (HF)

has been proven to be an effective leaching
agent [94,95]. The main reactions involved during
the HF decomposition are as follows [94—101]:

(Fe,Mn)(Ta,Nb),Os+18HF=
2H»(Ta,Nb)F7+H(Fe,Mn)F4+6H-0,
20%<Cur<40% M

(Fe,Mn)(Ta,Nb),O¢+14HF=2H(Ta,Nb)Fs+
H>(Fe,Mn)F4+6H>0,40%<Cur 2)

TiO,+6HF=H,TiF¢+2H,0O (3)
Si0,+6HF=H,SiFs+2H, 4)

However, HF is only suitable for the high-
grade tantalum—niobium concentrates. The low-
grade tantalum—niobium concentrates are usually
leached with sulphuric acid, but the process and
conditions are different to control [96,97]. Another
concern is the pollution caused by fluorine
containing wastewater, gases and hazardous wastes
in the process [98,99]. About 6%—7% HF is lost
during the decomposition process due to its
high volatility and the decomposed residual acid
cannot be fully recovered and utilized [100,101].
POLYAKOV and POLYAKOVA [104] began to
study the regeneration of HF in the tantalum
decomposition process to reduce the production
costs in 1994. Unfortunately, no further industrial
applications and cost-effectiveness of the relevant
studies have been reported. However, 4t of solid
waste, of which 500 kg is radioactive waste, is
generated when producing 1t Ta,Os [101,105].
Due to the harmful environmental effects of HEF,
several alternative processes have been tried to
leach Ta. Table 5 gives the research development
in the decomposition of tantalum concentrates,
and the chemical reactions involved in the new
decomposing processes are shown in Supporting
Materials.

It is common in the Chinese industry to use a
mixed acid of HF and H>SO; in the decomposition
process of Ta concentrate. The improved method
is more effective than the single usage of HF, and
the addition of sulphuric acid can reduce the
volatilisation loss of HF and the total acid
consumption [95]. Furthermore, pyrometallurgical
treatment of tantalum concentrates has also
attracted concerns. Chlorination roasting is an
efficient way, which can treat complex tantalum—
niobium concentrates and tin slags [92,113]. In
the early 1960s, a chlorination roasting process
was designed by CIBA in Switzerland, and it was
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Table 4 Key parameters of tantalum concentrate decomposition
Reagent consumption/ Temperature/ . Decomposition
Method Reagent [ke kg (concentrate) '] oC Time rate/% Other Ref.
. . . Melt alkali at
Caustic fusion NaOH, KOH 3 800 20—30 min 80 400-500 °C [88—90]
Alkaline
solution NaOH, KOH 0.5 150—-200 2-3h - High pressure [91-93]
. (35%—45%)
leaching
HF HF
Acid leaching (60%-70%) 4 90—-100 4h 66—81 volatilization [94—101]
o rate 6%—8%
Chlorination ) - 400800 - - - [102]
roasting
Carbothf:rmal C _ _ _ _ _ [103]
reducing
Table S Progress in research on decomposition of tantalum—niobium concentrates
Method ReagenF Tempoeramre/ T1rpe/ Decomposition Ref.
consumption C min rate/%
KOH sub-molten salt decomposition 7:1 300 60 96 [106]
KOH roasting—leaching 2:1 400 60 94 [107]
Microwave-assisted decomposition 1:1 (NaHCO3) 400-700 - - [108]
High-pressure HF leaching 0.049:1 (HF) 220 80 80 [109]
NH4HF, decomposition 30:1 250 180 98.52-98.66  [110,111]
High-pressure CCls decomposition 1g:6 mL 250-525 120 97 [102,112]

successfully implemented in the industry [114].
However, it is seldom used in industry nowadays,
because of serious equipment corrosion,
environmental pollution, poor operating conditions
and high energy consumption. The reduction of
columbite concentrate by coal makes it possible to
obtain an iron alloy that contains tin and lead, in
addition to a niobium—tantalum “pre-reduction”
slag (NTPRS). The slag is subjected to alum-
thermic reduction to obtain a NbTaFe alloy (NTSA),
a commercial product of the Brazilian company
Paranapanema [103].

4.2 Separation of tantalum and niobium

Nb and Ta are related elements in minerals,
and Ta(V) and Nb(V) have an almost identical ionic
radius (64 pm for CN=6) due to the lanthanide
contraction [114—116]. This particular situation
determines that the separation of these two metals
by chemical processes is really difficult. The
separation methods of tantalum and niobium
include fractional crystallisation, solvent extraction
and ion exchange. Fractional crystallisation [117],

which is based on the difference in the solubility
between potassium fluotantalum (K,TaF;) and
potassium niobium oxyfluoride (K.NbOFs), was the
first method used for the large-scale preparation of
pure tantalum compounds [118]. However, the
tantalum pentoxide produced contains high content
of niobium (0.1—-0.3 wt.%), iron (0.2 wt.%), silicon
(0.3 wt.%) and titanium (0.01 wt.%) [119].
Therefore, this process was replaced by solvent
extraction after 1957. The ion exchange method
allows for the efficient separation of tantalum and
niobium. However, the chemical behavior of tantalum
and niobium is characterized by an extreme
tendency to hydrolysis, which limits the development
of the ion exchange [120]. Solvent extraction is
widely used in industry with the advantages of
being flexible, effective and simple [109]. There
are five main extractants, which are used in
industry, and they are methyl isobutyl ketone
(MIBK), tributyl phosphate (TBP), cyclohexanone
(CHN), 2-octanols (2-OCL) and ethanamide
(A101), and the chemical reactions for extraction of
tantalum—niobium with various extractants are
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shown in Supporting Materials [120,121-123].
Figure 12 shows the properties and separation of
the extractants, with MIBK being widely used due
to better extraction results [57,124,125]. The main
reactions involved during the solvent extraction of
Ta and Nb with MIBK are as follows [125]:

Saturation capacity
(Ta,05/(g-L™")

T —

Fig. 12 Properties of different

and performances

extractants

H,TaF7+nH,0+2CsH1,0=(H-nH>0-C¢H1,0),TaF;
(5

HTaF6+nHzO+C6H120=(H- nH>,O- C6H120)TaF6 (6)

HszF7+nH20+2C6H120=(H -nH,O- C6H120)2NbF7
(7

HNbF6+nH20+C6H120=(H-nH20-C6H120)NbF6 (8)

HoNbOFs+rnH,0+2CsH1,0=

(H-nH;0" CsH120);NbOFs )

The probable reactions involved during the
stripping of Nb and Ta from MIBK are as follows:

(H -nH,O- C6H120)2NbF7+stO4=

HoNbF7+(H-nH,0-CeH120)2S04 (10)
(H-nH>0-CeH12,0),TaF7+2NH4F=
(NH4)2TaF7+(H'nH20'C6H120)2F2 (1 1)

The main reactions involved during the
processing of stripped Ta solution are as follows:

H,TaF+12NH4sOH=

(NH4)2T3206 -H,O+10NH4F+5H,0 ( 1 2)
H,TaF;+2KCI=K,TaF+2HCI (13)
K>TaF+12NH4OH=

(NH4)2Ta,06- HoO+4KF+10NH4F+5H,O  (14)

All solvent extraction processes are carried out
in the presence of F~, which is confronted with a

great environmental challenge [120]. There is an
urgent need for tantalum metallurgy to develop
processes, which can run under low or fluorine-
free conditions with increasingly stringent
environmental requirements. The MIBK pulp
extraction method [126,127] reduces the
concentration of hydrofluoric acid used from 6
to 1.6 mol/L. However, running the process with
low hydrofluoric acid concentration may cause
emulsification of the extractant. YANG et al [128]
used ultrasound to eliminate emulsification and
achieved a recovery of 96.21% of tantalum.
NIKOLAEYV et al [129] reduced the concentration
of hydrofluoric acid in solutions containing
tantalum and niobium by diluting, evaporating
and precipitating insoluble metal fluorides. The
development of new extractants and systems is
another viable point to solve the problem of
fluorine contamination. The phosphonic acid
functionalised ionic liquids (TSILs) provide
efficient extraction of tantalum—niobium with HF
concentrations of 1 mol/L [130]. Tertiaryamines,
such as Alamine 336, are also promising extractants
for the extraction of tantalum and niobium from
oxalic acid solutions at low HF concentrations or in
the absence of HF [131]. The separation of niobium
and tantalum was successfully achieved by using
Alamine 336 as the extraction solvent, and the
recoveries of tantalum—niobium were 99.3% and
88.2%, respectively [132]. DUTTA et al [133]
developed a solvent extraction process based on
Alamine 336 (TOA). The process eliminated the
adverse effects of fluoride during the extraction
process, which prepared niobium and tantalum
with purity of 98.88% and 98.08%, respectively.
Although amine extractants have great potential,
their application on an industrial scale has not yet
been reported. The extraction system still requires
further study to unravel the extraction mechanism,
identify the optimum conditions and to find
solutions to the problem of third-phase generation.

4.3 Preparation of tantalum

Though tantalum metal can be produced by
several means, only two processes, namely sodium
reduction of K,TaF; and salt electrolysis of K,TaF;
in the presence of oxide, have been successful
on an industrial scale [134]. Nearly 90% of world
tantalum is obtained by sodium reduction of
K,TaF; [88]. Nowadays, with wide application of
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tantalum, the reduction process presents diversified
development oriented by product demand.
4.3.1 Thermal reduction method

Reduction processes for tantalum compounds
by metal reductants, such as magnesium, calcium,
and aluminium, have been well studied. In addition,
some non-metal reductants, such as carbon, silicon
and hydrogen, also receive attention. Table 6 gives
some parameters for the various reducing processes,
and the chemical reactions involved in the reduction
process are shown in Supporting Materials.

The sodium-thermal reduction of potassium
tantalum fluoride, K,TaF7, where metallic sodium is
used as the reductant, is one of the earliest technologies,
but still in use, full-scale technologies [135]. The
reduction reaction of K,TaF;with sodium produces
3 MJ/kg of mixed reactants approximately, which
is sufficient to sustain the reaction [118]. All
commercial tantalum powders have been prepared
by this method due to low energy consumption
from 1953 [145]. However, the potassium fluoro-
tantalate is costly and corrosive, and the reduction
process tends to produce large amounts of toxic
gases [146]. The oxygen content of obtained
tantalum powder is high, which subsequently
requires deoxygenating by magnesium reduction or
multiple electron beam melting [147].

The specific surface area of tantalum powder
prepared by magnesium reduction of tantalum
oxide can reach 15 m%/g [136], making it suitable
for the application in tantalum capacitors [148].

3145

Therefore, magnesium reduction of tantalum oxide
is considered to be the most promising method for
preparing cap-grade tantalum powder. Magnesium
vapor reduction and self-propagation reduction
are two different magnesium reduction processes.
Table 7 provides salient features of these two
processes.

Some difficulties, such as contaminations and
non-uniformity of the reaction, have hindered the
industrialization of the Mg reduction process. The
magnesium vapour reduction process prevents
impurities in the reducing agent from contaminating
the tantalum powder. However, tantalum powder
was also found to be susceptible to impurities in the
reaction vessel. OKABE et al [151] developed a
new process, in which feedstock preforms were
used to avoid contamination of the reaction vessel.
YUAN and OKABE [152] further reduced Ni
contamination in the reaction vessel by using an
Mg—Ag alloy as a reducing agent based on the
raw material preform process. Figure 13 shows a
schematic diagram of the two improved processes.

The diffusion process of magnesium vapour in
the tantalum oxide phase is difficult to control and
the homogeneity of the product needs to be
improved [149]. To avoid these problems, the
self-propagating reduction of Ta,Os and Mg has
been investigated. The self-propagation reduction is
an energy-efficient method, where the reaction
temperature and reaction rate can be controlled by
adjusting the amount of magnesium. However, the

Table 6 Some parameters of tantalum compound reducing process

Reductant Compound Temperature/°C Particle size Oxygen content/107° Ref.
Na K;TaF; 800 2-3 um 1500-300 [134,135]
Mg TayOs 800—1459 50-300 nm 13000 [136,137]
Ca Ta,Os ~3000 Lump 5660—6100 [119,135,138]
Al TayOs ~3000 Lump - [139,140]
C TayOs 19002000 30—40 pm 300—-500 [141]
Si TayOs 1150-1600 - - [142]
H> TaCls 1000—1400 50— 100 nm 6000—6900 [143,144]
Table 7 Comparison of magnesium vapor reduction and self-propagation reaction processes
Reduction process Advantage Disadvantage Ref.

Magnesium Low reductant contamination, Long time, high vapor consumption, high [148,149]
vapor reduction and controllable morphology energy consumption, and uneven reaction ’
Self-spreading  Rapid reaction, low energy consumption, Susceptible contamination and [150]
reaction and uniform reaction formation of magnesium tantalate
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Stainless steel reaction vessel

Feed preform

Reductant vapor

Reductant
(R=Mg)

Fig. 13 Experimental set-up [153,154]

process tends to produce by-product of MgsTa,0,
and this affects the quality of the tantalum powder.
Some studies have shown that the addition of
NaCl to the reactants can inhibit the formation
of magnesium tantalate by-products [153,154].
NERSISYAN et al [153] proposed an MSA-CS
(molten salt assisted high-temperature synthesis)
method, in which the mixture of Ta,Os and Mg was
diluted with NaCl, and then reacted at high
temperature in argon gas. Spherical ultrafine
tantalum powder with good dispersion was
obtained, but its low specific surface of it is not
suitable for capacitors. WON et al [155] used Ta,Os
(5+m)Mg—kNaCl to synthesis Ta powders with
homogeneous coral shapes by SHS method, which
has promising applications in the tantalum
capacitors. NERSISYAN et al [156] prepared
tantalum powders with individual particle sizes
between 50 and 700 nm in a Ta;Os+ kMg system
with controlling temperature via liquid magnesium.
Tantalum powder can be used for preparation
of ultra-high-capacity tantalum anodes [157,158].
Tantalum powders containing large amounts
of magnesium tantalate by-products have also
been investigated for secondary reduction
treatment or pre-prepared precursors of magnesium
tantalate followed by reduction. ORLOV and
KRYZHANOYV [159] re-treated tantalum powder,
which contained 30% magnesium tantalate, with
magnesium, and obtained a tantalum powder with
an increased specific surface. Another study showed
that nano-porous tantalum powders with specific
surface areas well above 30 m%*/g were prepared
using materials with high Mg, Ta and O contents as
precursors [137]. And the tantalum powder with a
specific surface area of 65 m*/g (calculated particle
size of 6 nm) was synthesised by the reduction of

Stainless steel cover

Feed preporm (Ta,O5+flux)

Stainless stell mesh

|I||I|i|I|I|
[ L b e bt e I
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Mg vapor

Liquid Mg-Ag alloy
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MgTa,O6 and Mg4Ta,O9 with magnesium vapor [7].
In addition, the mechanisms involved in the
reduction of tantalum oxide by magnesium have
been investigated. MULLER et al [8] have found
that tantalum oxide powders and magnesium
form complex interpenetrating morphologies after
vapor reduction. Nanoscale flake and rod-like
morphologies were formed early in the reaction,
and this regular structure decomposed and
coarsened in further annealing. By leaching the
magnesium oxide, porous tantalum with a large
specific surface area is finally obtained. HWANG
et al [160] conducted a kinetic study of reduction
behavior of tantalum oxide using different initial
particle sizes (0.3 and 1.2 pm). The results showed
that the reduction activation energies of the 0.3 and
1.2 um powders were 5.234 and 8.695 kJ/mol,
respectively.

The tantalum powder obtained by calcium
thermal reduction with a small specific surface and
high oxygen content (0.566—0.610 wt.%) [118],
which makes it unsuitable for use in capacitors.
However, the tantalum powder can be cold-rolled
into various products such as rods after electron
beam melting. A recent study has found that
calcium reduction of TaOs in molten CaCl,
allows preparing fine tantalum powders in the form
of cauliflowers. The tantalum powders have high
potential for improving capacitor performance, as
they have a greater capacitance compared to
conventional powders with the same surface
area [135]. Studies on the mechanism show the
formation of cauliflower-like tantalum powder,
which is more likely to form in the area with a high
concentration of CaO [138].

Tantalum in bulk form can be prepared by
thermal reduction with aluminium, which often has
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a high content of impurities and requires further
purification [139,140]. In addition, the temperature
of the process is above 3000 °C, which greatly
increases energy consumption and operational
difficulties. Several researchers have developed a
range of processes to reduce the temperature of
thermal reduction of aluminium. NAIR et al [140]
reduced the reduction temperature to 800 °C with
an applied electric field, but the electrolyte
contained fluoride, increasing the economic cost
and environmental pressure. Another method is to
add excess aluminium and iron oxide to form an
alloy to generate additional heat for replenishment,
which decreased the reduction temperature by
350—500 °C. Calcium oxide is added to lower the
melting temperature and promote slag and metal
separation [140]. MUNTER et al [161] studied the
simultaneous reduction of tantalum pentoxide and
iron oxide in a series of melting processes. The
alloy obtained was a dense ingot with good phase
separation and a reduction reaction starting
temperature of 960—970 °C.

Additionally, it is possible to reduce tantalum
oxide by non-metallic elements such as carbon and
silicon. Carbon reduction of tantalum oxide has low
costs and production cycles. The tantalum powder
obtained by this method has a high content of C and
N impurities, which makes it difficult to meet the
requirements of industrial tantalum powder [141].
Ta—Si—O alloy can be obtained after silicon-thermal
reduction of tantalum oxide, which subsequently
needs to be purified by high-temperature thermal
vacuum treatment [142]. Some researchers have
also focused on the hydrogen reduction of TaCls.
The plasma hydrogen reduction tantalum chloride
method proposed by the Japanese company Cabot
can produce uniformly dispersed tantalum powders
of 50—100 nm, but high equipment requirements
and energy consumption keep it in the laboratory
stage [135]. Some related studies include hydrogen
reduction of gaseous tantalum—niobium chloride
processes [143], conversion and crystallinity of
reduced tantalum powders [144].

4.3.2 Electrolysis of molten salts

As graphite crucible and cathodes are used in
the fused salt electrowinning of tantalum, the
contamination of carbon in the cathode deposits of
tantalum powder to the extent of 1%—1.5% is very
common [57]. Therefore, traditional molten salt
electrolysis is gradually being phased out in the

preparation of capacitor-grade tantalum powder.
However, molten salt electrolysis is still an
important method for the preparation of tantalum
coatings [162].

The FFC method [163], where metal oxides
can be reduced to metal in an electrolytic cell
containing molten CaCl, with the metal oxide as the
cathode and graphite as the anode, has been shown
to reduce tantalum oxide to tantalum metal [164].
The advantages of the FFC method are fluorine-free
environment, and no need for expensive sodium
metal and energy savings. WU et al [164] have
shown that Ta,Os can be reduced to fine Ta powder
particles in molten CaCl, by FFC. The oxygen
content can be reduced to about 0.12 wt.%, but a
significant problem is that the carbon content of the
product is still too high. BARNETT et al [165]
decreased the content of C in Ta powder by using
SnO, as the anode via FFC-Cambridge. AHMADI
and SUZUKI [166] performed the electrochemical
reduction of TaS; in molten CaCl,-xCaS (x=0.1, 0.5
mol%) at 900 °C, which greatly reduced the C and
O content of the tantalum powder. In the case of
mechanism, SONG et al [167] showed that Ta,Os
underwent three intermediate stages at 1123 K
in reduction: Tay05-0.5CaO, Ta,05-2Ca0O and
Tay05-4Ca0. Another significant disadvantage of
the FFC method is the low process efficiency. The
reason is that the voltage applied during electrolysis
must be lower than the decomposition voltage of
the molten salt, which leads to slow reaction rates
and side reactions. To improve current efficiency,
researchers have proposed the electrochemical
reduction of Ta;Os in molten Mg—NaCl-KCl or
LiCl-Li>O molten salt systems [168,169].

4.3.3 Other methods

Some new methods of Ta,Os reduction have
emerged in recent years, such as the solid oxide—
oxygen ion conductive film method (SOM) [170]
and the electron dielectric method (EMR) [9,171].
The principle of the SOM method is the direct
dissociation of tantalum oxide minerals by applying
an electrical potential. Oxygen ions are oxidised at
the anode through a membrane (SOM) and reduced
at the cathode to give Ta metal. This process allows
the efficient production of tantalum metal without
the need for expensive decomposition of raw
materials and generation of harmful by-products.
Compared to the tantalum powder produced by
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metallic thermal reduction, the EMR method allows
for a finer tantalum powder to be produced without
the need for raw material reductant contact, largely
avoiding the contamination of the reduction product
by the reductant. YOON et al [171] also used a
combined MR—-EMR process to increase the
recovery of tantalum powder from 65% to 74%.

5 Tantalum production from secondary
materials

The high demand for Ta and the depletion of
Ta resources have redirected the industrial
community to think about the recovery of tantalum
from secondary materials [172]. The Covid-19
crisis has revealed the instability of the global
supply chain. It is urgent to develop new secondary
sources. Indeed, there are no further potential
findings for the recycling of pre-consumer scrap,
other than to improve efficiency. The circular
economy can be a long-term strategy to mitigate the
risks of tantalum supply [173]. Tantalum, with a
current end-of-life recycling rate of less than 1%,
has been intermittently discussed [70].

Industrial-scale tantalum recycling is usually
based on input material with high purity such as
production scrap, cemented carbide and superalloy
scrap. The unoxidized tantalum scrap can be
remelted in an electron beam furnace or
dehydrogenated in a vacuum furnace to produce
tantalum powder, while oxidised tantalum material
is roasted and then treated with nitric or

Table 8 Recycling methods for used tantalum capacitors

hydrochloric acid [174]. Interestingly, unexplored
supply route is the recovery of Ta from capacitors,
particularly from end-of-life products. The Global
E-waste Monitor reported that 44.7x10°t of e-waste
were generated in 2016, with an annual growth rate
of 5%—10%. The grade of valuable metals in this
e-waste is 10—100 times higher than that in the ore
in question, and the energy consumed to extract it
can be saved by 20%—95% [175]. Currently, 20%
of e-waste is recycled, but tantalum accounts for
1% of the total [130,176]. More than 60% of
tantalum is used in the electronics industry [35].
Unfortunately, current technology does not realize
the effective recovery of tantalum from used scrap
in electronic equipment [177]. The reason is a
conflict of interest in the recovery of tantalum and
other valuable metals in WEEE. In the traditional
process of recovering copper from WPCB, tantalum
mainly enters into the slag phase with other
impurities, making it difficult to recover [178,179].
At the same time, the continued miniaturization of
electronic equipment also increases the difficulty of
tantalum recycling [73,75]. Based on the minor Ta
content in WEEE (1.72x102wt.%), it can be
concluded that a recovery of this refractory metal is
uneconomical due to the dissipative distribution in
the wastes [179].

Recycling of tantalum from WEEE is not
practiced yet, but some investigations on recycling
methods for tantalum capacitors have been studied.
Table 8 lists the various methods used to recover
tantalum from used capacitors.

Step Aim Method Property Ref.
Identification Enrichment Artificial treatment High accuracy and high cost [180]
. . of tantalum
and liberation capacitor Automatic disassembly High efficiency, and low accuracy [181]
Mechanical processing Simple operation and low separation rate [118820]’
. Pyrolysis Hl'gh separation effect, 'and [183]
Separation high energy consumption
Physical of resin and Hi ;
! . S gh energy consumption and
processing tantalum High temperature oxidation complex operation [184]
anode Hieh . d hish
Ionic liquids treatment 1gh energy consumptlon and g [185]
equipment requirements
Supercritical water processing Harsh experimental conditions [186]
) Purification of Hydrometallurgy Long process, and high product purity [187]
Metallurgical .
; tantalum and its . .
processing compounds Pyrometallurgy Short process, and high energy consumption [188]
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In order to improve the recovery of tantalum
from WEEE, it is necessary to divert tantalum-
containing equipment for dedicated recovery of
tantalum early in the recycling process [189]. There
are a large number of tantalum capacitors separated
from printed circuit boards for recycling [189].
The automatic identification and dismantling of
tantalum capacitors have been studied and have
proven to be feasible [190]. In addition, the
manufacturers should take recycling into account
when designing their products [191]. Mechanical
treatment and pyrolysis are common methods to
separate the tantalum anode from the epoxy resin
shell. Ordinary mechanical treatment is often
inefficient. Cryogenic mechanical treatment is
promising in terms of improving crushing
efficiency while avoiding the liberation of exhaust
gas [192]. Pyrolysis is another commonly-used
method, including pyrolysis under molten alkali
and alkali vapour, which reduces the pyrolysis
temperature and fixes the halogens [193]. In the
case of the purification of tantalum, both hydro-
metallurgical and pyrometallurgical —methods
have their advantages and disadvantages, and
the combination of the two often produces better
results [194]. Moreover, the value-added utilization
of waste tantalum capacitors is another issue that
requires ongoing attention [195]. In conclusion, the
separation and recycling of tantalum from used
electronic waste remain the key to further research
and development.

6 Conclusions

Based on the above literature survey, the
global production of tantalum concentrates is
expected to remain high in the future, but the
proportion of artisanal mining in Central Africa is
likely to decline and conventional mining will
increase. The supply of tantalum from tin slag is
expected to remain at current levels and the supply
of tantalum from lithium-making processes is
expected to increase. At the same time, the recovery
rate of tantalum scrap is expected to increase
slightly due to the structural transformation of
the tantalum consumption side and the current
emphasis on sustainable development. Based on
these data and projections, mitigation strategies
such as long-term offtake agreements and the
development of a diversified tantalum supply chain,

diversified geographic supply locations or an
increased share of tantalum recovered from scrap
are recommended to minimise the risk of supply
shortages and price increases and to ensure a secure
and sustainable supply of tantalum to the world.

At present, hydrometallurgy has dominated in
the production of tantalum in the world, in which
MIBK is the most common extractant. And
metallurgical plants are eschewing the classical
scheme for tantalum and niobium production. The
use of new raw materials and the development of
new tantalum and niobium separation processes
other than the hydrofluoric acid system, are
important efforts for tantalum and niobium
metallurgy. Ta industry requires new and efficient
value-added metallurgical techniques to meet the
demands of modern technological developments for
functional materials.
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