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Abstract: To explore an efficient strategy for intelligent bedrock mapping that can be applied in the areas with
coexisting Quaternary coverages and bedrock outcrops, a graph convolutional network (GCN) was implemented for
bedrock classification using stream sediment geochemical samplings in the Chahanwusu River area, Qinghai Province,
China. The sampling points were organized into a terrain weighted directed graph (TWDG) using Delaunay
triangulation to capture the upstream—downstream relationships among the geochemical sampling points. The
experimental results indicate that the semi-supervised GCN models, only using 20% of the labeled sampling points,
achieved accuracies of 68.20% and 78.31% in ten-type and five-type bedrock discrimination, respectively. In
conclusion, it is feasible to map the bedrock type through the concentrations of elements on the stream sediment
geochemical sampling points. The proposed data-driven GCN bedrock classification method not only improves the
efficiency of bedrock mapping but also may be applied in a large area.
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quaternary coverage

are also complexly associated to bedrocks. Multi-
element geochemical data, an important part of
regional geoscience data, contain potential

1 Introduction

Bedrock mapping is essential in geological
surveys, whose results are important basic
geological data for hydrogeological, engineering
geological, environment geological, oil and gas, and
mineral explorations. As important geological
information, geochemical characteristics are good
indicators for studying lithology, alteration, and
mineral resources [1—3]. The geochemical elements
in the bedrock migrated from subsurface to surface
during complex geological processes [4,5], and the
distribution patterns of geochemical concentrations

information about the lithology of bedrocks [6—8].
Beside the traditional spatial statistical and
multifractal methods [9—11], shallow machine
learning methods, e.g., support vector machine [12],
decision tree [13], random forest [14], and boosting
ensemble algorithms [15—17], to a certain extent,
have solved the problem of mining complex
non-linear  relationships ~ between  element
concentrations and bedrocks [18—20]. However,
geochemical data are usually high-dimensional,
non-linear, and uncertainly observed data, which are
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subject to multiple geological factors such as
weathering denudation intensity, mineralization
extent, climate, vegetation, topography, difference
in subsurface media, geological structure, and the
distribution of streams. It is necessary to
automatically extract more abstract and deeper
representations from the geochemical data through
deep learning of multi-layer neural networks [21].
Convolutional neural networks (CNNs) have been
widely applied in lithology discrimination using
rock images [22—24]. GUAN et al [25] proposed a
feature fusion convolutional autoencoder (FCAE) to
extract and fuse the spatial structural features and
compositional  relationships  of  multivariate
geochemicals for identifying the geochemical
anomalies. ZHANG et al [26] used unsupervised
convolutional autoencoder network (CAE) to
support CNN modeling for synthesis of multi-
geoinformation in data-driven mineral prospectivity
mapping. The formation mechanism of stream
sediments determines the strong spatial association
among geochemical sampling points. If a convolu-
tional neural network is used to identify bedrocks
underlying stream sediments, the concentration of
each element must first be interpolated into an
image. However, the stream sediment geochemical
sampling data do not always satisfy the premises
and assumptions of various spatial interpolation
algorithms,
introduced into the interpolated images.

The graph data structure has a powerful ability
for expressing topological associations among data.
Once the connections among data are established, a
graph can be formed. GORI et al [27] introduced
the concept of applying neural networks to graphs,
extending neural networks to graph-structured data
in non-Euclidean spaces. KIPF and WELLING [28]
proposed a graph convolutional network (GCN) to
convolve on graphs by introducing a simple
hierarchical propagation rule and applied it to the
semi-supervised classification of graph nodes.
Subsequently, the GCN has been widely applied in
slope deformation prediction [29], buildings vector
cognition [30,31], and land cover mapping [32].
GUAN et al [33] transformed geochemical sampled
point data into graphs and introduced graph
learning to extract the geochemical patterns.

Since stream sediment geochemical sampling
data are closely related point-set and composite
systems controlled by streams, gullies, and other

and new uncertainties will be

topographical features, we chose a graph structure
to express the complex spatial correlation among
stream sediment geochemical data and applied a
GCN to map underlying bedrocks using stream
sediment geochemical sampling points in the
Chahanwusu River area of Qinghai Province. The
correlation among sampling points was expressed
as a terrain weighted directed graph (TWDG) based
on a Delaunay triangulated network. The magnetic
anomalies, faults, streams, ore occurrences, and
other geological information were extracted as
additional features of GCN-based bedrock mapping.
The  better-performing  GCN-based  bedrock
discrimination models were applied to mapping the
underlying bedrock of the Quaternary coverage,
which can provide a supplement to the existing
regional geological mapping.

2 Study area and dataset

2.1 Study area

The study area is located in the Chahanwusu
River area, Dulan County, Qinghai Province, with
an area of 893 km?, a longitudinal range of 98°15'-
98°45' E, and a latitudinal range of 35°50'-36°00'N.
The outcropped strata are dominated by clasolites
and volcanic rocks with well-developed magmatic
rocks, mainly including the Indosinian
intermediate-acid intrusive rocks and the Triassic
continental intermediate-acid volcanic rocks. The
study area is located in the eastern part of the east
Kunlun tectonic belt with a relatively complex
geological structure and prosperous mineral
resources, and its geological sketch map is shown in
Fig. 1. The study area is an essential metallogenic
belt of precious metals, non-ferrous metals, and
ferrous metals in China.

2.2 Dataset
2.2.1 Stream sediment geochemical data

The 1:50000 stream sediment geochemical
data in the study area were surveyed using irregular
grid sampling by Qinghai Geological Survey
Institute in 2008, including 15 kinds of chemical
elements, including Au, Sn, Ag, As, Sb, Bi, Co, Cu,
La, Pb, Zn, W, Mo, Nb and Cd, whose sampling
density is 5-6 km 2. The samples were obtained
through multi-pit combination sampling and were
mainly collected from the debris materials of the
bedrock composition in the catchment area, as well
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as medium- and coarse-grained sand in the stream geochemical sampling points were finally obtained,
sediments. After cleaning up and eliminating as shown in Fig. 2. The methods used to analyze
missing and outlier geochemical data, 4955 the concentration of heavy metals include atomic
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Fig. 1 Geological sketch map of study area (modified from ZHANG et al [34])
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Fig. 2 Voronoi concentration maps of 15 elements (The concentrations of Au and Ag elements are in milligram per

tonnage, and those of other elements are in gram per tonnage. The latitude and longitude range of each subfigure is
consistent with that in Fig. 1)
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emission spectrometry (AES) for Au, Ag and Sn;
atomic fluorescence spectrometry (AFS) for As, Sb,
and Bi; atomic absorption spectrometry (AAS) for
Cu, Pb, Zn, Co, and Ni; polarography (POL) for W
and Mo.

The underlying bedrocks of the stream
sediment geochemical sampling points were
identified according to the geological map of the
study area. In geological mapping, areas where
bedrocks are not outcropped and bedrock types
cannot be determined will be delineated as the
quaternary, which are regarded as unknown
bedrocks. A total of 849 of the 4955 sampling
points were marked as the unknown bedrocks
underlying the quaternary coverages. The remaining
4106 sampling points were delineated to 10 bedrock
types or 5 merged bedrock types. The specific codes
and sampling point number of each bedrock are
shown in Table 1.

2.2.2 Topographic features

Topography affects the migration and
accumulation of elements in stream sediments. We
extracted three topographic features from the digital
elevation model (DEM) of the study area, including
elevation, slope, and slope of aspect (SOA) (Fig. 3),
and incorporated them into the GCN training
models. The DEM is derived from global digital
elevation public data with a spatial resolution of
30m from 2009  (http:/www.gscloud.cn/).
Elevation reflects the elevation above sea level of a
sampling point (Fig. 3(a)). Slope is the tangent

value of the slope angle, reflecting the degree of the
steepness of the ground surface (Fig. 3(b)). SOA
refers to the change in the aspect of the ground
surface (Fig. 3(c)). The calculation of the slope and
the SOA involves the sampling point itself and its
neighborhood, which, instead of treating the
sampling point as an independent point in space,
can reflect the influence of the spatial neighborhood
to some extent.
2.2.3 Multivariate geological features

Due to the complexity of the geological system,
the bedrock and multiple geological factors lead to
the nonlinear and fuzzy geochemical spatial
characteristics of stream sediments. Therefore, the
additional multivariate geological features, e.g.,
magnetic anomalies, faults, streams, and mineral
occurrences, were extracted and incorporated into
the GCN training models. The magnetic anomalies
(AT) of the 1:50000 high-precision magnetic
measurement data in the study area were surveyed
by the Qinghai Geological Survey Institute in 2008
(Fig. 4). The Euclidean distance fields of faults (Dr),
streams (Ds), and mineral occurrences (Do) were
also constructed (Fig. 5).
2.2.4 Multicollinearity test

Multicollinearity exists in certain relevant or
highly correlated feature variables and is often
measured by the variance inflation factor (VIF).
Generally, there is obvious multicollinearity among
variables when the VIF value is greater than 5.0,
which will decrease the performance and accuracy

Table 1 Original and merged litho-stratigraphic types in study area

Original Merged
. . . Number of . . . Number of
Code Litho-stratigraphic type sampling points Code Litho-stratigraphic type sampling points
Lower Proterozoic Baishahe ) )
Ptib formation 435 P4b Lower Proterozc?lc Baishahe 435
. . formation
Tse Upper Triassic Elashan formation 157
NG Neogene Guide group 11 Tee Upper Triassic Elashan 157
3 .
ny Monzonitic granite 695 formation
&y Potash feldspar granite 104
o . ) NG Neogene Guide group 11
nny  Porphyritic monzonitic granite 588
v Granodiorite 1598 )
. o Y Granite 1387
vd0 Granite quartz diorite 327
5o Quartz diorite 167
) Diorite 2116

ndo Monzonite quartz diorite 24
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Fig. 4 Distribution of magnetic anomalies (A7) in study
area

of the model. All feature variables passed the
multicollinearity test of the VIF coefficients, which
are all less than 5.0 (Table 2).

There are large differences in the values of
element concentrations and feature variables of the
sampling points, which will lead to inconsistent
gradients in the data transmitted by the neural
network when using the gradient descent method in
model training. Therefore, it will affect the choice
of learning rate, making it difficult to optimize.
Therefore, in order to unify the dimensions of the
data, we performed min-max normalization to
transform all the data into values between 0 and 1.
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Fig. 5 Distance fields of faults (Dr) (a), streams (Ds) (b),
and ore occurrences (Do) (c)
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Table 2 Variance inflation factors (VIFs) of feature
variables

No. Variable VIF
1 Au 1.016364
2 Sn 2.191803
3 Ag 1.801263
4 As 1.687495
5 Sb 1.282906
6 Bi 1.801990
7 Co 1.561821
8 Cu 2.288033
9 La 1.139138
10 Pb 2.638745
11 Zn 3.305668
12 w 1.372772
13 Mo 1.279554
14 Nb 1.074042
15 Cd 3.238984
16 Slope 1.261176
17 SOA 1.214702
18 Elevation 1.306327
19 AT 1.150862
20 Dr 1.366760
21 Do 1.130898
22 Ds 1.162263
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2.2.5 Information gain ratio analysis

Information gain ratio (IGR) is the ratio of
node information gain to node split information
metric. It is a factor ranking technique that
independently assesses the relevance of different
factors and detects irrelevant or redundant factors.
The method calculates the average merit (AM) of
the feature variables, with AM values greater than 0
for feature wvariables indicating high factor
importance and negative or values equal to 0
indicating negative or very low significance. The
importance of the feature variables is shown in
Table 3, where they are ranked by decreasing
average merit. The results show that the AM values
of all variables are greater than 0; therefore, all
factors can be added to the modeling process.

Table 3 Importance of feature variables

Rank Variable AM
1 Ds 0.630504
2 Au 0.228391
3 Ag 0.111122
4 Elevation 0.104490
5 AT 0.104490
6 Do 0.104490
7 Dk 0.104490
8 Slope 0.103844
9 Nb 0.099472
10 La 0.091498
11 Sn 0.082914
12 Cd 0.077532
13 Bi 0.052952
14 W 0.029667
15 Sb 0.025489
16 Mo 0.025051
17 Co 0.024562
18 Pb 0.021454
19 SOA 0.018552
20 Cu 0.017891
21 As 0.016148
22 Zn 0.015450
3 Methods
3.1 Workflow

Combined with topological features and
additional features (e.g., magnetic anomalies, faults,

streams, and ore occurrences), we constructed a
TWDG based on a Delaunay triangulation network
of stream sediment geochemical sampling points to
achieve GCN-based bedrock discrimination models,
as shown in Fig. 6. The edge connections of the
Delaunay triangulation network were terrain
weighted according to the elevation difference and
distance between the node pairs, and different GCN
models were trained on this graph structure. We
used the precision, accuracy, recall, and F1-score,
and a confusion matrix as the evaluation indicators
of model performance and generalization abilities to
unknown data. Two GCN-based bedrock
discrimination models with the highest accuracies
in 5 and 10 types of bedrock classification were
applied to the mapping of the underlying bedrocks
of the Quaternary coverage, respectively.

3.2 Terrain weighted directed graph

Delaunay triangulation is recognized as an
optimal triangulation solution and is widely used in
discrete data analysis. It uses an undirected graph
with a series of connected triangle edges to
represent a complex terrain surface, in which
scattered sampling points are deemed as the
vertexes of triangles. The stream sediment
geochemical sampling points are highly correlated,
constituting a composite system on the ground
surface. Therefore, we used the Delaunay
triangulation network with terrain weighted edges
to represent the scattered geochemical sampling
points as a directed graph. The sampling points are
regarded as the vertexes of the graph, and the edges
of the triangles are regarded as the links of the
graph. The edges of the Delaunay triangulation
network are used to express the spatial correlation
and its intensity between sampling point pairs.
These edge weights are integrated into the GCN
model learning as valuable information.

According to the formation mechanism of
stream sediments, in mountainous areas with
uneven terrain, the solid phase materials falling
down the slope either accumulate near the slope
foot as a colluvium or directly enter the rivers with
the ground surface water. Therefore, the materials
are transported from higher locations to lower
locations in this process. The link intensity between
sampling point pairs depends on the relative length
and the angle of slope. When constructing the graph,
the DEM of the study area was used to obtain the
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height of the vertex and the relative height from vertex a to vertex b, so we assign a small
difference between adjacent vertex pairs. To form a weight for edge ab; however, it is downhill from
directed graph, different edge weights were set vertex b to vertex a, so we assign a large weight for
according to the height difference and distance edge ba. Given that [, is the distance between
between different vertex pairs. As shown in Fig. 7, vertexes a and b on the ground surface, d. is the
taking the edge between vertexes a and b as an distance in the two-dimensional planar, and /g is
example, the height of vertex a is less than that of  the height difference, then the edge weights w,, and
vertex b, and the line from vertex a to vertex b is an wiq of edges ab and ba are calculated by Eq. (1),
upward slope. It is difficult to migrate materials respectively.
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Fig. 6 Workflow of GCN-based bedrock mapping underlying stream sediment geochemical samples
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1 is the weight matrix from the hidden layer to the
W, =———— . . . .
a g w Fha output layer, with the dimensions of HxF; ReLU is
1 e the rectified liner unit activation function; softmax
Wpe = T h is the normalized exponential function defined as
ab ab
exp(x;)
softmax(x; )J=g——.
3.3 Graph convolutional network (GCN) Zexp( X;)
1

A graph convolutional network (GCN),
proposed by KIPF and WELLING [28], introduces
a simple hierarchical propagation rule that can
convolve on graphs and the semi-supervised
classification of graph structured data. The goal of
the GCN model is to obtain the function f=(X,4) as
the output of the vertex set by learning the
characteristic signals on a graph G=(V,E), where V'
and E are the vertex set and the edge set of graph G,
respectively. Given that the number of nodes in the
graph is N, the number of features is C, and the
number of label types is F, then the input
information of the GCN model includes: (1) feature
matrix X, which describes the feature attribute of
the vertex set, with a dimension of NxC, and (2)
adjacency matrix A, which describes the adjacent
information of vertex pairs in the graph, with the
dimension of NxN. Taking a simple two-layer GCN
as an example (Fig. 8), to perform semi-supervised
vertex classification on a graph with adjacency
matrix A (binary or weighted), we first calculated
A=D"?AD™"* during data preprocessing to
symmetrically normalize the adjacency matrix,
where D is the degree matrix of the graph, and
then obtain the output in the following form:

Z=f(X,A)=

softmax[ AReLU (AXW @ yw ™ ] (2)

where W is the weight matrix from the input layer
to the hidden layer, with the dimensions CxH, here
H is the feature dimension of the hidden layer; WV

The number of vertexes at each layer is
constant in the GCN, and so is the dimension of the
adjacency matrix. We can only change the feature
expression of each layer vertex. The feature
dimension can be adjusted by setting different
hidden layer vertexes. During GCN training, the
features of adjacent vertexes are continuously
convolved into the feature expression of the current
vertex. After the first layer convolution, each vertex
will contain the features of its directly adjacent
vertexes; after the second layer convolution, each
vertex will contain the features of its secondary
adjacent vertexes, and so on. Therefore, the more
the layers of GCN, the wider the receptive domain.

The GCN 1is a semi-supervised learning
network. When classifying the vertexes in the graph,
only the labels of a small part of vertexes (e.g., > in
Fig. 8) are needed. The labeled or unlabeled
vertexes are indexed, and the feature representation
of each vertex can be learned during training. The
weights can then be updated by back-propagating
the cross-entropy loss of the labeled vertexes. The
cross-entropy loss calculation formula is

F
L=—YYY,InZ,

ley, f=1

3)

where y; represents the indexes of the labeled
vertexes, F' is the feature dimension of the output
layer, and ¥y and Zj represent the label and mode
output of the vertex and label type f, respectively.

Input layer Hidden layer Output layer
e N D e 2
ReLU
@
X3 \ X3 (7(«) Z3 \
Xy X, Zy
- J N J - J
X=H® H ™ =¢(AHOW D) Z=f(X, A)

Fig. 8 Graph convolutional network (GCN) with two layers (H? represents the eigenmatrix of the ith layer)
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4 Results

4.1 Model training

We used Nvidia Quadro P2000 GPU and
CUDA 11.2 API to train the proposed models as
shown in Table 4, and the training and predicting
were implemented using the Python package Keras
with the Tensorflow as backend.

Table 4 Overview on GPUs and host systems used for
training and predicting

GPU NVIDIA Quadro P2000
fp32 peak [TFLOPS] 3.0
mem-bandw. [GB/s] 140

Bus PCIe 3.0

Intel CoffeLake
CPU
1xi7-9700F
Cores (Threads) 1x8 (x1)

The lack of labeled data is the main problem
when applying machine learning methods to
geosciences, and it is usually not possible to obtain
sufficient labeled geoscience data. However, as a
semi-supervised learning network, GCN only uses
labels of a small number of vertexes to classify the
vertexes of the graph, which achieves high enough
discrimination accuracy. In this study, the main
steps of training a GCN discrimination model of
bedrocks underlying stream sediment geochemical
samplings were as follows.

Firstly, the dataset was divided into four parts,
i.e., training set, validation set, testing set, and
Quaternary coverage dataset (Q). Among the 4106
sampling points (excluding Q), 20% of the
sampling data of each bedrock type were chosen for
the training set, which was used in model training,
while 30% of the sampling data of each bedrock

Table S Design of GCN bedrock discrimination models

type were extracted for the validation set for
parameter fine-tuning. In contrast, 50% of the
sampling data of each bedrock type were extracted
for the testing set to evaluate model performance.
The optimal classification result was achieved using
only 20% of the labelled sampling data, and
discriminative accuracy of model was no longer
improved even using more labelled data.

Secondly, three input matrices of the GCN
model were prepared, i.e., feature matrix, label
matrix, and adjacency matrix. We constructed a
TWDG as the adjacency matrix based on a
Delaunay triangulation network from the stream
sediment geochemical sampling points. Multiple
geoscience data (i.e., magnetic anomalies, faults,
ore occurrences, and streams) were extracted as
additional features. Therefore, the feature matrix
contains the concentrations of 15 elements,
elevation, slope, SOA, magnetic anomalies, the
distance field of faults, the distance field of streams,
and the distance field of ore occurrences. The label
matrix contains 10 or 5 bedrock types. Four models
were designed according to different features and
label combinations, as shown in Table 5.

Finally, the feature matrix, label matrix and
adjacency matrix were input into the two-layer
GCN model to obtain the output bedrock labels and
to evaluate the models’ accuracies. The constructed
graph contains the sampling points of the
Quaternary coverage. However, this part of the
vertexes was only used to obtain the output labels
and was not used for the accuracy evaluation. All
models were iterated 1000 times (epochs) with a
learning rate of 0.01. A Chebyshev polynomial with
a depth of 3 was used as the approximate function
of the graph signal. There are 34, 38, 41 and 42
hidden layer units in the four models, respectively.
The specific parameter settings are shown in
Table 6.

Model code Feature matrix

Adjacency matrix Label vector

GCN10 19 Element concentrations + topography +AT Weighted triangulation 10 types
GCN5_19 Element concentrations + topography +AT Weighted triangulation 5 types
El t trations + t hy +
GCN10 22 ement coneen .a 10n's Opogtaphy Weighted triangulation 10 types
- AT + geological distance fields
El t trations + t hy +
GCN5 22 emeitt coficentrations = fopography Weighted triangulation 5 types

AT + geological distance fields
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Table 6 Hyperparameter of GCN models

Parameter Description GCN10 19 GCN5_ 19  GCN10 22 GCN5 22
Learning_rate Learning rate 0.01 0.01 0.01 0.01
Epoch Number of training iterations 1000 1000 1000 1000
Hiddenl Number of hidden layer units 34 38 41 42
Dropout Dropout rate 0.5 0.5 0.5 0.5
Weight decay L2 regularization 5x1073 5%107° 5%107° 5%1073
Max_degree Chebyshev polynomial depth 3 3 3 3
4.2 Model evaluation granodiorite (yd), and porphyritic monzonitic

4.2.1 10-type bedrock classification

(1) Accuracy

Two trained 10-type bedrock discrimination
GCN models were evaluated using accuracy,
precision, recall and Fl-score. The accuracies of
models on the training, validation and testing
datasets are presented in Table 5. The highest
accuracy of the 10-type GCN  bedrock
discrimination models is 68.20% in the testing set.
In addition, the accuracy of the GCN bedrock
discrimination model with a feature dimension of
22, where distance fields (e.g., the distance fields of
ore occurrences, faults, and streams) were added to
the feature matrix, is higher than that of the model
with a feature dimension of 19. The experimental
results also show that the ore occurrences, streams,
and faults are all essential multiple geological
features and have significantly improved the
accuracy of the GCN bedrock discrimination model.
ZHANG et al [34] adopted four machine learning
methods, i.e., decision tree (DT), random forest
(RF), extreme gradient boosting (XGB), and light
gradient boosting machine (LGBM), to discriminate
bedrocks underlying stream sediment geochemical
data. We compared the accuracies of GCN models
with those of DT, RF, XGB, and LGBM,
meanwhile, shallow machine learning methods are
all less accurate than GCN10 22 model as shown in
Table 7, indicating the higher performance of GCN
models.

(2) Confusion matrix

To further explore the classification abilities of
the GCN models on different bedrocks, we
analyzed the confusion matrix of the GCN10_ 22
model on the testing dataset (Table 8). In the
10-type bedrock discrimination model GCN10 22,
the wupper Triassic Elashan formation (Tse),

granite (nny) obtained higher precisions and recall
values and were easy to be distinguished, and their
Fl1-scores, higher than the other types, are 73%,
75%, and 76%, respectively. The low recall values
of the Neogene guide group (NG), potassium
feldspar granite (&y), and monzonitic diorite (n30)
are due to the small number of samples and their
discontinuous spatial distribution, where the spatial
distances between samples were not low enough to
predict them correctly.

Table GCN  bedrock
classification models

7 Accuracies of 10-type

Training set Validation set Testing set

Model code accuracy/% accuracy/% accuracy/%
DT10 22 52.80 - 50.97
RF10 22 65.32 - 65.45

XGBI10 22 66.08 - 68.00

LGBM10 22  67.13 - 67.40

GCN10_19 65.36 64.07 64.66

GCN10 22 70.75 68.50 68.20

4.2.2 5-type bedrock classification

The highest accuracy of the 5-type GCN
bedrock discrimination models is 78.31% in the
testing set. The merged 5-type bedrock
discrimination models were better than the 10-type
bedrock discrimination models. In general, when
dealing with multiple classification problems, the
more classes that the learner needs to be distinguished,
the more difficult it is to classify them. The
accuracies of DT, RF, XGB, and LGBM [34] are all
less than that of GCNS5 22 model as shown in
Table 9.

The confusion matrix of the GCN5_ 22 model
on the testing dataset is shown in Table 10. In the
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Table 8 Confusion matrix of testing set of GCN10 22 model
Code Ptib Tse NG ) v60 ny &y Ty 50 ndo
Ptib 86 9 0 90 1 7 2 10 0
Tse 7 57 0 10 1 1 0 0 0
NG 1 3 2 0 0 0 0 0 0
) 10 6 0 655 8 43 2 40 4 0
vd0 2 1 0 86 62 2 0 4 1 0
Real class
ny 13 0 0 67 215 1 35 3 0
&y 1 4 2 7 12 18 5 1 1
my 2 1 0 35 18 0 226 0 0
do 13 0 0 20 12 6 0 26 0
noo 0 0 0 4 0 5 1 0 0 2
Total real class 209 76 6 768 158 334 51 283 81 12
Total prediction class 135 81 4 974 85 309 28 314 45 3
Precision 0.64 0.7 0.5 0.67 0.73 0.7 0.64 072 058  0.67
Recall 0.41 0.75 0.33 0.85 039 0.64 035 0.8 032  0.17
F1-score 0.5 0.73 0.4 0.75 0.51 0.67 046 076 0.4l 0.27
Accuracy 0.68200

Table 9 Accuracies of 5-type GCN bedrock classification
models

Model Training set Validation set  Testing set

code accuracy/%  accuracy/%  accuracy/%
DT5 22 67.08 - 63.50
RF5 22 74.26 - 73.36
XGB5_22 78.44 - 77.86
LGBMS5 22 78.16 - 77.86
GCNS5_19 77.72 76.13 76.74
GCNS5_22 80.78 79.18 78.31

Table 10 Confusion matrix of testing set of GCN5 22
model

Code Ptib Tse NG v )

Ptib 79 10 0 28 92

Tse 3 57 0 9 7

Real class NG 0 4 0 2 0

Y 20 0 565 77
) 16 8 0 147 848
Total real class 209 76 6 668 1019
Total prediction class 118 85 0 751 1024
Precision 0.67 0.67 0 075 0.83
Recall 038 0.75 0 0.85 0.83
F1-score 048 0.71 O 0.8 0.83

Accuracy 0.78311

5-type bedrock discrimination model GCN5_22, the
classification accuracies of granite (y) and diorite (3)
are significantly higher than those of the other types
due to the imbalance of the dataset.

4.3 Model validation

We  further bedrock
classification results of the well-trained GCN
models through a Voronoi diagram. Figures 9 and
10 show the classification visualization results of

visualized  the

10-type and 5-type bedrock discrimination models,
respectively. The white and black Voronoi polygons
represent correct and incorrect classifications,
respectively. The classification results of the GCN
models show a certain degree of spatial continuity
with clear boundaries between different bedrock
types, indicating that the GCN models depend more
on the spatial connection between sampling points
during classification. Therefore, the adjacent
sampling points tend to be predicted as the same
type of bedrock. However, the models have weak
abilities to distinguish the fragmented distribution
patterns of bedrocks. For example, the southwestern
part of the study area is dominated by granodiorite
(y0) or diorite (8) in the 10 or 5 types of bedrocks,
respectively, so some fragmented distributed Lower
Proterozoic Baishahe formations (Pt;b) in this area
were misclassified.
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— Quaternary
[ Correct classification
B Incorrect classification

Fig. 9 Classification of 10-type bedrock discrimination models: (a) GCN10 19 classification results; (b) GCN10 19
correct or incorrect classification; (c) GCN10_22 classification result; (d) GCN10_22 correct or incorrect classification;

(e) Geologic map

uaternary .
orrect classification 5
"".| = Incorrect classification  mm—mm—ma km

Fig. 10 Classification of 5-type bedrock discrimination models: (a) GCN5 19 classification result; (b) GCN5 19
correct or incorrect classification; (c) GCNS_22 classification result; (d) GCN5_22 correct or incorrect classification;

(e) Geologic map

5 Discussion

5.1 Predicting bedrocks underlying quaternary
Traditionally, bedrocks underlying the loose
sediments of the Cenozoic Quaternary are not
outcropped, and their types need to be ascertained
using exploration engineering methods in order to

penetrate the Quaternary sediments. In this study,
the better-performing GCN bedrock discrimination
models (i.e., GCN10 22 and GCN5_22) were used
to predict bedrocks underlying the Quaternary
coverage. To recognize these bedrocks, we used
4955 sampling points of the study area, including
the Quaternary sampling points, to construct a
TWDG based on the Delaunay triangulation.
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However, these Quaternary sampling points were
not involved in the training and testing of the GCN
models and only obtained the output labels to
predict bedrocks. Figures 11 and 12 are the bedrock
prediction results of the GCN10 22 and GCN5_22
models, respectively. The rest of the real bedrocks
were compared with the prediction results of
bedrock underlying the Quaternary, for which three
local areas were selected for detailed demonstration.
The prediction results of the GCN models are
consistent with the distribution of bedrocks in their
neighborhood, and there is a clear boundary
between different bedrocks; therefore, the GCN
models can correctly classify the bedrocks
underlying the Quaternary coverage in the study
area.

5.2 Limitation

Instead of considering each sampling point in
isolation, we organized the sampling points as a
TWDG based on the Delaunay triangulation to

2811

express the upstream and downstream relationship
between the geochemical sampling points of stream
sediments. However, many kinds of graphs can
express a spatial correlation of sampling points, and
other graphs could be explored in the future.
Therefore, it is necessary to deeply analyze the
spatial correlation of sampling points and find a
more reasonable and effective graph of sampling
points to improve the accuracy of model.

The dataset used in this study has a certain
imbalance caused by the uneven distribution of
bedrocks in the study area, which is also the main
reason why many samples were misclassified. Most
machine learning algorithms are based on the
assumption that the training dataset is balanced.
However, it is difficult to obtain a balanced dataset
in actual geoscience problems, which is also an
objective limitation of geoscience datasets.
Therefore, it is necessary to introduce new methods
to solve the problem of classification errors caused
by dataset imbalances.

Legend
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Fig. 11 Predicted bedrocks underlying Quaternary by GCN10_22 model
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Fig. 12 Predicted bedrocks underlying Quaternary by GCN5_22 model

We compared the accuracies of GCN models
with those of DT, RF, XGB and LGBM from
ZHANG et al [34], meanwhile, shallow machine
learning methods are all less accurate than
GCN10 22 or GCNS5 22 models, indicating the
higher performance of GCN models. ZUO and
XU [35] employed graph deep learning algorithms,
including graph convolutional networks and graph
attention networks, to produce mineral potential
maps. In the future, our GCN model should be
compared with graph attention networks (GAT)
[36], both belonging to graph neural networks
(GNN) methods, to further improve the accuracy of
bedrock discrimination.

A complete spatial distribution of the bedrocks
underlying the Quaternary coverages was predicted
through two GCN models with highest accuracies
in 5 and 10 types of bedrock classification,
respectively. However, the true bedrocks underlying
the Quaternary coverage are unknown, so drilling
boreholes or geophysical exploration should be
arranged to verify the prediction results of the GCN

bedrock discrimination models in the future.
6 Conclusions

(1) It is feasible to map bedrocks using the
concentrations of elements combined with multiple
geoscience features. The semi-supervised GCN
bedrock discrimination models only need 20% of
the labeled geochemical sampling points to reach
accuracies of 68.20% (10 types of bedrocks) and
78.31% (5 types of bedrocks). The intelligent
data-driven bedrock discrimination methods can
improve efficiency and can be applied in a large
area.

(2) The Delaunay triangulation network is an
effective tool for processing scattered geochemical
sampling points, and scattered points can be
considered from a spatial correlation perspective.
We constructed a TWDG graph based on Delaunay
triangulation to express the upstream and
downstream relationship between the geochemical
sampling points of stream sediments, where the
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sampling points
independent points.

(3) The GCN bedrock discrimination model
can be used to predict the bedrocks underlying
Quaternary coverage and explore the complete
distribution of bedrocks in the adjacent area. The
experimental results show that the predicted
bedrocks are consistent with the surrounding
bedrocks, and there is a clear boundary between
different bedrocks.

are no longer regarded as
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