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Abstract: To explore an efficient strategy for intelligent bedrock mapping that can be applied in the areas with 
coexisting Quaternary coverages and bedrock outcrops, a graph convolutional network (GCN) was implemented for 
bedrock classification using stream sediment geochemical samplings in the Chahanwusu River area, Qinghai Province, 
China. The sampling points were organized into a terrain weighted directed graph (TWDG) using Delaunay 
triangulation to capture the upstream−downstream relationships among the geochemical sampling points. The 
experimental results indicate that the semi-supervised GCN models, only using 20% of the labeled sampling points, 
achieved accuracies of 68.20% and 78.31% in ten-type and five-type bedrock discrimination, respectively. In 
conclusion, it is feasible to map the bedrock type through the concentrations of elements on the stream sediment 
geochemical sampling points. The proposed data-driven GCN bedrock classification method not only improves the 
efficiency of bedrock mapping but also may be applied in a large area. 
Key words: graph convolutional network; deep learning; stream sediment geochemical samplings; bedrock mapping; 
quaternary coverage 
                                                                                                             

 
 
1 Introduction 
 

Bedrock mapping is essential in geological 
surveys, whose results are important basic 
geological data for hydrogeological, engineering 
geological, environment geological, oil and gas, and 
mineral explorations. As important geological 
information, geochemical characteristics are good 
indicators for studying lithology, alteration, and 
mineral resources [1−3]. The geochemical elements 
in the bedrock migrated from subsurface to surface 
during complex geological processes [4,5], and the 
distribution patterns of geochemical concentrations 

are also complexly associated to bedrocks. Multi- 
element geochemical data, an important part of 
regional geoscience data, contain potential 
information about the lithology of bedrocks [6−8]. 
Beside the traditional spatial statistical and 
multifractal methods [9−11], shallow machine 
learning methods, e.g., support vector machine [12], 
decision tree [13], random forest [14], and boosting 
ensemble algorithms [15−17], to a certain extent, 
have solved the problem of mining complex 
non-linear relationships between element 
concentrations and bedrocks [18−20]. However, 
geochemical data are usually high-dimensional, 
non-linear, and uncertainly observed data, which are 
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subject to multiple geological factors such as 
weathering denudation intensity, mineralization 
extent, climate, vegetation, topography, difference 
in subsurface media, geological structure, and the 
distribution of streams. It is necessary to 
automatically extract more abstract and deeper 
representations from the geochemical data through 
deep learning of multi-layer neural networks [21]. 
Convolutional neural networks (CNNs) have been 
widely applied in lithology discrimination using 
rock images [22−24]. GUAN et al [25] proposed a 
feature fusion convolutional autoencoder (FCAE) to 
extract and fuse the spatial structural features and 
compositional relationships of multivariate 
geochemicals for identifying the geochemical 
anomalies. ZHANG et al [26] used unsupervised 
convolutional autoencoder network (CAE) to 
support CNN modeling for synthesis of multi- 
geoinformation in data-driven mineral prospectivity 
mapping. The formation mechanism of stream 
sediments determines the strong spatial association 
among geochemical sampling points. If a convolu- 
tional neural network is used to identify bedrocks 
underlying stream sediments, the concentration of 
each element must first be interpolated into an 
image. However, the stream sediment geochemical 
sampling data do not always satisfy the premises 
and assumptions of various spatial interpolation 
algorithms, and new uncertainties will be 
introduced into the interpolated images. 

The graph data structure has a powerful ability 
for expressing topological associations among data. 
Once the connections among data are established, a 
graph can be formed. GORI et al [27] introduced 
the concept of applying neural networks to graphs, 
extending neural networks to graph-structured data 
in non-Euclidean spaces. KIPF and WELLING [28] 
proposed a graph convolutional network (GCN) to 
convolve on graphs by introducing a simple 
hierarchical propagation rule and applied it to the 
semi-supervised classification of graph nodes. 
Subsequently, the GCN has been widely applied in 
slope deformation prediction [29], buildings vector 
cognition [30,31], and land cover mapping [32]. 
GUAN et al [33] transformed geochemical sampled 
point data into graphs and introduced graph 
learning to extract the geochemical patterns. 

Since stream sediment geochemical sampling 
data are closely related point-set and composite 
systems controlled by streams, gullies, and other 

topographical features, we chose a graph structure 
to express the complex spatial correlation among 
stream sediment geochemical data and applied a 
GCN to map underlying bedrocks using stream 
sediment geochemical sampling points in the 
Chahanwusu River area of Qinghai Province. The 
correlation among sampling points was expressed 
as a terrain weighted directed graph (TWDG) based 
on a Delaunay triangulated network. The magnetic 
anomalies, faults, streams, ore occurrences, and 
other geological information were extracted as 
additional features of GCN-based bedrock mapping. 
The better-performing GCN-based bedrock 
discrimination models were applied to mapping the 
underlying bedrock of the Quaternary coverage, 
which can provide a supplement to the existing 
regional geological mapping. 
 
2 Study area and dataset 
 
2.1 Study area 

The study area is located in the Chahanwusu 
River area, Dulan County, Qinghai Province, with 
an area of 893 km2, a longitudinal range of 98°15'− 
98°45' E, and a latitudinal range of 35°50'−36°00'N. 
The outcropped strata are dominated by clasolites 
and volcanic rocks with well-developed magmatic 
rocks, mainly including the Indosinian 
intermediate-acid intrusive rocks and the Triassic 
continental intermediate-acid volcanic rocks. The 
study area is located in the eastern part of the east 
Kunlun tectonic belt with a relatively complex 
geological structure and prosperous mineral 
resources, and its geological sketch map is shown in 
Fig. 1. The study area is an essential metallogenic 
belt of precious metals, non-ferrous metals, and 
ferrous metals in China. 
 
2.2 Dataset 
2.2.1 Stream sediment geochemical data 

The 1:50000 stream sediment geochemical 
data in the study area were surveyed using irregular 
grid sampling by Qinghai Geological Survey 
Institute in 2008, including 15 kinds of chemical 
elements, including Au, Sn, Ag, As, Sb, Bi, Co, Cu, 
La, Pb, Zn, W, Mo, Nb and Cd, whose sampling 
density is 5−6 km−2. The samples were obtained 
through multi-pit combination sampling and were 
mainly collected from the debris materials of the 
bedrock composition in the catchment area, as well 
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as medium- and coarse-grained sand in the stream 
sediments. After cleaning up and eliminating 
missing and outlier geochemical data, 4955 

geochemical sampling points were finally obtained, 
as shown in Fig. 2. The methods used to analyze  
the concentration of heavy metals include atomic 

 

 
Fig. 1 Geological sketch map of study area (modified from ZHANG et al [34]) 
 

 
Fig. 2 Voronoi concentration maps of 15 elements (The concentrations of Au and Ag elements are in milligram per 
tonnage, and those of other elements are in gram per tonnage. The latitude and longitude range of each subfigure is 
consistent with that in Fig. 1) 
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emission spectrometry (AES) for Au, Ag and Sn; 
atomic fluorescence spectrometry (AFS) for As, Sb, 
and Bi; atomic absorption spectrometry (AAS) for 
Cu, Pb, Zn, Co, and Ni; polarography (POL) for W 
and Mo. 

The underlying bedrocks of the stream 
sediment geochemical sampling points were 
identified according to the geological map of the 
study area. In geological mapping, areas where 
bedrocks are not outcropped and bedrock types 
cannot be determined will be delineated as the 
quaternary, which are regarded as unknown 
bedrocks. A total of 849 of the 4955 sampling 
points were marked as the unknown bedrocks 
underlying the quaternary coverages. The remaining 
4106 sampling points were delineated to 10 bedrock 
types or 5 merged bedrock types. The specific codes 
and sampling point number of each bedrock are 
shown in Table 1. 
2.2.2 Topographic features 

Topography affects the migration and 
accumulation of elements in stream sediments. We 
extracted three topographic features from the digital 
elevation model (DEM) of the study area, including 
elevation, slope, and slope of aspect (SOA) (Fig. 3), 
and incorporated them into the GCN training 
models. The DEM is derived from global digital 
elevation public data with a spatial resolution of 
30 m from 2009 (http://www.gscloud.cn/). 
Elevation reflects the elevation above sea level of a 
sampling point (Fig. 3(a)). Slope is the tangent 

value of the slope angle, reflecting the degree of the 
steepness of the ground surface (Fig. 3(b)). SOA 
refers to the change in the aspect of the ground 
surface (Fig. 3(c)). The calculation of the slope and 
the SOA involves the sampling point itself and its 
neighborhood, which, instead of treating the 
sampling point as an independent point in space, 
can reflect the influence of the spatial neighborhood 
to some extent. 
2.2.3 Multivariate geological features 

Due to the complexity of the geological system, 
the bedrock and multiple geological factors lead to 
the nonlinear and fuzzy geochemical spatial 
characteristics of stream sediments. Therefore, the 
additional multivariate geological features, e.g., 
magnetic anomalies, faults, streams, and mineral 
occurrences, were extracted and incorporated into 
the GCN training models. The magnetic anomalies 
(ΔT) of the 1:50000 high-precision magnetic 
measurement data in the study area were surveyed 
by the Qinghai Geological Survey Institute in 2008 
(Fig. 4). The Euclidean distance fields of faults (DF), 
streams (DS), and mineral occurrences (DO) were 
also constructed (Fig. 5). 
2.2.4 Multicollinearity test 

Multicollinearity exists in certain relevant or 
highly correlated feature variables and is often 
measured by the variance inflation factor (VIF). 
Generally, there is obvious multicollinearity among 
variables when the VIF value is greater than 5.0, 
which will decrease the performance and accuracy  

 
Table 1 Original and merged litho-stratigraphic types in study area 

Original  Merged 

Code Litho-stratigraphic type Number of  
sampling points 

 Code Litho-stratigraphic type Number of 
sampling points 

Pt1b Lower Proterozoic Baishahe 
formation 435  

Pt1b Lower Proterozoic Baishahe 
formation 435 

T3e Upper Triassic Elashan formation 157  

NG Neogene Guide group 11  
T3e Upper Triassic Elashan 

formation 157 
ηγ Monzonitic granite 695  

ξγ Potash feldspar granite 104  
NG Neogene Guide group 11 

πηγ Porphyritic monzonitic granite 588  

γδ Granodiorite 1598  
γ Granite 1387 

γδο Granite quartz diorite 327  

δο Quartz diorite 167  
δ Diorite 2116 

ηδo Monzonite quartz diorite 24  

http://www.gscloud.cn/
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Fig. 3 Three topographic features: (a) Elevation;      
(b) Slope; (c) SOA 
 

 

Fig. 4 Distribution of magnetic anomalies (ΔT) in study 
area 
 
of the model. All feature variables passed the 
multicollinearity test of the VIF coefficients, which 
are all less than 5.0 (Table 2). 

There are large differences in the values of 
element concentrations and feature variables of the 
sampling points, which will lead to inconsistent 
gradients in the data transmitted by the neural 
network when using the gradient descent method in 
model training. Therefore, it will affect the choice 
of learning rate, making it difficult to optimize. 
Therefore, in order to unify the dimensions of the 
data, we performed min–max normalization to 
transform all the data into values between 0 and 1. 

 

 
Fig. 5 Distance fields of faults (DF) (a), streams (DS) (b), 
and ore occurrences (DO) (c) 
 
Table 2 Variance inflation factors (VIFs) of feature 
variables 

No. Variable VIF 
1 Au 1.016364 
2 Sn 2.191803 
3 Ag 1.801263 
4 As 1.687495 
5 Sb 1.282906 
6 Bi 1.801990 
7 Co 1.561821 
8 Cu 2.288033 
9 La 1.139138 

10 Pb 2.638745 
11 Zn 3.305668 
12 W 1.372772 
13 Mo 1.279554 
14 Nb 1.074042 
15 Cd 3.238984 
16 Slope 1.261176 
17 SOA 1.214702 
18 Elevation 1.306327 
19 ΔT 1.150862 
20 DF 1.366760 
21 DO 1.130898 
22 DS 1.162263 
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2.2.5 Information gain ratio analysis 
Information gain ratio (IGR) is the ratio of 

node information gain to node split information 
metric. It is a factor ranking technique that 
independently assesses the relevance of different 
factors and detects irrelevant or redundant factors. 
The method calculates the average merit (AM) of 
the feature variables, with AM values greater than 0 
for feature variables indicating high factor 
importance and negative or values equal to 0 
indicating negative or very low significance. The 
importance of the feature variables is shown in 
Table 3, where they are ranked by decreasing 
average merit. The results show that the AM values 
of all variables are greater than 0; therefore, all 
factors can be added to the modeling process. 
 
Table 3 Importance of feature variables 

Rank Variable AM 
1 DS 0.630504 
2 Au 0.228391 
3 Ag 0.111122 
4 Elevation 0.104490 
5 ΔT 0.104490 
6 DO 0.104490 
7 DF 0.104490 
8 Slope 0.103844 
9 Nb 0.099472 
10 La 0.091498 
11 Sn 0.082914 
12 Cd 0.077532 
13 Bi 0.052952 
14 W 0.029667 
15 Sb 0.025489 
16 Mo 0.025051 
17 Co 0.024562 
18 Pb 0.021454 
19 SOA 0.018552 
20 Cu 0.017891 
21 As 0.016148 
22 Zn 0.015450 

 
3 Methods 
 
3.1 Workflow 

Combined with topological features and 
additional features (e.g., magnetic anomalies, faults, 

streams, and ore occurrences), we constructed a 
TWDG based on a Delaunay triangulation network 
of stream sediment geochemical sampling points to 
achieve GCN-based bedrock discrimination models, 
as shown in Fig. 6. The edge connections of the 
Delaunay triangulation network were terrain 
weighted according to the elevation difference and 
distance between the node pairs, and different GCN 
models were trained on this graph structure. We 
used the precision, accuracy, recall, and F1-score, 
and a confusion matrix as the evaluation indicators 
of model performance and generalization abilities to 
unknown data. Two GCN-based bedrock 
discrimination models with the highest accuracies 
in 5 and 10 types of bedrock classification were 
applied to the mapping of the underlying bedrocks 
of the Quaternary coverage, respectively. 
 
3.2 Terrain weighted directed graph 

Delaunay triangulation is recognized as an 
optimal triangulation solution and is widely used in 
discrete data analysis. It uses an undirected graph 
with a series of connected triangle edges to 
represent a complex terrain surface, in which 
scattered sampling points are deemed as the 
vertexes of triangles. The stream sediment 
geochemical sampling points are highly correlated, 
constituting a composite system on the ground 
surface. Therefore, we used the Delaunay 
triangulation network with terrain weighted edges 
to represent the scattered geochemical sampling 
points as a directed graph. The sampling points are 
regarded as the vertexes of the graph, and the edges 
of the triangles are regarded as the links of the 
graph. The edges of the Delaunay triangulation 
network are used to express the spatial correlation 
and its intensity between sampling point pairs. 
These edge weights are integrated into the GCN 
model learning as valuable information. 

According to the formation mechanism of 
stream sediments, in mountainous areas with 
uneven terrain, the solid phase materials falling 
down the slope either accumulate near the slope 
foot as a colluvium or directly enter the rivers with 
the ground surface water. Therefore, the materials 
are transported from higher locations to lower 
locations in this process. The link intensity between 
sampling point pairs depends on the relative length 
and the angle of slope. When constructing the graph, 
the DEM of the study area was used to obtain the 
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height of the vertex and the relative height 
difference between adjacent vertex pairs. To form a 
directed graph, different edge weights were set 
according to the height difference and distance 
between different vertex pairs. As shown in Fig. 7, 
taking the edge between vertexes a and b as an 
example, the height of vertex a is less than that of 
vertex b, and the line from vertex a to vertex b is an 
upward slope. It is difficult to migrate materials 

from vertex a to vertex b, so we assign a small 
weight for edge ab; however, it is downhill from 
vertex b to vertex a, so we assign a large weight for 
edge ba. Given that lab is the distance between 
vertexes a and b on the ground surface, dab is the 
distance in the two-dimensional planar, and hab is 
the height difference, then the edge weights wab and 
wba of edges ab and ba are calculated by Eq. (1), 
respectively. 

 

 
Fig. 6 Workflow of GCN-based bedrock mapping underlying stream sediment geochemical samples 
 

 

Fig. 7 Terrain weighted directed graph based on Delaunay triangulation of stream sediment geochemical sample points 
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3.3 Graph convolutional network (GCN) 

A graph convolutional network (GCN), 
proposed by KIPF and WELLING [28], introduces 
a simple hierarchical propagation rule that can 
convolve on graphs and the semi-supervised 
classification of graph structured data. The goal of 
the GCN model is to obtain the function f=(X,A) as 
the output of the vertex set by learning the 
characteristic signals on a graph G=(V,E), where V 
and E are the vertex set and the edge set of graph G, 
respectively. Given that the number of nodes in the 
graph is N, the number of features is C, and the 
number of label types is F, then the input 
information of the GCN model includes: (1) feature 
matrix X, which describes the feature attribute of 
the vertex set, with a dimension of N×C, and (2) 
adjacency matrix A, which describes the adjacent 
information of vertex pairs in the graph, with the 
dimension of N×N. Taking a simple two-layer GCN 
as an example (Fig. 8), to perform semi-supervised 
vertex classification on a graph with adjacency 
matrix A (binary or weighted), we first calculated 

1/2 1/2ˆ − −=  A D AD  during data preprocessing to 
symmetrically normalize the adjacency matrix, 
where D  is the degree matrix of the graph, and 
then obtain the output in the following form:  

( , )f= =Z X A  
(0) (1)ˆ ˆsoft max[ ReLU ( ) ]A AXW W     (2)  

where W(0) is the weight matrix from the input layer 
to the hidden layer, with the dimensions C×H, here 
H is the feature dimension of the hidden layer; W(1) 

is the weight matrix from the hidden layer to the 
output layer, with the dimensions of H×F; ReLU is 
the rectified liner unit activation function; softmax 
is the normalized exponential function defined as  

exp( )
soft max( ) .

exp( )
i

i
i

i

x
x

x
=
∑

 

The number of vertexes at each layer is 
constant in the GCN, and so is the dimension of the 
adjacency matrix. We can only change the feature 
expression of each layer vertex. The feature 
dimension can be adjusted by setting different 
hidden layer vertexes. During GCN training, the 
features of adjacent vertexes are continuously 
convolved into the feature expression of the current 
vertex. After the first layer convolution, each vertex 
will contain the features of its directly adjacent 
vertexes; after the second layer convolution, each 
vertex will contain the features of its secondary 
adjacent vertexes, and so on. Therefore, the more 
the layers of GCN, the wider the receptive domain. 

The GCN is a semi-supervised learning 
network. When classifying the vertexes in the graph, 
only the labels of a small part of vertexes (e.g., Y2 in 
Fig. 8) are needed. The labeled or unlabeled 
vertexes are indexed, and the feature representation 
of each vertex can be learned during training. The 
weights can then be updated by back-propagating 
the cross-entropy loss of the labeled vertexes. The 
cross-entropy loss calculation formula is  

1
ln

L

F

lf lf
l y f

L
∈ =

=− ∑ ∑Y Z                      (3) 
 
where yL represents the indexes of the labeled 
vertexes, F is the feature dimension of the output 
layer, and Ylf and Zlf represent the label and mode 
output of the vertex and label type f, respectively. 

 

 
Fig. 8 Graph convolutional network (GCN) with two layers (H(i) represents the eigenmatrix of the ith layer) 
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4 Results 
 
4.1 Model training 

We used Nvidia Quadro P2000 GPU and 
CUDA 11.2 API to train the proposed models as 
shown in Table 4, and the training and predicting 
were implemented using the Python package Keras 
with the Tensorflow as backend. 
 
Table 4 Overview on GPUs and host systems used for 
training and predicting 

GPU NVIDIA Quadro P2000 

fp32 peak [TFLOPS] 3.0 

mem-bandw. [GB/s] 140 

Bus PCIe 3.0 

CPU 
Intel CoffeLake 

1×i7-9700F 

Cores (Threads) 1×8 (×1) 

 
The lack of labeled data is the main problem 

when applying machine learning methods to 
geosciences, and it is usually not possible to obtain 
sufficient labeled geoscience data. However, as a 
semi-supervised learning network, GCN only uses 
labels of a small number of vertexes to classify the 
vertexes of the graph, which achieves high enough 
discrimination accuracy. In this study, the main 
steps of training a GCN discrimination model of 
bedrocks underlying stream sediment geochemical 
samplings were as follows. 

Firstly, the dataset was divided into four parts, 
i.e., training set, validation set, testing set, and 
Quaternary coverage dataset (Q). Among the 4106 
sampling points (excluding Q), 20% of the 
sampling data of each bedrock type were chosen for 
the training set, which was used in model training, 
while 30% of the sampling data of each bedrock 

type were extracted for the validation set for 
parameter fine-tuning. In contrast, 50% of the 
sampling data of each bedrock type were extracted 
for the testing set to evaluate model performance. 
The optimal classification result was achieved using 
only 20% of the labelled sampling data, and 
discriminative accuracy of model was no longer 
improved even using more labelled data. 

Secondly, three input matrices of the GCN 
model were prepared, i.e., feature matrix, label 
matrix, and adjacency matrix. We constructed a 
TWDG as the adjacency matrix based on a 
Delaunay triangulation network from the stream 
sediment geochemical sampling points. Multiple 
geoscience data (i.e., magnetic anomalies, faults, 
ore occurrences, and streams) were extracted as 
additional features. Therefore, the feature matrix 
contains the concentrations of 15 elements, 
elevation, slope, SOA, magnetic anomalies, the 
distance field of faults, the distance field of streams, 
and the distance field of ore occurrences. The label 
matrix contains 10 or 5 bedrock types. Four models 
were designed according to different features and 
label combinations, as shown in Table 5. 

Finally, the feature matrix, label matrix and 
adjacency matrix were input into the two-layer 
GCN model to obtain the output bedrock labels and 
to evaluate the models’ accuracies. The constructed 
graph contains the sampling points of the 
Quaternary coverage. However, this part of the 
vertexes was only used to obtain the output labels 
and was not used for the accuracy evaluation. All 
models were iterated 1000 times (epochs) with a 
learning rate of 0.01. A Chebyshev polynomial with 
a depth of 3 was used as the approximate function 
of the graph signal. There are 34, 38, 41 and 42 
hidden layer units in the four models, respectively. 
The specific parameter settings are shown in 
Table 6. 

 
Table 5 Design of GCN bedrock discrimination models 

Model code Feature matrix Adjacency matrix Label vector 

GCN10_19 Element concentrations + topography +ΔT Weighted triangulation 10 types 

GCN5_19 Element concentrations + topography +ΔT Weighted triangulation 5 types 

GCN10_22 
Element concentrations + topography + 

ΔT + geological distance fields 
Weighted triangulation 10 types 

GCN5_22 
Element concentrations + topography + 

ΔT + geological distance fields 
Weighted triangulation 5 types 
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Table 6 Hyperparameter of GCN models 

Parameter Description GCN10_19 GCN5_19 GCN10_22 GCN5_22 

Learning_rate Learning rate 0.01 0.01 0.01 0.01 

Epoch Number of training iterations 1000 1000 1000 1000 

Hidden1 Number of hidden layer units 34 38 41 42 

Dropout Dropout rate 0.5 0.5 0.5 0.5 

Weight_decay L2 regularization 5×10−5 5×10−5 5×10−5 5×10−5 

Max_degree Chebyshev polynomial depth 3 3 3 3 
 
4.2 Model evaluation 
4.2.1 10-type bedrock classification 

(1) Accuracy 
Two trained 10-type bedrock discrimination 

GCN models were evaluated using accuracy, 
precision, recall and F1-score. The accuracies of 
models on the training, validation and testing 
datasets are presented in Table 5. The highest 
accuracy of the 10-type GCN bedrock 
discrimination models is 68.20% in the testing set. 
In addition, the accuracy of the GCN bedrock 
discrimination model with a feature dimension of 
22, where distance fields (e.g., the distance fields of 
ore occurrences, faults, and streams) were added to 
the feature matrix, is higher than that of the model 
with a feature dimension of 19. The experimental 
results also show that the ore occurrences, streams, 
and faults are all essential multiple geological 
features and have significantly improved the 
accuracy of the GCN bedrock discrimination model. 
ZHANG et al [34] adopted four machine learning 
methods, i.e., decision tree (DT), random forest 
(RF), extreme gradient boosting (XGB), and light 
gradient boosting machine (LGBM), to discriminate 
bedrocks underlying stream sediment geochemical 
data. We compared the accuracies of GCN models 
with those of DT, RF, XGB, and LGBM, 
meanwhile, shallow machine learning methods are 
all less accurate than GCN10_22 model as shown in 
Table 7, indicating the higher performance of GCN 
models. 

(2) Confusion matrix 
To further explore the classification abilities of 

the GCN models on different bedrocks, we 
analyzed the confusion matrix of the GCN10_22 
model on the testing dataset (Table 8). In the 
10-type bedrock discrimination model GCN10_22, 
the upper Triassic Elashan formation (T3e), 

granodiorite (γδ), and porphyritic monzonitic 
granite (πηγ) obtained higher precisions and recall 
values and were easy to be distinguished, and their 
F1-scores, higher than the other types, are 73%, 
75%, and 76%, respectively. The low recall values 
of the Neogene guide group (NG), potassium 
feldspar granite (ξγ), and monzonitic diorite (ηδo) 
are due to the small number of samples and their 
discontinuous spatial distribution, where the spatial 
distances between samples were not low enough to 
predict them correctly. 
 
Table 7 Accuracies of 10-type GCN bedrock 
classification models 

Model code 
Training set 
accuracy/% 

Validation set 
accuracy/% 

Testing set 
accuracy/% 

DT10_22 52.80 − 50.97 

RF10_22 65.32 − 65.45 

XGB10_22 66.08 − 68.00 

LGBM10_22 67.13 − 67.40 

GCN10_19 65.36 64.07 64.66 

GCN10_22 70.75 68.50 68.20 

 
4.2.2 5-type bedrock classification 

The highest accuracy of the 5-type GCN 
bedrock discrimination models is 78.31% in the 
testing set. The merged 5-type bedrock 
discrimination models were better than the 10-type 
bedrock discrimination models. In general, when 
dealing with multiple classification problems, the 
more classes that the learner needs to be distinguished, 
the more difficult it is to classify them. The 
accuracies of DT, RF, XGB, and LGBM [34] are all 
less than that of GCN5_22 model as shown in 
Table 9. 

The confusion matrix of the GCN5_22 model 
on the testing dataset is shown in Table 10. In the 
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Table 8 Confusion matrix of testing set of GCN10_22 model 
Code Pt1b T3e NG γδ γδο ηγ ξγ πηγ δο ηδo 

Real class 

Pt1b 86 9 0 90 1 7 2 4 10 0 
T3e 7 57 0 10 1 1 0 0 0 0 
NG 1 3 2 0 0 0 0 0 0 0 
γδ 10 6 0 655 8 43 2 40 4 0 

γδο 2 1 0 86 62 2 0 4 1 0 
ηγ 13 0 0 67 0 215 1 35 3 0 
ξγ 1 4 2 7 0 12 18 5 1 1 

πηγ 2 1 0 35 1 18 0 226 0 0 
δο 13 0 0 20 12 6 4 0 26 0 

ηδo 0 0 0 4 0 5 1 0 0 2 
Total real class 209 76 6 768 158 334 51 283 81 12 

Total prediction class 135 81 4 974 85 309 28 314 45 3 
Precision 0.64 0.7 0.5 0.67 0.73 0.7 0.64 0.72 0.58 0.67 

Recall 0.41 0.75 0.33 0.85 0.39 0.64 0.35 0.8 0.32 0.17 
F1-score 0.5 0.73 0.4 0.75 0.51 0.67 0.46 0.76 0.41 0.27 
Accuracy 0.68200 

 
Table 9 Accuracies of 5-type GCN bedrock classification 
models 

Model 
code 

Training set 
accuracy/% 

Validation set 
accuracy/% 

Testing set 
accuracy/% 

DT5_22 67.08 − 63.50 

RF5_22 74.26 − 73.36 

XGB5_22 78.44 − 77.86 

LGBM5_22 78.16 − 77.86 

GCN5_19 77.72 76.13 76.74 

GCN5_22 80.78 79.18 78.31 
 
Table 10 Confusion matrix of testing set of GCN5_22 
model 

Code Pt1b T3e NG γ δ 

Real class 

Pt1b 79 10 0 28 92 

T3e 3 57 0 9 7 

NG 0 4 0 2 0 

γ 20 6 0 565 77 

δ 16 8 0 147 848 

Total real class 209 76 6 668 1019 

Total prediction class 118 85 0 751 1024 

Precision 0.67 0.67 0 0.75 0.83 

Recall 0.38 0.75 0 0.85 0.83 

F1-score 0.48 0.71 0 0.8 0.83 

Accuracy 0.78311 

5-type bedrock discrimination model GCN5_22, the 
classification accuracies of granite (γ) and diorite (δ) 
are significantly higher than those of the other types 
due to the imbalance of the dataset. 
 
4.3 Model validation 

We further visualized the bedrock 
classification results of the well-trained GCN 
models through a Voronoi diagram. Figures 9 and 
10 show the classification visualization results of 
10-type and 5-type bedrock discrimination models, 
respectively. The white and black Voronoi polygons 
represent correct and incorrect classifications, 
respectively. The classification results of the GCN 
models show a certain degree of spatial continuity 
with clear boundaries between different bedrock 
types, indicating that the GCN models depend more 
on the spatial connection between sampling points 
during classification. Therefore, the adjacent 
sampling points tend to be predicted as the same 
type of bedrock. However, the models have weak 
abilities to distinguish the fragmented distribution 
patterns of bedrocks. For example, the southwestern 
part of the study area is dominated by granodiorite 
(γδ) or diorite (δ) in the 10 or 5 types of bedrocks, 
respectively, so some fragmented distributed Lower 
Proterozoic Baishahe formations (Pt1b) in this area 
were misclassified. 
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Fig. 9 Classification of 10-type bedrock discrimination models: (a) GCN10_19 classification results; (b) GCN10_19 
correct or incorrect classification; (c) GCN10_22 classification result; (d) GCN10_22 correct or incorrect classification; 
(e) Geologic map 
 

 
Fig. 10 Classification of 5-type bedrock discrimination models: (a) GCN5_19 classification result; (b) GCN5_19 
correct or incorrect classification; (c) GCN5_22 classification result; (d) GCN5_22 correct or incorrect classification;  
(e) Geologic map 
 
 
5 Discussion 
 
5.1 Predicting bedrocks underlying quaternary 

Traditionally, bedrocks underlying the loose 
sediments of the Cenozoic Quaternary are not 
outcropped, and their types need to be ascertained 
using exploration engineering methods in order to 

penetrate the Quaternary sediments. In this study, 
the better-performing GCN bedrock discrimination 
models (i.e., GCN10_22 and GCN5_22) were used 
to predict bedrocks underlying the Quaternary 
coverage. To recognize these bedrocks, we used 
4955 sampling points of the study area, including 
the Quaternary sampling points, to construct a 
TWDG based on the Delaunay triangulation. 
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However, these Quaternary sampling points were 
not involved in the training and testing of the GCN 
models and only obtained the output labels to 
predict bedrocks. Figures 11 and 12 are the bedrock 
prediction results of the GCN10_22 and GCN5_22 
models, respectively. The rest of the real bedrocks 
were compared with the prediction results of 
bedrock underlying the Quaternary, for which three 
local areas were selected for detailed demonstration. 
The prediction results of the GCN models are 
consistent with the distribution of bedrocks in their 
neighborhood, and there is a clear boundary 
between different bedrocks; therefore, the GCN 
models can correctly classify the bedrocks 
underlying the Quaternary coverage in the study 
area. 

 
5.2 Limitation 

Instead of considering each sampling point in 
isolation, we organized the sampling points as a 
TWDG based on the Delaunay triangulation to 

express the upstream and downstream relationship 
between the geochemical sampling points of stream 
sediments. However, many kinds of graphs can 
express a spatial correlation of sampling points, and 
other graphs could be explored in the future. 
Therefore, it is necessary to deeply analyze the 
spatial correlation of sampling points and find a 
more reasonable and effective graph of sampling 
points to improve the accuracy of model. 

The dataset used in this study has a certain 
imbalance caused by the uneven distribution of 
bedrocks in the study area, which is also the main 
reason why many samples were misclassified. Most 
machine learning algorithms are based on the 
assumption that the training dataset is balanced. 
However, it is difficult to obtain a balanced dataset 
in actual geoscience problems, which is also an 
objective limitation of geoscience datasets. 
Therefore, it is necessary to introduce new methods 
to solve the problem of classification errors caused 
by dataset imbalances. 

 

 
Fig. 11 Predicted bedrocks underlying Quaternary by GCN10_22 model 
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Fig. 12 Predicted bedrocks underlying Quaternary by GCN5_22 model 
 

We compared the accuracies of GCN models 
with those of DT, RF, XGB and LGBM from 
ZHANG et al [34], meanwhile, shallow machine 
learning methods are all less accurate than 
GCN10_22 or GCN5_22 models, indicating the 
higher performance of GCN models. ZUO and  
XU [35] employed graph deep learning algorithms, 
including graph convolutional networks and graph 
attention networks, to produce mineral potential 
maps. In the future, our GCN model should be 
compared with graph attention networks (GAT) 
[36], both belonging to graph neural networks 
(GNN) methods, to further improve the accuracy of 
bedrock discrimination. 

A complete spatial distribution of the bedrocks 
underlying the Quaternary coverages was predicted 
through two GCN models with highest accuracies 
in 5 and 10 types of bedrock classification, 
respectively. However, the true bedrocks underlying 
the Quaternary coverage are unknown, so drilling 
boreholes or geophysical exploration should be 
arranged to verify the prediction results of the GCN 

bedrock discrimination models in the future. 
 
6 Conclusions 
 

(1) It is feasible to map bedrocks using the 
concentrations of elements combined with multiple 
geoscience features. The semi-supervised GCN 
bedrock discrimination models only need 20% of 
the labeled geochemical sampling points to reach 
accuracies of 68.20% (10 types of bedrocks) and 
78.31% (5 types of bedrocks). The intelligent 
data-driven bedrock discrimination methods can 
improve efficiency and can be applied in a large 
area. 

(2) The Delaunay triangulation network is an 
effective tool for processing scattered geochemical 
sampling points, and scattered points can be 
considered from a spatial correlation perspective. 
We constructed a TWDG graph based on Delaunay 
triangulation to express the upstream and 
downstream relationship between the geochemical 
sampling points of stream sediments, where the 
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sampling points are no longer regarded as 
independent points. 

(3) The GCN bedrock discrimination model 
can be used to predict the bedrocks underlying 
Quaternary coverage and explore the complete 
distribution of bedrocks in the adjacent area. The 
experimental results show that the predicted 
bedrocks are consistent with the surrounding 
bedrocks, and there is a clear boundary between 
different bedrocks. 
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摘  要：为了探索高效的第四系覆盖及露头较少区域的基岩智能填图方法，应用图卷积网络(GCN)对青海省察汗

乌苏河地区水系沉积物地球化学采样的下伏基岩进行分类。基于 Delaunay 三角化采样点被组织为一个地形加权的

有向图来表达水系沉积物地球化学采样点之间的河流上下游关系。实验结果表明：半监督的 GCN 模型仅使用了

20%的采样点标签，分类精度达到 68.20%(10 类基岩)和 78.31%(5 类基岩)。该方法能有效利用水系沉积物地球化

学采样中的元素含量进行基岩填图，且能提高基岩填图的效率并能进行大面积应用。 

关键词：图卷积网络；深度学习；水系沉积物地球化学采样；基岩填图；第四系覆盖物 
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