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Abstract: To solve the poor conductivity and limited active sites of MoSe,, ternary MoS,Se,-, nanosheets with defects
were synthesized by a convenient hydrothermal process. The results showed that the introduction of S element not only
improved the electron transfer ability, but also provided more electrocatalytic active sites. Consequently, the optimized
MoS,Se,-« with a S/Se molar ratio of 1:1 (MoSSe) presented superior electrocatalytic hydrogen evolution reaction
performance with a low Tafel slope of 47 mV/dec, and a small overpotential of —165 mV at —10 mA/cm? as well as
good durability. This work provides an additional route for better understanding the modulation of multi-factors in
designing and synthesizing MoSe,-based catalysts to improve their electrochemical activity.
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1 Introduction

With the deterioration of the global
environment, climate warming and increasing
energy crisis, it is urgent to seek a clean energy
to replace the current fossil fuels. Hydrogen,
a renewable clean energy, is considered as a
promising alternative to traditional energy [1—5].
Electrochemical water splitting is a simple,
effective and environmentally friendly method for
hydrogen production [6,7]. In order to maximize
the efficiency of hydrogen production and the
application of hydrogen energy, highly efficient and
low-cost electrocatalysts are indispensable [8—12].

Two-dimensional (2D) transition metal dichal-
cogenides (TMDCs), which are low-cost, robust
and earth-abundant electrocatalysts, have been
investigated extensively as the candidates of
electrocatalysts for hydrogen evolution reaction
(HER) [9,13]. Amongst, MoSe,, similar to MoS, is

attracting more and more attention as a promising
and efficient HER catalyst due to its tunable
structure and properties [14]. Nevertheless, poor
electrical conductivity and limited active sites of
bulk MoSe, greatly restrict its electrochemical
performance. Various strategies or techniques
have been explored to further enhance its
electrocatalytic activity, such as crystal structure
modulation [15,16], defect engineering [17,18],
morphology  regulation [19,20], interface
construction [21,22], heteroatom doping [23,24],
and alloying [25], or integration with conductive
medium [15,26]. Previous studies indicated that
alloying by introducing another element to form
ternary compounds is an effective strategy to enhance
electrocatalytic HER performance of MoSe;[27,28].
In addition, adjusting the free energy change of
hydrogen adsorption (AGnu+) is also extremely
important for optimizing the hydrogen evolution
performance of electrocatalysts [29]. The AGu+ on
selenized Mo edges, which is equal to =140 meV, is
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slightly strong, whereas that on sulfided Mo edges
is slightly weak (AGu+=80 meV) [30,31]. Thus, it
would be possible to attain a thermoneutral state
(AGu+= 0) by reasonably designing and developing
MoS,Se,» ternary alloys with changing S/Se
molar ratios. Several pioneering studies on ternary
MoS,Se,-, alloys, which were synthesized by
different techniques including chemical vapor
deposition (CVD) [32], hot injection [33], and
hydrothermal or solvothermal synthesis [34,35],
have been reported. Although the HER performance
of MoSe; can be improved to a certain extent by
introducing S element, there is still much room
to promote the overall -electrocatalytic HER
performance. Consequently, it is still great
challenging to explore a simple and feasible
technique to synthesize MoSe;-based HER
electrocatalysts with enhanced conductivity and
improved electrocatalytic activity of active sites to
synergistically boost their HER properties.

Recently, a nanoflower-structured 1T/2H
MoSe; has been synthesized by a convenient
hydrothermal process, which has achieved the
synergistic regulation of conductivity and active
sites, and improved the electrocatalytic
HER [36]. Here, unique ternary MoS,Sex-
nanosheets with rich defects were prepared by a
modified hydrothermal method. The excellent
electrocatalytic HER performance was obtained by
adjusting the ratio of S and Se elements. The
synergistic modulation acquired by a simple and
effective method in this work provides a facile route
to improve the electrochemical activity of MoSe..

2 Experimental

2.1 Preparation of MoS,Sez—

A certain amount of Se powder was dissolved
in 8 mL of hydrazine hydrate, marked it as Solution
A. 1 mmol of Na,MoOs4-2H>0 and a certain amount
of thioacetamide were completely dissolved in
42 mL of distilled water, marked it as Solution B.
After that, Solution A was slowly added to Solution
B, and then the mixture was poured into a 100 mL
hydrothermal reactor, which was subsequently put
into an oven at 220 °C for 12 h. The products in
the autoclave were naturally cooled to room
temperature, and then the samples were collected
with vacuum filtration, washed with anhydrous
ethanol and distilled water, dried at 60 °C for 12 h.

The total amount of Se powder and thioacetamide
was 2mmol. According to the amount of
thioacetamide (0.4, 1, and 1.6 mmol), the obtained
samples were named MoSpsSeis, MoSSe, and
MoS; ¢Seo.4, respectively.

2.2 Structural characterization

X-ray diffraction (XRD) measurements
(Rigaku D/Max—2500) were performed to obtain
information about the composition and structure of
the products. The surface information of the
products was collected by X-ray photoelectron
spectroscopy (XPS, ESCALAB 250Xi). The
morphology and microstructure of the as-obtained
products were observed by transmission electron
microscopy (TEM, FEI Tecnai G2 F20).

2.3 Electrochemical measurements

The electrocatalytic HER performance of the
as-obtained products was surveyed using a standard
three-electrode cell, where a 3 mm glassy carbon
electrode coated with the products, saturated
calomel electrode and graphite rod, was used
as working, reference and counter electrodes,
respectively.  Typically, the products were
ultrasonically dispersed in a mixed ethanol-water
solution (1:4, volume ratio) containing a Nafion
solution (5 wt.%) to obtain a uniform ink. A droplet
of the homogeneous ink (5 pL, 2.78 mg/mL) was
deposited onto a working electrode. The product
loading was about 0.21 mg/cm?. Commercially
obtained 20 wt.% Pt/C was used as a reference
catalyst. All measurements were performed in a
0.5 mol/L H»SO4 solution. The electrochemical
double-layer capacitance (Ca) was assessed by
the cyclic voltammetry (CV). Linear sweep
voltammetry (LSV) was implemented at 2 mV/s.
Electrochemical impedance spectroscopy (EIS) was
performed from 1000 kHz to 1 Hz at 200 mV. The
electrochemical stability was evaluated by cycling
the electrodes 1000 times, and chronoamperometric
curve was also measured at a current density of
—10 mA/cm?,

3 Results and discussion

3.1 Material characterization

The morphological feature of MoSSe was
observed by TEM. MoSSe presents a typical flower-
like morphology assembled by interconnected
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curved nanosheets (Figs. 1(a, b)). These curved
nanosheets on the surface provide abundant
edge sites for improving the performance of
electrochemical catalyst.

The microstructure of the catalyst was further
characterized by high-resolution transmission
electron microscopy (HRTEM), and the twisted
nanosheets have a typical few-layer structure
(Figs. 1(c, d)). The interlayer spacing between
adjacent layers is approximately 0.67 nm, which is
close to that of 2H-phase MoSe, (002) crystal plane
(0.65 nm) (Fig. 1(c)) [15]. The lattice fringes of the
(002) crystal plane are discontinuous, indicating
that defects are dispersed in the product [37,38], as
shown in Figs. 1(c) and (d). Therefore, a large
number of nano-regions appear along the basal
planes. In addition, an average interplanar spacing
of 0.28 nm is found in Fig. 1(d), corresponding to
the (100) plane in 2H-phase MoSe;[39]. Moreover,
the directions of the (100) crystal plane on the basal
plane are not consistent, disclosing that a relatively

disordered atomic arrangement exists on the basal
plane. The disordered arrangement of atoms leads
to cracks in the basal planes, thereby generating
additional edge sites [40,41]. Furthermore,
discontinuous and twisted lattice fringes were
also observed, showing the existence of defect
structure [42,43]. Such a defect structure provides
more catalytic sites, improving the electrocatalytic
HER performance.

The XRD patterns of samples are shown in
Fig. 2. The two diffraction peaks of MoSe;
correspond to the (100) and (110) crystal
planes, respectively. And the diffraction peak
corresponding to (002) crystal plane is not observed.
Compared with the standard XRD pattern of
2H-phase  MoSe, (JCPDS No. 29-0914), the
diffraction peak of the (100) crystal plane shifts to
the right, which is consistent with the results
reported previously, indicating the presence of
1T-phase MoSe; in the sample [44]. The diffraction
peaks corresponding to (002), (100) and (110)

Defect

Fig. 1 Microstructures of MoSSe: (a, b) TEM images; (¢, d) HRTEM images
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Fig. 2 XRD patterns of samples

crystal planes were detected in the XRD pattern of
MoSSe sample. Compared with MoSe:, it is found
that the diffraction peaks of MoSSe sample shift to
a higher angle as a whole, which may be caused by
the smaller radius of S*-introduced sample than
that of Se* -introduced sample [33,34].

To further study the elemental composition and
valence state of elements on the surfaces of MoSe;
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and MoSSe, the XPS analysis was carried out. The
full spectra reveal the presence of Mo and Se
elements in MoSe,, and the presence of Mo, Se
and S elements in MoSSe (Fig. 3(a)). The high
resolution XPS spectra of Mo 3d are shown in
Fig. 3(b). After deconvoluting the Mo 3d spectrum,
two pairs of double peaks at 228.3, 231.4, 229.0
and 232.1 eV can be attributed to the 1T-phase and
2H-phase of MoSe» [36,45], respectively, while the
small double peaks at 229.9 and 233.0 eV can be
assigned to the amorphous phase MoSes [44,46].
The double peaks (232.9 and 236.0 eV) at high
binding energy should be ascribed to Mo®" [46],
which is caused by the surface oxidation as the
sample is exposed to air. In addition, the smaller
single peak at 230.0 eV corresponds to the binding
energy of Se 3s [44], and the other smaller single
peak at 226.9 eV belongs to S 2s of S? [47].

The Se 3d spectrum of MoSe: (Fig. 3(c))
exhibits two pairs of double peaks at 54.3, 55.2,
55.0 and 55.9 eV, corresponding to 1T-phase and
2H-phase of MoSe; [48], respectively. And only
one pairs of double peaks at 54.5 and 55.4 eV can be
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Fig. 3 XPS spectra of MoSSe and MoSe:: (a) Survey pattern; (b) Mo 3d; (c) Se 3d; (d) S 2p and Se 3p
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found in MoSSe. Two pairs of double peaks can be
observed after deconvoluting the XPS spectrum of
S 2p (Fig. 3(d)). The double peaks at 161.1 and
166.9 eV correspond to Se 2ps» and Se 2p1 of Se?,
while the other two peaks at 162.1 and 163.4 eV are
indexed to the binding energies of S 2ps3» and S
2pin of S*7, respectively [38]. The result indicates
that Mo—S bond is formed in the sample.

3.2 Electrochemical performances

The HER electrochemical performance of
as-obtained samples was investigated. Figure 4(a)
shows the polarization curves of the samples.
Compared with MoSe; and MoS,, MoSSe catalyst
displays the best hydrogen evolution performance.
As can be seen from Table 1, MoSSe achieves a
current density of —10 mA/cm? at an overpotential
of —165mV, which has increments of 44 and
57mV in comparison to MoSe; (—209 mV) and
MoS; (—222 mV), respectively.
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The Tafel slope derived from the LSV curve
can reflect chemical reactivity in the HER.
Commonly, three different Tafel slopes (118, 39
and 29 mV/dec) correspond to the rate-determining
step in HER following the Volmer reaction,
Heyrovsky reaction and Tafel reaction, respectively.
MoSSe exhibits a smaller Tafel slope of
47 mV/dec (Fig.4(b)) than MoSe, (65 mV/dec)
and MoS; (64 mV/dec), indicating a faster
hydrogen generation rate of MoSSe catalyst.
According to the value of Tafel slope, MoSSe
follows a Volmer—Heyrovsky reaction mechanism,
and the electrochemical desorption is the HER rate-
controlling step. The HER performance of MoSSe
and reported similar materials have been
summarized in Table 1.

In order to better understand the difference of
the hydrogen evolution performance among the
samples, the effective electrochemical active
surface area (ECSA), which is represented using the
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Fig. 4 Electrochemical performances of MoSe,, MoSSe and MoS, synthesized under same conditions: (a) Polarization
curves; (b) corresponding Tafel plots of samples stemming from (a); (c¢) Capacitive current density (AJ) at different scan

rates; (d) Nyquist plots of samples
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Table 1 Electrochemical HER performance comparison

of different catalysts

Cayst AOmavem) TR gy
mV

MoSSe 165 47 VTVEE(
MoSSe/rGO —285 98 [49]
MoSe>,—NisSey —203 57 [50]
MoSe; =300 90 [18]
MoSe>-ts@MoS;-ts —186 71 [51]
B—1T MoSe; —-180 50.6 [23]
Ni—MoSe; —226 94.5 [52]
Co—MoSe; -210 90.9 [52]
MoSe>/MoS; -162 61 [53]
MoSex@MoS; —-161 60 [54]

value of Ca due to the linearly proportional relation
of their values, was investigated. Cq is derived by
testing the cyclic voltammetry curves of the sample
(Fig. 5).

The relationship between capacitive current
density and scan rate is presented in Fig. 4(c).
MoSSe also presents a higher value of Ca
(19.48 mF/cm?) in  comparison to MoSe>
(8.99 mF/cm?) and MoS; (5.37 mF/cm?), indicating
that the structure of nanosheets with defects affords
more exposed surface active sites and enhances the
electrocatalytic HER activity [55].

The hydrogen evolution kinetics of the
samples was further studied by electrochemical
impedance spectroscopy (Fig.4(d)). The charge
transfer resistance (R.) is obtained by fitting the
Nyquist plots with a suitable circuit model. The R
value of MoSSe is 10.9 Q, which is approximately
12.8% that of MoSe; (85.1 Q), indicating a faster
electron transfer rate for MoSSe sample, which is
conducive to the hydrogen evolution reaction
kinetics. Thus, the conductivity and exposed active
sites of the electrocatalyst can be improved by
alloying [56,57].

The long-term stability of MoSSe catalyst
was tested by cyclic CV scanning and chrono-
potentiometry testing. Figure 6 shows that the
current density change could be ignored after 1000
CV cycles, and the time-dependent current curve
was maintained at a current density of —10 mA/cm?
for at least 6 h (the inset in Fig. 6), suggesting an
outstanding stability of MoSSe.
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as-prepared MoSSe
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Furthermore, the effect of S/Se molar ratio on
the electrochemical HER properties was also
investigated. Figure 7(a) shows the polarization
curves of the obtained samples. Compared with
MoSo4Seis and MoS;6Seo.s, MoSSe also shows the
best hydrogen evolution performance with the
lowest initial overpotential (—116 mV) and the
lowest overpotential to achieve the current density
of =10 mA/cm?.

Figure 7(b) shows that the Tafel slopes of
MoSo4Seis (50 mV/dec) and MoS;6Seos (60 mV/dec)
are higher than that of MoSSe, demonstrating that
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MoSSe possesses faster hydrogen evolution reaction
rate and better hydrogen evolution performance.

To further understand the effect of S/Se molar
ratio on the electrochemical HER properties of
as-obtained samples, the ECSA values of the
samples were estimated by surveying Cq, which is
derived by testing the cyclic voltammetry curves of
the sample (Fig. 8). In comparison with MoS¢.4Sei.6
(8.76 mF/cm?) and MoS;¢Seos (16.78 mF/cm?),
MoSSe also displays the highest the Ca value
(19.48 mF/cm?), revealing that MoSSe has more
active sites and better catalytic performance.
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Fig. 7 Electrochemical performances of MoS.Se»- synthesized at varied molar ratios of S to Se: (a) Polarization curves;
(b) Corresponding Tafel plots of samples stemming from (a); (c) Capacitive current density at different scan rates;

(d) Nyquist plots of samples

Table 2 Electrochemical HER performance comparison of different samples

Sample Overpotential at =10 mA/cm?*mV Tafel slope/(mV-dec™!)  Initial overpotential at =1 mA/cm?*mV
MoSo4Seis -196 50 —144

MoSSe —-165 47 -116
MoSi.6Seo.4 —188 60 —130




2768 Hai-yan SHI, et al/Trans. Nonferrous Met. Soc. China 33(2023) 2761-2771

overpotential (=165mV) at —10 mA/cm? and a
small Tafel slope (47 mV/dec).
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