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Abstract: Based on microstructure analysis of the new Ti−Al intermetallic compound porous material, a micromechanics model of 
heterogeneous Plateau porous structure was established and calculation formulas of elastic constants (including effective elastic 
modulus, effective shear elastic modulus and effective Poisson ratio) were derived by the energy method for this porous material. 
Calculation results show that both the effective elastic modulus and effective shear elastic modulus increase with the increase of the 
relative density while the effective Poisson ratio decreases. Compared with the currently-existing hexagonal honeycomb model and 
micromechanics model of composite materials, the micromechanics model of heterogeneous Plateau porous structure in this study is 
more suitable for characterizing the medium-density porous material and more accurate for predicting the effective elastic constants 
of the medium-density porous material. Moreover, the obtained explicit expressions of the effective elastic constants in term of the 
relative density rather than the microstructural parameters for the uniform and regular Plateau porous structure are more convenient 
to engineering application. 
Key words: intermetallic compound; porous material; effective elastic modulus; Plateau structure; energy method  
                                                                                                             
 
 
1 Introduction 
 

Porous material has been widely used in medicine, 
chemical industry, metallurgy, environmental protection, 
aerospace and building engineering, owing to its special 
performance of large specific surface area, high specific 
mechanical properties, good damping properties and 
large adsorption capacity, and a variety of functions such 
as filtration, separation, adsorption, sound-insulation and 
anti-seism [1−6]. Ti−Al intermetallic compound is a kind 
of structural material with light weight, high strength and 
high temperature resistance, but its potential chemical, 
physical and mechanical properties have not been fully 
developed. Recently, our research group proposed a new 
method of element mixture partial diffusion−reactive 
synthesis−sintering to successfully prepare the Ti−Al 
intermetallic compound porous material [7], which has 
advantages of both ceramic and metal porous materials, 
with higher specific strength and specific modulus, better 

resistance to high temperature and oxidation [8]. It will 
be a promising structure and filter material of light 
weight and high strength. 

It is well known that mechanical properties of the 
porous materials strongly depend on its relative density, 
pore structure morphology and properties of solid 
materials. For the low-density porous material of the 
relative density less than 0.3 (i.e., 0<ρ*/ρs<0.3, where ρ* 
and ρs are densities of porous and solid materials, 
respectively), it is usually simplified as interconnected 
holes or obturator network structure in study of its 
mechanical properties [9−13]. Elastic mechanics [14] or 
mechanics of composite material [15,16] is used to study 
the mechanical properties of the high-density porous 
material with the relative density larger than 0.8 (i.e., 
ρ*/ρs>0.8). Ti−Al intermetallic compound porous 
material prepared by the reaction synthesis is of medium 
density (i.e., 0.3<ρ*/ρs<0.8). Due to its complexity and 
heterogeneity of microscopic structure, analytically 
characterizing the mechanical properties of the  
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medium density porous materials becomes one of the hot 
and difficult issues in preparation and application of this 
new material. 

In this study, a meso-mechanical model of Plateau 
porous structure was established based on microstructure 
analysis of the new Ti−Al intermetallic compound 
porous material. Calculation formulas of the effective 
elastic constants (including effective elastic modulus, 
effective shear elastic modulus and effective Poisson 
ratio) were derived by the energy method in order to 
provide theoretical basis for predicting the mechanical 
properties of the medium-density porous material. 
 
2 Meso-mechanical model of porous 

structure 
 

The new Ti−Al intermetallic compound porous 
material is a kind of porous skeleton structure prepared 
by the three-stage sintering process with characteristics 
of solid reaction and partial diffusion. It has mostly open 
pore structure of high relative density (Fig. 1) and can be 
considered Plateau porous structure [11] with the 
meso-mechanics model shown in Fig. 2(a). The Plateau 
porous structure consists of four inclined struts of length 
(l) and two vertical struts of length (h). In the space 
coordinate system, the angle between the inclined strut 
and X1 axis is θ and the thickness of structure in X3 
direction is b, smaller than l or h. Because of structural 
symmetry, the shadow part in Fig. 2(a) is selected to be 
the representative unit and its detailed size is shown in 
Fig. 2(b). The geometry size as well as the force and 
deformation of each strut is symmetrical about its 
midpoint. It is assumed the strut is isotropic and linear 
elastic material and the elastic modulus of material is Es. 

 

 
Fig. 1 SEM image of Ti−Al intermetallic compound porous 
material 

 
The effective elastic constants (including the 

effective elastic modulus *
1E  and *

2E , the effective 
shear modulus *

12G  and the effective Poisson ratio  
*
12μ ) can be determined based on the displacement, s, of 

 

 
Fig. 2 Meso-mechanics model of porous structure: (a) Plateau 
porous structure; (b) Representative unit 
 
the representative unit in X1−X2 plane calculated by 
energy method as follows [17]: 
 

d d dN N k Q Q M Ms s s
EA GA EI

Δ ⋅ ⋅ ⋅ ⋅
= + +∑ ∑ ∑∫ ∫ ∫   (1) 

 
where N, Q and M are axial force, shear and bending 
moment caused by actual load, respectively; N , Q  and 
M  are axial force, shear and bending moment caused 
by virtual unit load, respectively; k is a shear correction 
coefficient depending on the cross section of the strut. 
 
3 Prediction of effective elastic constants 
 
3.1 Effective elastic modulus *

1E  and *
2E  

For calculating *
1E in X1 direction, the 

representative unit is subject to a uniform tensile stress σ1, 
as shown in Fig. 3(a), and its resultant force in the X1 
direction is F1=σ1b(h+lsinθ). The actual internal forces 
of the inclined strut are Nl =F1cosθ, Ql=F1sinθ and Ml= 
F1xsinθ, respectively. When a unit load is applied to the 
representative unit, i.e., F1=1, the virtual internal forces 
of the inclined strut become coslN θ= , sinlQ θ=  
and sinlM x θ= , respectively. No internal force exists 
in the vertical strut.  
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Fig. 3 Representative unit subjected to a uniform tensile stress 
σ1 in X1 direction: (a) Representative unit; (b) Inclined strut 
 

The X1-directional displacement of the inclined strut, 
Δl1, is obtained by substituting the actual and virtual 
internal forces of the inclined strut into Eq. (1): 
 

 / 22
1 1  0

s

d2 cos 4 (1 )
( )

l
l

l

xF k
E A x

Δ θ μ= + + ⋅∫  

2 / 2  / 22 2
1 1 0  0

s s

d dsin 2 sin
( ) ( )

l l

l l

x x xF F
E A x E I x

θ θ+∫ ∫  
 

Due to the structural symmetry, the X1-directional 
displacement of the unit is Δ1=2Δl1, i.e., 
 

 / 22
1 1  0

s

d4 cos 8 (1 )
( )

l

l

xF k
E A x

Δ θ μ= + + ⋅∫  

2 / 2  / 22 2
1 1 0  0

s s

d dsin 4 sin
( ) ( )

l l

l l

x x xF F
E A x E I x

θ θ+∫ ∫  ( 2 ) 

 
The X1-directional linear strain of the unit, ε1, is 

given by 

θ
ε

cos2
1

1 l
Δ

=                                 (3) 
 

Therefore, the effective elastic modulus *
1E  along 

the X1 direction is calculated as follows: 
 

 / 2* 21
1  0 s1

cos d1 cos
( )2 ( sin )

l

l

l xE
E A xb h l

σ θ θ
ε θ

⎡
= = ⋅ +⎢+ ⎣

∫  

2 / 2  / 22 2
 0  0

s s

d d2 (1 )sin sin
( ) ( )

l l

l l

x x xk
E A x E I x

μ θ θ
⎤

+ + ⎥
⎦

∫ ∫       

(4)  
Similarly, the effective elastic modulus *

2E  along 
the X2 direction is given by 
 

 / 2* 22
2  0 s2

sin d1 sin
( )2 cos

l

l

h l xE
E A xbl

σ θ θ
ε θ

⎡+
= = ⋅ +⎢

⎣
∫  

 / 22
 0

s

d2 (1 )(cos
( )

l

l

xk
E A x

μ θ+ +∫  

2 / 2  / 22
 0  0

s s

d dcos 2
( ) ( )

l h

l h

x x x
E I x E A x

θ
⎤

+ ⎥
⎦

∫ ∫         (5) 

 
3.2 Effective shear modulus *

12G  
For calculating *

12G  in X1 direction, the 
representative unit is subject to a uniform shear stress τ12 

in X1−X2 plane (Fig. 4). Its shear strain in the X1−X2 plane 
is the sum of the shear strain in the X1 and X2 directions, 
i.e., γ12=γa+γb. The resultant forces in the X1 and X2 

directions are F1=2τ12blcosθ and F2=τ12b(h+lsinθ), as 
shown in Fig. 5. Therefore, the internal forces of the 
inclined strut l are Nl=F2sinθ+F1cos(θ/2), Ql=F2cosθ− 
F1sin(θ/2) and Ml=(F2cosθ−F1sin(θ/2))·x. The internal 
forces of the vertical strut h are Nh=0, Qh=F1 and 
Mh=F1·x. 

When a unit load (F1=1) is applied to the 
representative unit in the X1 direction, the virtual internal 
forces of the inclined strut l and the vertical strut h are 

cos( /2)lN θ= , sin( /2)lQ θ= − , /2sinlM x θ= −  and 
0hN = , 1hQ = , hM x= , respectively. 

According to Eq. (1), the displacements of the 
inclined strut l and the vertical strut h in X1 direction can 
be obtained: 

 

 

Fig. 4 Representative unit subjected to a uniform shear stress τ12 in X1−X2 plane 
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Fig. 5 Force analyses of inclined strut l and vertical strut h: (a) 
Inclined strut l; (b) Vertical strut h 
 

 / 2

 0
s

2 1
d2( )c1s os

( )
in cos

2
l

al
l

xF
E

F
A x

θδ θθ= + ⋅ −∫  

 /

 
s

2
2

01
d4 (1 )( )sin

( )
1cos sin
2

l

l

xk
E A x

F Fθ θμ θ−+ ⋅ −∫  

2 / 2

 2 01
s

d2( )sin1cos
(

s
)

in
2

l

l

x x
E I x

F Fθ θ θ− ⋅ ∫  

2 / 2  / 2
1 1 0  0

s s

d d4 (1 ) 2
( ) ( )

h h
ah

h h

x x xk F F
E A x E I x

δ μ= + ⋅ + ⋅∫ ∫  

 
The displacement of the unit in X1 direction is δa= 

δal+δah, i.e., 
 

2 1
 / 2

 0
s

d2( )c1si osn co
2 (

s
)

l
a

l

x
E A

F F
x

θ θδ θ+= ⋅ −∫  

 /

 
s

2
2

01
d4 (1 )( )sin

( )
1cos sin
2

l

l

xk
E A x

F Fθ θμ θ−+ ⋅ −∫  

2

2 1
 / 2

 0
s

d2( )1cos sin
2

sin
( )

l

l

x x
E I x

F F θθ θ ⋅− +∫  

2 / 2  / 2
1 1 0  0

s s

d d4 (1 ) 2
( ) ( )

h h

h h

x x xk F F
E A x E I x

μ+ ⋅ + ⋅∫ ∫  (6) 
 

Similarly, the displacement of the unit in X2 
direction is 
 

2 1
 / 2

 0
s

d4( )s1si inn co
2 (

s
)

l
b

l

x
E

F
A x

Fθ θδ θ+= +∫  

2 / 2

 2 01
s

d4( ) cos1cos sin
2 ( )

l

l

x x
E I x

F F θθ θ− +∫  

 / 2

 0
s

2 1
1cos s d8 (1 )( )coin
2

s
( )

l

l

xk
E A

F
x

Fθ θμ θ−+ ∫ (7) 

 
The shear strain γ12 of the unit in X1−X2 plane is 

given by 
 

12 sin 2 cos
a b

a b h l l
δ δ

γ γ γ
θ θ

= + = +
+

              (8) 
 

Substituting Eqs. (6) and (7) into Eq. (8) results in 
the effective shear modulus *

12G  as follows: 
 

* 12
12

12

cos ( sin )
2

l h lG
b

τ θ θ
γ

+
= = ×  

2 2 / 2  / 22 2
 0  

s s

2
0

d d2
( ) ( )

cos
l h

l h

x x x xh l
E I x E I x

θ
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

⎡
+⎢

⎢⎣
∫ ∫  

( )  /2 2

 0
s

d 2 (1 )
( )

sin
l

l
l x k

E A x
h θ μ+ + ⋅+ ∫  

1
 / 2  / 22 2 2
 0  0

s s

d dcos 2
( ) ( )

l h

l h

x xh l
E A x E A x

θ
−
⎤⎛ ⎞

+ ⎥⎜ ⎟
⎥⎝ ⎠⎦

∫ ∫  (9) 

 
3.3 Effective Poisson ratios *

12μ  and *
21μ  

The effective Poisson ratio *
12μ  can be calculated 

by the X1-directional linear strain ε1 shown in Eq. (3) and 
the X2-directional linear strain 1ε ′  caused by σ1. 

According to the energy method, the X2-directional 
linear displacement Δ12 and linear strain 1ε ′  caused by 
σ1 are 
 

  1 1
12  0  0

s
2 1

 0
s

 / 2
1  0

s

 / 2
1  0

s

cos sin sin cos
2 d 2 d

2 ( ) 2 ( )

sin cos
        2 d

2 ( )
d        2 cos sin

( )
d        4 (1 ) sin cos

( )

l l

l l

l

l

l

l

l

l

F k F
x x

E A x GA x

F x
x

E I x
xF

E A x
xk F

E A x

θ θ θ θ
Δ

θ θ

θ θ

μ θ θ

⋅
= − −

=

−

+ ⋅ −

∫ ∫

∫

∫

∫

 

  
2 / 2

1  0
s

d2 sin cos
( )

l

l

x xF
E I x

θ θ ∫                 (10) 

 
12

1 sinh l
ε

θ
Δ′ =
+

                              (11) 
 

Therefore, the effective Poisson ratio *
12μ  caused 

by σ1 is 
 

* 1  / 22
 012

1 s

dcos si [
(

{ n
)

l

l

xl
E A x

ε
μ

ε
θ θ

′
= −= − − ∫  

2 / 2  / 2

 0  0
s s

}d d2 (1 ) ]
(

/
) ( )

l l

l l

x x xk
E A x E I x

μ+ −∫ ∫  

 / 22
 0

s

d( sin )[cos
( )

{
l

l

xh l
E A x

θ θ+ +∫  

2 / 2  / 22 2
 0  0

s s

d d2 (1 )sin si
(

}n ]
) ( )

l l

l l

x x xk
E A x E I x

μ θ θ+ +∫ ∫  

             (12) 
Similarly, the effective Poisson ratio *

12μ  caused 
by σ2 is 
 

 / 2

 
*

0
s

2 

2

/ 2  / 2

 0  0
s s

 / 2  / 22 2
 0  0

s s

1
sin )sin d

( )

d d        2 (1 )
( ) ( )

(

) /

d dsin 2 (1 )cos        [
( ) ( )

l

l

l l

l l

l l

l l

l x
l E A x

x x xk
E A x E I x

x xk
E A x E A x

h θ

θ

μ θ

μ

θ μ

⎡
−⎢

⎣

+
=

+ −

+ +

⋅

+

− ∫

∫ ∫

∫ ∫
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2 / 2  / 22

 0  0
s s

d dcos 2
( ) ( )

l h

l h

x x x
E I x E A x

θ
⎤

+ ⎥
⎦

∫ ∫           (13) 

 
4 Verification 
 
4.1 Effective elastic constants of non-uniform and 

regular Plateau porous structure 
Equations (4), (5), (9), (12) and (13) are calculation 

formulas for effective elastic constants of the 
non-uniform and non-regular Plateau porous structure. 

For the non-uniform and regular Plateau porous 
structure of an arbitrary cross section shown in Fig. 2(a), 
it is supposed that the inclined strut l and vertical strut h 
have the same length (l=h), and their widths are 
t(x)=t0[1+α(2x/l)2] (where 0≤x≤l/2, t0 is the width of the 
struts at the midpoint, and α is a constant larger than 
zero), the cross-section area is A(x)= t(x)·b and the inertia 
moment of the cross section is I(x)= t3(x)·b/12. Thus,  
Eqs. (4), (5), (9), (12), (13) for calculating the effective 
elastic constants can be simplified as follows: 
 

* *
1 2

s s

2 3 1
3 3 2 (1 )A A B

E E
E E J k J Jμ

= = ⋅
+ + ⋅ +

       (14) 

 

s

*
12 3 1

2 (1 )6 A A B

G
J k J JE μ

= ×
+ ++ ⋅

             (15) 

 
*
12

2 (1 )
3 2 (1 )

A A B

A A B

J k J J
J k J J

μ
μ
μ

− + ⋅ −
+ + ⋅ +

= −                (16) 

 
where 
 

 / 2

 0
0

d arctan
( ) 2

iL
A

x lJ b
A x t

α
α

= ⋅ =∫               (17) 

 
2 3 / 2

3 0
0

d 3
( ) 8

iL
B

x x lJ b
I x t α

= ⋅ = ⋅ ⋅∫  

 

2
1 1 arctan

2(1 )(1 ) 2
α

αα α

⎡ ⎤
− + +⎢ ⎥

++⎣ ⎦
        (18) 

 
The relative density is 

 
 / 2  / 2

*
 0  0 0

4 ( )d 2 ( )d

( sin ) 2 cos
2(3 )

3 3

l h

s

A x x A x x t
h l l b l

ρρ
ρ θ θ

α+
= = =

+ ⋅ ⋅
+∫ ∫  

(19)  
Let α=0.5, the width of strut is t(x)=t0[1+0.5× 

(2x/l)2]. Thus, Eqs. (17)−(19) are reduced to 
 

0
0.4352A

lJ
t

=                               (20) 

3

3
0

0.2431B
lJ
t

=                               (21) 

07 3
9

t
l

ρ =                                (22) 

By substituting Eqs. (20)−(22) into Eqs. (14)−(16), 
calculation formulas of the effective elastic constants are 
obtained for the non-uniform and regular Plateau porous 
structure: 
 

[ ]

* *
1 2

s s

3

0 0

2 3
3

1        

0.4352 3 2 (1 ) 0.2431

E E
E E

l lk
t t

μ

= = ⋅

=
⎛ ⎞ ⎛ ⎞

+ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

  
[ ]

3

2
0.4723

0.2398 3 2 (1 ) 0.2431k
ρ
μ ρ+ + +

          (23) 

 

[ ]

*
12

s

3

0 0

1
2 3

1        

0.4352 1 2 (1 ) 0.2431

G
E

l lk
t t

μ

= ⋅

=
⎛ ⎞ ⎛ ⎞

+ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

  
[ ]

3

2
0.1181

0.2398 1 2 (1 ) 0.2431k
ρ
μ ρ+ + +

           (24) 

 

[ ]

[ ]

* *
12 21

3

0 0
3

0 0

0.4352 1 2 (1 ) 0.2431
        

0.4352 3 2 (1 ) 0.2431

l lk
t t

l lk
t t

μ μ

μ

μ

= =

⎛ ⎞ ⎛ ⎞
− + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠− =
⎛ ⎞ ⎛ ⎞

+ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

  [ ]
[ ]

2

2

0.2398 1 2 (1 ) 0.2431
0.2398 3 2 (1 ) 0.2431

k
k

μ ρ

μ ρ

− + −
−

+ + +
         (25) 

 
4.2 Effective elastic constants of uniform and regular 

Plateau porous structure 
For the uniform and regular hexagonal porous 

structure, suppose α=0, thus the width of the strut is 
t(x)=t0, its cross section area is A(x)= t0·b and inertia 
moment of cross section is I(x)=t0

3·b/12. Equations 
(17)−(19) can be simplified as 
 

02A
lJ
t

=                                   (26) 

 

0

3

32B
lJ
t

=                                   (27) 

 
02 3

3
t
l

ρ =                                 (28) 

 
By substituting Eqs. (26)−(28) into Eqs. (14)− (16), 

calculation formulas of the effective elastic constants are 
obtained for the uniform and regular hexagonal porous 
structure: 
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* *
1 2

3
s s

0 0 0

2 3 1
3 3 1(1 )

2 2

E E
E E l l lk

t t t
μ

= = ⋅ =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

 
3

2 2
6

9 6 (1 ) 4k
ρ

ρ μ ρ+ + +
                  (29) 

 
*
12

3
s

0 0 0

1 1
2 3 1 1(1 )

2 2

G
E l l lk

t t t
μ

= ⋅ =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
3

2 2
3

6 12 (1 ) 8k
ρ

ρ μ ρ+ + +
                   (30) 

 
3

0 0 0* *
12 21 3

0 0 0

1 1(1 )
2 2

3 1(1 )
2 2

l l lk
t t t

l l lk
t t t

μ
μ μ

μ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠= = − =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

 
2 2

2 2
3 6 (1 ) 4

9 6 (1 ) 4
k

k
ρ μ ρ
ρ μ ρ

− + + +
+ + +

                 (31) 

 
4.3 Comparison of this model with currently-existing 

models 
Non-uniform Plateau porous structure model is used 

both in this study and Ref. [11] for predicting effective 
elastic constants of porous materials. Our explicit 
expressions of effective elastic constants in terms of the 
macroscopic relative density rather than the 
microstructural parameters obtained in Ref. [11] are 
more convenient to engineering application. For  
uniform and regular Plateau porous structure, our results 
shown in Eqs. (32)−(34) are the same as those in     
Ref. [11]. 
 

* *
1 2

3
s s

0 0

2 3 1
3 3 1

2 2

E E
E E l l

t t

= = ⋅
⎛ ⎞ ⎛ ⎞

+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

              (32) 

 
*
12

3
s

0 0

1 1
2 3 1 1

2 2

G
E l l

t t

= ⋅
⎛ ⎞ ⎛ ⎞

+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                 (33) 
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In addition, hexagonal cellular model and 

mechanics model of composite materials are used to 
predict effective elastic constants of porous materials in 
Refs. [9] and [15], respectively. Let k=1.2 and μ=1/3 for 

comparison of our models with the other two models. 
Calculation formulas of the effective elastic 

constants were given in Ref. [9] as follows: 
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Calculation formula of the effective elastic modulus 

was given in Ref. [15] as follows: 
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Figures 6−8 show variation curves of the effective 

elastic constants with the relative density (ρ*/ρs) obtained 
in this study, Refs. [9] and [15]. Our results of  *

1E  and 
*
12G  increase with the increase of ρ*/ρs. The larger the 

relative density, the more the solid material per unit 
volume, and thus the stronger the resistant ability of the 
porous material to elastic deformation. When ρ*/ρs is 
equal to 0 and 1, corresponding to the full air (no solid 
material) and fully dense material, the Poisson ratio *

12μ  

is equal to 1 and 0.3−0.5, which results in the decrease of 
*
12μ  with the increase of ρ*/ρs and the tendency to the 

Poisson ratio of the dense material. The variations of *
1E , 

*
12G  and *

12μ  with ρ*/ρs are consistent with those 
predicted by Refs. [9] and [15], and also fit well with the 
actual situation. 

 

 
Fig. 6 Variation of *

1E /Es with ρ*/ρs 
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Fig. 7 Variation of G*
12/Es with ρ*/ρs 

 

 

Fig. 8 Variation of *
12μ  with ρ*/ρs 

 
Compared with the results in Ref. [9], our results of 

*
1E , *

12G  and *
12μ  are almost the same in the low range 

of ρ*/ρs. and slightly lower in the medium range of ρ*/ρs 
and more secure. Effects of axial force, shear force and 
bending moment on the deformation of Plateau porous 
structure are taken into account for calculating the 
effective elastic constants both in Ref. [9] and this study. 
Geometric method is used in Ref. [9] while energy 
method is used in our study for calculating the 
displacement. Obviously, our results are more simple and 
accurate. 

Compared with the results in Ref. [15], our result of 
*
1E  is in good agreement with result in Ref. [15] in the 

low range of ρ*/ρs, but much lower in the medium and 
high range of ρ*/ρs. That is because mechanics of 
composite materials is adopted in Ref. [15], where the 
porous material is regarded as formation of pore and 
dense body, and the pore’s elastic modulus is zero. In 
nature, effect of the pore distribution and pore interaction 
on weakening of the elastic modulus of Plateau porous 
structure cannot be considered, resulting in much higher 
result of *

1E . Therefore, Plateau porous structure model 
established in this study is more reasonable for 

characterizing the porous material of medium density 
and more accurate and reliable for predicting its elastic 
modulus than the composite materials mechanics model. 
 
5 Conclusions 
 

1) A micromechanics model of Plateau porous 
structure for the new Ti−Al intermetallic compound 
porous material is established based on microstructure 
analysis. This model can effectively characterize the 
open skeleton microstructure and non-uniformity of this 
new porous material. 

2) Calculation formulas of elastic constants 
(including effective elastic modulus, effective shear 
elastic modulus and effective Poisson ratio) are derived 
by the energy method. Results show that both the 
effective elastic modulus and effective shear elastic 
modulus increase with the increase of the relative density 
while the effective Poisson ratio decreases. 

3) The explicit expressions of effective elastic 
constants in terms of the macroscopic relative density 
obtained in this study are more convenient to engineering 
application than those in terms of the microstructural 
parameters obtained in reference. 

4) Compared with the currently-existing hexagonal 
honeycomb model and mechanics model of composite 
materials, the micromechanics model of heterogeneous 
Plateau porous structure can take into account the 
non-uniformity of the microstructure and the effect of the 
shear on microstructural displacements. Our results of 
the effective elastic constants obtained by the energy 
method rather than the geometric method are more 
accurate for predicting the effective elastic constants of 
the medium-density porous materials. 
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新型金属间化合物多孔材料有效弹性常数的理论预测 
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摘  要：基于新型 Ti−Al 金属间化合物多孔材料的微结构特征分析，建立了该材料的 Plateau 多孔结构细观力学模

型，通过能量法推导出该多孔材料有效弹性常数(含有效弹性模量、有效剪切弹性模量、有效泊松比)的理论预测

公式。计算结果表明：有效弹性模量和有效剪切弹性模量均随着相对密度的增加而增加，但有效泊松比随着相对

密度的增加而减小。与现有的六边形蜂窝模型及复合材料力学模型相比，非均匀 Plateau 多孔结构细观力学模型

更适合于表征中密度多孔材料，更能准确地预测中密度多孔材料的有效弹性常数。现有的非均匀 Plateau 多孔结

构模型仅给出有效弹性常数与微观结构参数之间的关系，而本文模型建立了有效弹性常数与宏观相对密度的显式

表达式，更方便工程的实际应用。 

关键词：金属间化合物；多孔材料；有效弹性常数；Plateau 结构；能量法 
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