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Abstract: Based on microstructure analysis of the new Ti—Al intermetallic compound porous material, a micromechanics model of
heterogeneous Plateau porous structure was established and calculation formulas of elastic constants (including effective elastic
modulus, effective shear elastic modulus and effective Poisson ratio) were derived by the energy method for this porous material.
Calculation results show that both the effective elastic modulus and effective shear elastic modulus increase with the increase of the
relative density while the effective Poisson ratio decreases. Compared with the currently-existing hexagonal honeycomb model and
micromechanics model of composite materials, the micromechanics model of heterogeneous Plateau porous structure in this study is
more suitable for characterizing the medium-density porous material and more accurate for predicting the effective elastic constants
of the medium-density porous material. Moreover, the obtained explicit expressions of the effective elastic constants in term of the
relative density rather than the microstructural parameters for the uniform and regular Plateau porous structure are more convenient

to engineering application.
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1 Introduction

Porous material has been widely used in medicine,
chemical industry, metallurgy, environmental protection,
aerospace and building engineering, owing to its special
performance of large specific surface area, high specific
mechanical properties, good damping properties and
large adsorption capacity, and a variety of functions such
as filtration, separation, adsorption, sound-insulation and
anti-seism [1—6]. Ti—Al intermetallic compound is a kind
of structural material with light weight, high strength and
high temperature resistance, but its potential chemical,
physical and mechanical properties have not been fully
developed. Recently, our research group proposed a new
method of element mixture partial diffusion—reactive
synthesis—sintering to successfully prepare the Ti—Al
intermetallic compound porous material [7], which has
advantages of both ceramic and metal porous materials,
with higher specific strength and specific modulus, better

resistance to high temperature and oxidation [8]. It will
be a promising structure and filter material of light
weight and high strength.

It is well known that mechanical properties of the
porous materials strongly depend on its relative density,
pore structure morphology and properties of solid
materials. For the low-density porous material of the
relative density less than 0.3 (i.e., 0<p*/p.<0.3, where p"
and ps are densities of porous and solid materials,
respectively), it is usually simplified as interconnected
holes or obturator network structure in study of its
mechanical properties [9—13]. Elastic mechanics [14] or
mechanics of composite material [15,16] is used to study
the mechanical properties of the high-density porous
material with the relative density larger than 0.8 (i.e.,
p'lp>0.8). Ti—Al intermetallic
material prepared by the reaction synthesis is of medium
density (i.e., 0.3<p"/p.<0.8). Due to its complexity and
heterogeneity of microscopic structure, analytically
characterizing the mechanical properties of the

compound porous
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medium density porous materials becomes one of the hot
and difficult issues in preparation and application of this
new material.

In this study, a meso-mechanical model of Plateau
porous structure was established based on microstructure
analysis of the new Ti—Al intermetallic compound
porous material. Calculation formulas of the effective
elastic constants (including effective elastic modulus,
effective shear elastic modulus and effective Poisson
ratio) were derived by the energy method in order to
provide theoretical basis for predicting the mechanical
properties of the medium-density porous material.

2 Meso-mechanical model of
structure

porous

The new Ti—Al intermetallic compound porous
material is a kind of porous skeleton structure prepared
by the three-stage sintering process with characteristics
of solid reaction and partial diffusion. It has mostly open
pore structure of high relative density (Fig. 1) and can be
considered Plateau porous structure [11] with the
meso-mechanics model shown in Fig. 2(a). The Plateau
porous structure consists of four inclined struts of length
() and two vertical struts of length (4). In the space
coordinate system, the angle between the inclined strut
and X; axis is 8 and the thickness of structure in Xj
direction is b, smaller than / or 4. Because of structural
symmetry, the shadow part in Fig. 2(a) is selected to be
the representative unit and its detailed size is shown in
Fig. 2(b). The geometry size as well as the force and
deformation of each strut is symmetrical about its
midpoint. It is assumed the strut is isotropic and linear
elastic material and the elastic modulus of material is E.

Fig. 1 SEM image of Ti—Al intermetallic compound porous
material

The effective elastic constants (including the
effective elastic modulus El* and E; , the effective
shear modulus G, and the effective Poisson ratio
,ul* » ) can be determined based on the displacement, s, of

h+isin@

Fig. 2 Meso-mechanics model of porous structure: (a) Plateau
porous structure; (b) Representative unit

the representative unit in X;—X, plane calculated by
energy method as follows [17]:

A:zj%dﬁzj"gfdﬁzj—f‘g”ds (1)

where N, O and M are axial force, shear and bending
moment caused by actual load, respectively; N ,Q and
M are axial force, shear and bending moment caused
by virtual unit load, respectively; k is a shear correction
coefficient depending on the cross section of the strut.

3 Prediction of effective elastic constants

3.1 Effective elastic modulus E; and E,
For calculating E, in X,
representative unit is subject to a uniform tensile stress oy,
as shown in Fig. 3(a), and its resultant force in the X
direction is Fy=c,b(h+isinf). The actual internal forces
of the inclined strut are N, =Fcosf, Q=Fsinf and M=
Fxsinf, respectively. When a unit load is applied to the
representative unit, i.e., =1, the virtual internal forces
of the inclined strut become N, =cosf, Q, =sin6

direction, the

and M, = xsin @, respectively. No internal force exists
in the vertical strut.



Flsin(8/2)

(b)

Fig. 3 Representative unit subjected to a uniform tensile stress

o1 in X, direction: (a) Representative unit; (b) Inclined strut

The X,-directional displacement of the inclined strut,
Ay, 1s obtained by substituting the actual and virtual
internal forces of the inclined strut into Eq. (1):

dx
A, =2F, cos* 0 +4k(1+ p)-
'[0 E 4, (x)
2
1/ 1/
Fsin?0f dx +2Fsin?0[ X dy
0 E4(x) 0 EJ(x)

Due to the structural symmetry, the Xj-directional
displacement of the unit is A4,=24,, i.e.,

A =4F, cos’ H'[ é/z Z jx(x) +8k(1+ 1)
s
2
Fsin?6] ' & 4F sin n?of " rdr oy
0 E.4/(x) 0 EJ;(x)

The X;-directional linear strain of the unit, ¢, is
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given by
_ A
2[cosé

3

Therefore, the effective elastic modulus El* along
the X direction is calculated as follows:

0520 1/2
‘[O EAz(x)

in? 9‘[ ;/2 Exldx
1 (x)
“4)
Similarly, the effective elastic modulus E, along
the X; direction is given by

x O] lcos@
F =L

& 2b(h+Isin 9)

2h(1+ pysin® 0f +s
0 EsAl (x)

; 9 _ h+lsm9 29-.-1/2 N
&  2blcosd 0 EA4(x)
dx
2k(1+ u)(cos” 6
1+ )eos” 0f | TN
112 x*dx hi2 dx
cos> 0 w2f T——— (5)
Edy(x) 70 E4,(x)
3.2 Effective shear modulus G,
For calculating Gl*2 in X, direction, the

representative unit is subject to a uniform shear stress 7,
in X;—X; plane (Fig. 4). Its shear strain in the X,—X, plane
is the sum of the shear strain in the X; and X, directions,

e., Y12=vsty,. The resultant forces in the X; and X,
directions are F1=2t,blcost and F,=t,b(h+lsind), as
shown in Fig. 5. Therefore, the internal forces of the
inclined strut / are N=F,sinf+F cos(0/2), Q=F,cos6—
Fisin(60/2) and M=(F,cos6—Fsin(6/2))-x. The internal
forces of the vertical strut # are N,=0, Q,=F; and
M,=F;x.

When a unit load (F=1) is applied to the
representative unit in the X; direction, the virtual internal
forces of the inclined strut / and the vertical strut / are
N, =cos(0/2) , Q, =-sin(0/2), M, =-x/2sind and
N,=0, Q,=1, M, =x,respectively.

According to Eq. (1), the displacements of the
inclined strut / and the vertical strut / in X, direction can
be obtained:

6(!

Fig. 4 Representative unit subjected to a uniform shear stress 7, in X;—X; plane
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Fig. 5 Force analyses of inclined strut / and vertical strut 4: (a)
Inclined strut /; (b) Vertical strut

172 dx
Ed/(x)

172 dx
EA(x)

0, =2(F,sinf+— ECOS@)COS@J‘

4k(1+ p)(F, cos O — —F1 sin#)sin @ - I

172 x dx
0 EJ(x)
h/2 dx + 1~J.h/2 xzdx
0 EA4,(x) 0 EJ,(x)

2(F, cos49—%F1 sinH)sinHI

S = 4k(+ W F - |

The displacement of the unit in X; direction is §,=
OurtOun, 1.€.,
dx
E 4, (x) B
172 dx
E 4,(x)

1
0, =2(F, sin6’+%F1 cosé’)cost?-j0

4k(1+ p)(F, cos8— —F1 sin@)sin @ - j

112 x3dx .
E,1,(x)
ni2  dx N _[h/z x2dx
0 E A4, (x) to E I, (x)

2(F, 00549—51‘71 sinf)sin G- I

4k(1+ p)F, - | (6)

Similarly, the displacement of the unit in X,
direction is

dr +
0 E (%)
172 x%dx N
0 Es[l(x)

5, = 4(F, sm0+;Fl cose)smaj

4(F, cosd— F1 sin @) cos 6’_[

dx
E4,(x)

/
8k(1+ 10)(F, cos 0 —%Fl sin 8) cos ajé 2 7

The shear strain y;, of the unit in X;—X; plane is
given by
)

=Yty = % + (8)
N2 =%a™7s h+lIsin@ 2[cosd

Substituting Eqgs. (6) and (7) into Eq. (8) results in
the effective shear modulus Gl*2 as follows:
G1*2 _Tn lcos6’(h+lsm€)><
N2 2b

2 2
coszﬁ(hzj[/z—x & ol X J+
0 EJ(x) 0 EJ,(x)
1/2 dx
0 E4(x)

-1
cos> 0 hZJ.mL—i-ﬂzjh/z dx 9
0 EsAl (x) 0 EsAh (x)

3.3 Effective Poisson ratios u;, and
The effective Poisson ratio #1*2 can be calculated
by the Xj-directional linear strain &, shown in Eq. (3) and
the X,-directional linear strain & caused by 0.
According to the energy method, the X>-directional
linear displacement A4, and linear strain ¢ caused by
o) are

(1+hsin0)’ | +2k(1+ p1)-

B lelcosﬁsmﬁ 2jlk-ﬂsin00059
0 2E.A4/(x) 0 2G4 (x)

ZJ- 1 Fix* sin @ cos 6
0 2Esll(x)
dx j—
E 4, (x)

, 12
2F, cos@sin 9‘[ o

dx —
EsAl (.X')

) 1/2
4k(1+ p)- Fysin@cos 49.[ o

112 x dx
sll(x)

2F, sin ecosaj (10)
A12

& =—"T""—
h+Isin@

(1D

Therefore, the effective Poisson ratio ﬂl*z caused
by (221 is

,ul*zz g—:—{lcos 6’sm6’[J. dr
& 0 E Az(x)
de Jm xdx
EA4(x) 70 Ed(x)
172 dx
+
E 4;(x)
2
1
dr +sin?0f rde o,
E 4, (x) 0 Ed(x)
(12)
Similarly, the effective Poisson ratio /11*2 caused
by o, is

1/2
2h(1+ )] | 1/

{(h+1sin O)[cos’ ej

g 12
2k(1+ w)sin ejo

. (h+lsin¢9)sin¢9.{[1/2 dx

Moy =— / 0 EA4(x) -
12 dx 172 x*dx
2%+, EA(x)_IO L)
172 dx dx
ej e )+2k(1+,u)cos 9[0 EA[(X)
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2
cos? o 2L (13)
0 ELG) 0 E4 ()

4 Verification

4.1 Effective elastic constants of non-uniform and

regular Plateau porous structure

Equations (4), (5), (9), (12) and (13) are calculation
formulas for effective elastic constants of the
non-uniform and non-regular Plateau porous structure.

For the non-uniform and regular Plateau porous
structure of an arbitrary cross section shown in Fig. 2(a),
it is supposed that the inclined strut / and vertical strut /
have the same length (/=h), and their widths are
1(x)=to[ 1+a(2x/1)*] (Where 0<x<I/2, t,is the width of the
struts at the midpoint, and a is a constant larger than
zero), the cross-section area is A(x)= #(x)-b and the inertia
moment of the cross section is /(x)= £(x)-5/12. Thus,
Egs. (4), (5), (9), (12), (13) for calculating the effective
elastic constants can be simplified as follows:

E_I*_E_;:%/g_ 1 (14)
E, E, 3 3J,+2k(l+u)-J,+J,
G_lzzﬁx ! (15)
E, 6 J,+2k(l+u)-J, +J,
. J=2k(l+)-J =T
fyy == Al bl (16)
3J,+2k(L+p)-J 4+ T
where
A:b~"-Li/2 dx :iarctanx/g (17)
0 A 1y 2V
Li2x*dx P03
B:b'.[o =
I(x) ¢ 8a
3 1 _ 1 +arctan\/; (18)
(+a) 20+a) 2Ja
The relative density is
o4l acode 2" A()dx
oo Ay AE 2] A aiia
o (h+1sin@)-2[cos@-b 33 1
(19)

Let a=0.5, the width of strut is #(x)=t,[1+0.5%
(2x/1)*]. Thus, Egs. (17)—(19) are reduced to

J,=04352 (20)
Iy
J&

Jp=024315 @1)
fy

73 1,
pP=—""—r

o 7 (22)

By substituting Egs. (20)—(22) into Egs. (14)—(16),
calculation formulas of the effective elastic constants are
obtained for the non-uniform and regular Plateau porous
structure:

E_E _23

E E 3

S S

1

3
0.4352[3+2k(1+ )] [:] + 0.2431[3
0 0

0.4723p°
0.2398[3+2k(1+ )] p* +0.2431

(23)
Gip _ 1
ES

1

3
0.4352[1+2k(1+ ,u)][f) + 0.2431@}
0 0

0.1181p°
0.2398[1+2k(1 + )] p* +0.2431

24

* *
Hip = Hyp =

3
0.4352[1-2k(1+ ,u)][:J —0.243 1{5]
— 0

0

3
0.4352[3+2k(1+ y)](tlj + 0.2431[”
0 0

0.2398[1-2k(1+ w)] p* —0.2431
0.2398[3+2k(1+ )] p* +0.2431

(25)

4.2 Effective elastic constants of uniform and regular
Plateau porous structure
For the uniform and regular hexagonal porous
structure, suppose o=0, thus the width of the strut is
t(x)=ty, its cross section area is A(x)= fy’b and inertia
moment of cross section is I(x)=t,’-b/12. Equations
(17)—(19) can be simplified as

J, =— 26

42, (26)
l3

JB=§ (27)
0

By substituting Egs. (26)—(28) into Egs. (14)— (16),
calculation formulas of the effective elastic constants are
obtained for the uniform and regular hexagonal porous
structure:
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E. E 3 3
2\ ¢, th) 2\
6 3
s (29)
9p” +6k(1+ p)p”~ +4
Go_ 1 ! _
E. 23 3
2\ ¢ ty) 2\
3 3
s (30)
6p" +12k(1+ p)p° +8
11 1Y 1Y
. . 21 ¢, ty) 2\t
Hip = Hh =~ 3=
21 ¢, ty) 2\t
o 2 2
3p° +6k(1+u)p” +4 G1)

9p° +6k(1+ ) p* +4

4.3 Comparison of this model with currently-existing

models

Non-uniform Plateau porous structure model is used
both in this study and Ref. [11] for predicting effective
elastic constants of porous materials. Our explicit
expressions of effective elastic constants in terms of the
macroscopic density rather than the
microstructural parameters obtained in Ref. [11] are

relative

more convenient to engineering application. For
uniform and regular Plateau porous structure, our results
shown in Egs. (32)—(34) are the same as those in
Ref. [11].

E_;:E_EZZ\/E. 1 (32)
E. Ec 3 30 1(1Y
— | — +7 -
20ty ) 2\ ¢
G, 1 1
= 3 (33)

1[1}1[1}3

N " 2\t 20t

__0—03 (34)
3( 1 1(1

| — +i -

2(%] 2[%]

In addition, hexagonal cellular model and
mechanics model of composite materials are used to
predict effective elastic constants of porous materials in
Refs. [9] and [15], respectively. Let /=1.2 and p=1/3 for

comparison of our models with the other two models.
Calculation formulas of the effective elastic
constants were given in Ref. [9] as follows:

3
t
g e ah L]
3 Y
1+(5.4+1.5,u)[1j

E, E,
: ﬁ(ff

G _ !
Es t 2
3+(9.9+5.25) /
P
1+(1.4+1.5,u)(lj
Hip = Hy =

2
1+(5.4+1.5,u)(;j

Calculation formula of the effective elastic modulus
was given in Ref. [15] as follows:

*

E—=3.287p1'905(7—4,5)0'179 5-2p
E 3-11p

S

Figures 6—8 show variation curves of the effective
elastic constants with the relative density (p'/p) obtained
in this study, Refs. [9] and [15]. Our results of El* and
Gl*2 increase with the increase of p’/p,. The larger the
relative density, the more the solid material per unit
volume, and thus the stronger the resistant ability of the
porous material to elastic deformation. When p'/p, is
equal to 0 and 1, corresponding to the full air (no solid
material) and fully dense material, the Poisson ratio ,ul* 5
is equal to 1 and 0.3—0.5, which results in the decrease of
,ul*2 with the increase of p'/p, and the tendency to the
Poisson ratio of the dense material. The variations of El* ,
Gl*z and ,U1*2 with p'/p, are consistent with those
predicted by Refs. [9] and [15], and also fit well with the
actual situation.

1.0
0.8 — This study
-=- Ref. [9]
e Ref. [15]
06
=
15
041
02F
0702 04 0.6 0.8 1.0

o'l p,
Fig. 6 Variation of El* /E, with p’/p,
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— This study
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=
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T
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o1p,

Fig. 7 Variation of G"1o/E; with p"/pq

1.0

— This study
=== Ref. [9]

0.8

=] =

5 0.6 ~

T
4

0.4

0.2 1 . . )
0 0.2 04 06 0.8 1.0
o1p,

Fig. 8 Variation of ﬂl*z with p"/p;

Compared with the results in Ref. [9], our results of
E/, G), and uj, are almost the same in the low range
of p/ps. and slightly lower in the medium range of p*/p;
and more secure. Effects of axial force, shear force and
bending moment on the deformation of Plateau porous
structure are taken into account for calculating the
effective elastic constants both in Ref. [9] and this study.
Geometric method is used in Ref. [9] while energy
method is used in our study for calculating the
displacement. Obviously, our results are more simple and
accurate.

Compared with the results in Ref. [15], our result of
El* is in good agreement with result in Ref. [15] in the
low range of p'/p, but much lower in the medium and
high range of p'/p,. That is because mechanics of
composite materials is adopted in Ref. [15], where the
porous material is regarded as formation of pore and
dense body, and the pore’s elastic modulus is zero. In
nature, effect of the pore distribution and pore interaction
on weakening of the elastic modulus of Plateau porous
structure cannot be considered, resulting in much higher
result of El* . Therefore, Plateau porous structure model
established in this study is more reasonable for

characterizing the porous material of medium density
and more accurate and reliable for predicting its elastic
modulus than the composite materials mechanics model.

5 Conclusions

1) A micromechanics model of Plateau porous
structure for the new Ti—Al intermetallic compound
porous material is established based on microstructure
analysis. This model can effectively characterize the
open skeleton microstructure and non-uniformity of this
new porous material.

2) Calculation formulas of elastic constants
(including effective elastic modulus, effective shear
elastic modulus and effective Poisson ratio) are derived
by the energy method. Results show that both the
effective elastic modulus and effective shear elastic
modulus increase with the increase of the relative density
while the effective Poisson ratio decreases.

3) The explicit expressions of effective elastic
constants in terms of the macroscopic relative density
obtained in this study are more convenient to engineering
application than those in terms of the microstructural
parameters obtained in reference.

4) Compared with the currently-existing hexagonal
honeycomb model and mechanics model of composite
materials, the micromechanics model of heterogeneous
Plateau porous structure can take into account the
non-uniformity of the microstructure and the effect of the
shear on microstructural displacements. Our results of
the effective elastic constants obtained by the energy
method rather than the geometric method are more
accurate for predicting the effective elastic constants of
the medium-density porous materials.
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